
AIP490 Project

GradBot - A unified dialogue state tracking and
dialogue response model for Task Oriented

Dialogues (TOD) and Open Domain Dialogues
(ODD)

by

Sinh Nguyen, Truc Nguyen

THE FPT UNIVERSITY HO CHI MINH CITY

ITS Faculty FPT University HCMC



Final Capstone Project 2 of 75

GradBot - A unified dialogue state tracking and
dialogue response model for Task Oriented

Dialogues (TOD) and Open Domain Dialogues
(ODD)

by

Sinh Nguyen, Truc Nguyen

Supervisor: Dr. Nguyen Quoc Trung, Dr. Truong Hoang Vinh

A final year capstone project submi�ed in partial fulfillment of the requirement

for the Degree of Bachelor of Artificial Intelligence in Computer Science

DEPARTMENT OF ITS

THE FPT UNIVERSITY HO CHI MINH CITY

April 2024 (Month year)



Final Capstone Project 3 of 75

ACKNOWLEDGMENTS

The project we are working on is under the ownership of Gradients Technologies. During our

internship with the company, we were granted permission by the Director to utilize this

project for our academic requirements, specifically for our graduation project. The

conceptualization and execution of the project plan were primarily our contributions. Prior to

initiating the research, we were equipped with fundamental knowledge by our mentors and

project managers. They also provided us with substantial support in refining our

methodologies to optimize results. Furthermore, they assisted us in reviewing our code after

each task. For the training of models across all modules in this system, we utilized the

company's GPU resources.

Upon the conclusion of our internship, we, along with our instructors, were given the

opportunity to continue our research and further development on the project. This

professional experience has been instrumental in our academic and career growth.



Final Capstone Project 4 of 75

AUTHOR CONTRIBUTIONS

Conceptualization, Sinh Nguyen and Truc Nguyen and Gradients Technologies.;

methodology, Sinh Nguyen and Truc Nguyen and Gradients Technologies; software, Sinh

Nguyen and Truc Nguyen; validation, Sinh Nguyen and Gradients Technologies; formal

analysis, Sinh Nguyen and Truc Nguyen; investigation, Gradients Technologies; resources,

Gradients Technologies; data curation, Sinh Nguyen and Truc Nguyen; writing—original draft

preparation, Sinh Nguyen and Truc Nguyen; writing—review and editing, Sinh Nguyen and

Truc Nguyen; visualization, Sinh Nguyen and Truc Nguyen; supervision, Dr.Nguyen Quoc

Trung and Dr. Truong Hoang Vinh; project administration, Gradients Technologies; funding

acquisition, Sinh Nguyen and Truc Nguyen. All authors have read and agreed to the Final

Capstone Project document.



Final Capstone Project 5 of 75

ABSTRACT

The system for task-oriented dialogue domain requires classifying user intent and replying to

a specific goal domain. Within the task-oriented sub-module, the Dialogue State Tracker (DST)

is well-known as a variety processing tracker. Nonetheless, current DST models tend to focus

solely on task-oriented domains (ToD), resulting in constrained performance when deployed

in varied scenarios. Besides, current dialogue response models of previous studies achieved

quite poor results because the responses were not natural and fluent. In this paper, we propose

GradBot, a unified system including DST model vs response model that predicts both types of

tasks, task-oriented dialogue (TOD) and open domain dialogue (ODD). Our model leverages

the recent advances in prompt engineering and conditional generation to perform zero-shot

learning. After experiments, GradBot has achieved an 88.6% and 82.5% score on Joint Goal

Accuracy metrics when evaluating the Scheme-Guided Dialogue (SGD) and FusedChat test

sets correspondingly, demonstrating the adaptation ability for multi-domains.

Keywords: Task Oriented Dialogue, Open Domain Dialogue, Dialogue State Tracking,

Conversational AI



Final Capstone Project 6 of 75

CONTENTS

ACKNOWLEDGMENTS 3

AUTHOR CONTRIBUTIONS 4

ABSTRACT 5

CONTENTS 6

List of Figures 9

List of Tables 10

1. INTRODUCTION 11

2. RELATEDWORK 16

2.1 Dialogue State Tracking 16

2.2 Enhance Reading Comprehension 16

2.3 Dialogue Response 17

2.4 Affection dataset 18

3. PROJECT MANAGEMENT PLAN 20

3.1 Overall Project Objective 20

3.2 Effort Distribution 21

4. METHODOLOGY 23

4.1 Set up the system’s architecture 23

4.2 Training method 24

4.2.1 Consistency and Compatibility Between Modules 25

4.2.2 Flexibility to Change and Upgrade the System 26

4.2.3 Optimal training time 27

4.2.4 Suitability for Research or Production Needs 28



Final Capstone Project 7 of 75

4.3 Optimization in training 29

4.3.1 Model parallelism 29

4.3.2 DistributedDataParallel 31

4.3.3 Combine Model Parallel and Data Parallel 34

4.4 Choosing checkpoint model 36

4.4.1 Multitask pre-training 36

4.4.2 Instruction training and Chain of Thought training 38

4.5 Complexity of building Schema-guided Definition 40

4.6 Predefined structure model 42

4.6.1 Schema-guided representation 42

4.6.2 Dialogue context representation 42

4.6.3 Action enhances constraint 43

4.7 DST as guided Reading Conversation 44

5. DATASETS 45

5.1 Fusedchat 45

5.1.1 Overview 45

5.1.2 Fusedchat construction 46

5.2 Schema-Guided Dialogue (SGD) 49

5.2.1 Overview Schema-Guided 49

5.2.2 Schema-Guided Approach 50

5.2.3 Data Representation 51

5.2.4 Comparison With Other Datasets 52

5.3 MultiWoz 2.4 53

5.3.1 Overview 53



Final Capstone Project 8 of 75

5.1.2 Annotation Error Types 53

6. METRICS 56

6.1 Joint Goal Accuracy 56

6.2 Slot Accuracy 58

6.3 F1 Score 59

7. RESULTS AND DISCUSSION 61

7.1 Performance on FusedChat 61

7.2 Performance on SGD 62

7.3 Performance on MultiWoz 2.4 64

8. CONCLUSIONS AND PERSPECTIVES 66

9. REFERENCES 67

10. APPENDIX 72



Final Capstone Project 9 of 75

List of Figures

INTRODUCTION Figure 1. An example of A�raction Domain on Fusedchat datasets. The
conversation builds from MutiWoz2.4 by rewriting the existing Task-oriented domain turns and
adding new Open Dialogue domain turns. 13

4.3.2.1 Figure 2. Pytorch Fully Sharded Data Parallel (FSDP) 32

4.3.2.1 Figure 3. Decomposing All-Reduce Operations in Distributed Data Parallel Training: A Path to
Full Parameter Sharding. 33

4.3.3 Figure 4. Efficient Machine Learning with Hybrid Parallelism: The diagram shows a hybrid
approach using model and data parallelism for efficient machine learning. It optimizes resource
utilization and closely matches the speed of data parallelism, ideal for smaller research teams. 35

4.4.1 Figure 5. Our fine tuning data comprises 473 datasets, and 1,836 total tasks. 37

4.4.1 Figure 6. Results of Flan T5 and T5 on MMLU, BBH, TyDiQA, MGSM. 38

4.4.2 Figure 7. Compare using chain-of-thought training and not using CoT training. 39

4.4.2 Figure 8. Compare using instruction training and not using instruction training. 39

4.6.3 Figure 9. Overview of GradBot approach for schema-guided multi-domains dialogues. The
bo�om figure includes specific examples for dialogue context, user action, ontology and current
query while the top figure stimulates predictions. 44

5.1.1 Figure 10. Their dialogue system allows a user and a digital assistant to switch between (TOD)
and (ODD) modes. An example includes a query about college fees (TOD) and a chat about personal
growth and finance (ODD). 46

5.1.2.2 Figure 11. An TOD + ODD instance from FusedChat 48

5.1.2.3 Figure 12. An ODD + TOD instance from FusedChat 49

5.2.1 Figure 13. Example schema for a digital wallet service 50

5.2.2 Figure 14. In the context of two distinct flight services, dialogue state tracking labels are applied
after each user statement. With the schema-guided method, these annotations depend on the service’s
schema, located at the extreme left/right. 51

5.3.2 Figure 15. Examples of each error type. 54

6.1 Figure 16. Overview simultaneously enhances the construct meaning of the input and target
value. 57



Final Capstone Project 10 of 75

List of Tables

3.2 Table 1. Project plan. Above are our main tasks assignments. 21

3.2 Table 2. Source data 22

5 Table 3. Statistics for SGD, FusedChat, and MultiWoz2.4, computed across train, validation, and test

sets. FusedChat incorporates MultiWoz2.4, with the addition of ODD to its TOD part. In SGD,

”unique” slots are represented in italics, and the number of slot values includes those for

”categorical” slots. 45

7.1 Table 4. Experimental results on the FUSEDCHAT test set with Join Goal Accuracy (JGA), Slot

Accuracy (SA), F1-score performance. Two models from FUSEDCHAT [23] are cited to compare for

JGA and SA metrics, their parameters are not referred to in the original paper so that we hide it.

Addition F1 column is reported to ensure proper tracking of the dialogue’s type (ODD or TOD). Our

GradTOD model’s performance is wri�en in italics. 61

7.2 Table 5. Experimental results on the SGD test set with Join Goal Accuracy (JGA) performance on

seen and unseen domains, the value with Large Language Model (params more than 1B) and our

GradTOD model wri�en in bold and in italics, respectively. 62

7.2 Table 6. Comparison of performance between state-of-the-art research on MultiWoz 2.4 test set.

The result of SOM-DST on MultiWoz 2.4 is referred to on [34]. The highest score with Encoder only

and Large Language Model (Seq2Seq) are wri�en in bold while our GradTOD model is wri�en in

italics, respectively. 62

Appendix Table 7. Example of Metadata miss slots 67

Appendix Table 8. Example of Dialog act miss slots 68

Appendix Table 9. Example of Metadata and dialog act miss slots 68

Appendix Table 10. Example of Dialog act miss slots and values 69

Appendix Table 11. Example of Inconsistent values 69



Final Capstone Project 11 of 75

1. INTRODUCTION

The task-oriented domain has a�racted a lot of a�ention not only in academics but also in

industry. This objective is to achieve specific strategies, such as providing information or

performing an action that satisfies the user’s request.

Specifically, the task-oriented system will replace most product consultants, reservation

staff and customer service staff. This system can interact with users and allow them to carry

out intentions such as: buying products, searching or booking hotel rooms, restaurant tables,

making medical appointments, buying music tickets, buying tickets flight, train, taxi, etc. and

actions include: providing characteristics of the hotel or restaurant that the user wants to

search or book, request the system about the place (does it has internet? How much does it

cost ? etc), accept orders, confirm orders, etc. After receiving actions and intentions from the

user, the system will respond to the user with system actions such as: providing information

about hotels and restaurants that the user requests, offering hotel, restaurant in the user’s

destination, performing order, etc.

One of the crucial components of the task-oriented domain is Dialogue State Tracking

(DST), which tries to predict appropriate actions to resolve the goals. At every turn, DST has to

look up the dialogue history (whole or sliding window) to the current user query to determine

user intentions, actions with specific values in the slot list [1, 2]. In our observation, there are

two kinds of DST designed:

● The traditional method uses an Encoder module exploiting multihead layers to build

classified data intent prediction, slots prediction, and slot filling [1, 3];

● Seq2Seq module uses prompting to show semantics between turns and ontology

through conversation to predict a required value [4–6].



Final Capstone Project 12 of 75

In industrial applications, DST is required to adapt flexibly new domains (services)

without prior training for a specific task. For this purpose, the role of zeroshot prediction on

unseen domains becomes important in DST. Some previous work [4–6] uses guided schema as

a description to show the semantics of slots with input sentences (user query). With recent

advances in pre-trained language models [7–9], augmented language techniques are gaining

more and more a�ention. These methods have demonstrated impressive improvement and

zero-shot adaptability [3, 10, 11]. Moreover, the in-context learning framework (ICL) shows

efficient methods and techniques in DST without the re-training stage by combining

prompting and examples for a task (few-shot) [12, 13].

Often other studies only focus on the ability to predict user actions and intentions using

the DST model, without researching the ability to respond to users appropriately and fluently.

Therefore, our system incorporates a Dialogue Response model designed to interact with users

in a way that depends on the predictions made by the DST model (including the user’s actions

and intentions). Historically, dialogue response models were primarily developed for

conversational AI systems, with a particular focus on question answering systems. The input

model mainly consists of historical context and the current user query. In cases where the

system is required to respond to untrained queries, documents retrieved from the internet or a

database are added to the input model to provide knowledge to help the model answer user

queries. However, to satisfy the user’s task-oriented requests, the Dialogue Response model

needs to include a main component, called ‘system action’. This component represents the

action that the system will take in response to the user, after receiving the user’s actions and

intentions.



Final Capstone Project 13 of 75

Fig 1. An example of A�raction Domain on Fusedchat datasets. The conversation builds from
MutiWoz2.4 by rewriting the existing Task-oriented domain turns and adding new Open Dialogue

domain turns.

More specifically, Figure 1 shows an example conversation with the associated dialogue

state of the a�raction domain. The user wants to find information about a specified name and

request more data about the phone number, address, and area. At the same time, they ask if

going to the museum is useful or not (general domain)? The system must answer questions

based on their knowledge (open question-answering domain) or even daily conversation

(chitchat). It requires an intelligent chatbot with novel architectures and approaches such as

DST, switching domain classification (a�raction domain to general domain), and supporting

generative AI-specific knowledge to improve the performance of the conversational system.

However, there still has been a noticeable gap until now between existing benchmark datasets

and real-life human conversations. These datasets cover a limited number of domains,

unrealistic constraints focus on a few skill sets and do not have empathy or personality

consistency, etc.



Final Capstone Project 14 of 75

Motivated by this research, we propose a recent advance in prompt engineering and

conditional generation to adapt zero-shot learning applications useful in the business domain.

The effectiveness of our proposed method is experimented on the FusedChat, SGD, and

MultiWoz2.4 datasets, achieving remarkable performance on some benchmarks and human

evaluations. Our proposed methods can be summarized as follows:

● We introduce a simple method but effective controls tracking conversation flow and easily

expand the new business domains (services). Our evidence shows that using abbreviations

such as tags we often see such as: <EOS>, <CLS>, <CTX>, <P>, etc., is used to let the model

know what they need to do or where to get information from ? This is not as effective as

natural language descriptions with detailed instructions like: ”Use the information

provided from >context:... and current query:... to answer user questions”, this approach

be�er supports both the Task-Oriented Domain and the Open Dialogue Domain.

● While several researchers/developers focus on using the Large Language Model to give a

strong performance experience. We are interested in improving the small language model,

which achieves results equal to or superior to other large language models, on a variety of

tasks in the Dialogue State Tracking model and Dialogue Response model based on a

contextual semantics ontology. We are proud that our system, with its much smaller size,

not only achieves results equal to or be�er than Large Language Models on seen domains

in test set, which were trained in train set, but also achieved very high results on unseen

domains in the test set, outperforming previous studies in terms of zero shot ability.

● Our full system can be applied to developing practical applications to serve businesses that

need chatbots that can interact with users and allow them to make reservations, make

purchases or search product’s information without wasting time retraining to suit that

business’s domain. In addition, the system is small in size, so it is easy to set up on most

businesses’ platforms and the response speed will be much faster than systems trained on

Large Language Models.



Final Capstone Project 15 of 75

The remainder of the article is structured as follows. Section 2 discusses our relevant works.

The key idea for the Dialogue State Tracker combines prompting and conditional generation

with ontology performing the details is explained in Section 4. The outcome and the work’s

conclusion are then reported in Sections 7 to 8, respectively.



Final Capstone Project 16 of 75

2. RELATEDWORK

2.1 Dialogue State Tracking

The construction of a conversational Task-oriented system forms the crux of this discussion.

The methodologies employed in this process can be broadly categorized into two distinct

groups: Classification (Encoder) and Generation (Seq2Seq). In recent times, transformer-based

pre-trained models, such as BERT [14], have made significant strides in various natural

language processing tasks, demonstrating remarkable results. This success has led to the

proposal of a multi-task BERT-based model [15]. This model is designed to tackle challenges

such as intent prediction, slot filling, and request slot filling by encoding the history and

service schema.

However, these approaches present certain limitations. They are not applicable to

unseen values and struggle to scale up to large domains. To mitigate these issues, a UniDU

framework is introduced in [16]. This framework facilitates effective information exchange

across a diverse range of dialogue-understanding tasks. The study conducted found an

intuitive multitask mixture training method. This method enables the unified model to bias

convergence towards more complex tasks. This discovery is a significant step forward in the

field, offering promising prospects for the development of more sophisticated and efficient

task-oriented systems.

2.2 Enhance Reading Comprehension

In contrast to the research methodologies discussed earlier, several scholars have discovered

that generative extractive methods, specifically Machine Reading for Question Answering

(MRQA), are highly effective in addressing textual Question Answering (QA) tasks. This

effectiveness stems from the MRQA’s inherent ability to comprehend the context. Leveraging

this advantage, CoFunDST [17] amalgamates Dialogue State Tracking with Machine Reading

Comprehension. This combination is applied to context-choice fusion, serving as an extensive



Final Capstone Project 17 of 75

knowledge base for predicting slots and values among available candidates. This approach

significantly enhances zero-shot performance.

In another experiment focusing on comprehension tasks, TransferQA [18] introduces

two effective methods: constructing negative question sampling and context truncation. These

methods are particularly adept at handling “none” value slots and enhancing the model’s

generalization ability in unseen domains. Simultaneously, Moradshahi’s approach [19]

emphasizes that the collection of large amounts of data for every dialogue domain is often

both costly and inefficient. To address this issue, his study applies the transfer learning

technique. This technique utilizes a limited task-oriented subset in the source data language to

construct a high-quality model for other target languages. The experiments conducted using

this approach yielded unexpected results. Training with only 10% of the data points led to a

10% increase in performance compared to the previous state-of-the-art (SOTA) research on

both zero-shot and few-shot learning.

In the realm of multilingual applications, PRESTO [20], a public multilingual

conversation dataset for real-world Natural Language Understanding (NLU) tasks, and the

application-based mT5 model are considered as the baseline training in this field. The

experiments conducted using this module demonstrated its effectiveness in handling various

linguistic phenomena. This underscores the potential of these methodologies in enhancing

reading comprehension in task-oriented systems.

2.3 Dialogue Response

The dialogue response model constitutes a pivotal component in a task-oriented dialogue

system. It plays a decisive role in determining the system’s capacity to communicate effectively

with the user. The field has witnessed significant advancements recently, primarily driven by

the application of deep learning techniques. Among these, transformer-based models such as

GPT-3 [21] have demonstrated exceptional performance in generating responses that closely

resemble human interaction. In the context of multi-domain dialogues, maintaining context

and coherence across diverse topics presents a substantial challenge. To tackle this, several



Final Capstone Project 18 of 75

researchers have proposed the employment of context-aware models. These models are

capable of tracking the dialogue history and leveraging this information to generate responses

that are not only more relevant but also exhibit greater coherence.

Despite these advancements, the field of dialogue response generation for task oriented

dialogue systems continues to grapple with numerous challenges. These include the need for

more effective strategies to handle out-of-domain queries and enhancing the system’s ability to

comprehend and generate responses in multiple languages.

Future research in this field is anticipated to concentrate on addressing these challenges.

The ultimate objective is to further enhance the performance and usability of task-oriented

dialogue systems, thereby making them more efficient and user friendly. This ongoing

research and development in the field holds great promise for the future of task-oriented

dialogue systems.

2.4 Affection dataset

Recent advancements in the realm of state-of-the-art research [22–24] have significantly

improved existing Task-Oriented Dialogue (TOD) datasets. This has been achieved by

designing a variety of methods aimed at enhancing context, samples, and method processing

to facilitate real human-level conversation.

FusedChat [23], for instance, has restructured Task-oriented dialogue and incorporated

new open domain dialogue (commonly referred to as chitchat) to create a novel dialogue. This

innovative approach has broadened the scope of dialogue systems, making them more

versatile and user-friendly.

In a similar vein, ACCENTOR [22] has proposed a data augmentation method

specifically designed for generating conversation. This method leverages pre-trained

generative models and employs a custom filter to minimize the effort required for human

annotation. This approach not only streamlines the process but also enhances the quality of the

generated dialogues.



Final Capstone Project 19 of 75

Building on these approaches, we have conducted an in-depth analysis of our model

training on FusedChat and SGD datasets. This analysis involved evaluating single and

multi-domain dialogue, providing valuable insights into the performance and adaptability of

our model. This comprehensive approach allows both TaskOriented Dialogue (TOD) and

Open Domain Dialogue (ODD) to adapt seamlessly to the business domain. This adaptability

is crucial in ensuring that our dialogue systems can effectively cater to a wide range of

business needs and requirements. As such, our research contributes significantly to the

ongoing efforts to enhance the performance and usability of task-oriented dialogue systems.



Final Capstone Project 20 of 75

3. PROJECT MANAGEMENT PLAN

3.1 Overall Project Objective

Our primary objective is to develop two sophisticated models: the Dialogue State Tracking

model and the Response model. These models are designed with the ambition to outperform

all existing models in terms of their metrics, while maintaining a parameter count that is either

equivalent to or less than that of their counterparts. This approach ensures an optimal balance

between performance and computational efficiency.

Furthermore, we are commi�ed to transforming these models into a practical,

market-ready system. Our vision is to offer this system to businesses as a solution that enables

their customers to interact and place orders seamlessly. The unique selling point of our system

is its ability to facilitate customer-business interactions without the need for consultants or

customer service staff. This feature not only enhances the user experience but also contributes

to operational efficiency for businesses.

Lastly, one of our key goals is to design a model that exhibits robust performance across

unseen domains without the necessity for fine-tuning. This characteristic is crucial for

commercialization as it allows us to deploy the system across various sectors without the need

for extensive customization. This, in turn, saves time and resources, making the system a

cost-effective solution for businesses.



Final Capstone Project 21 of 75

3.2 Effort Distribution

This is a table of the effort distribution of our team members.

Task name Priority Owner Start date End date Status Issues

Find documents High Sinh, Truc 1/1 8/1 Done Nothing

Review papers High Sinh, Truc 1/1 8/1 Done Nothing

Review and
analyze public

dataset

Medium Sinh 9/1 11/1 Done Nothing

Collect data High Truc 12/1 11/4 Done Nothing

Experiment High Sinh 15/1 2/2 Done Nothing

Code
Implement

High Sinh, Truc 3/2 1/3 Done Nothing

Test and
compare results

High Sinh 2/3 15/3 Done Nothing

Writing paper High Sinh, Truc 10/3 30/3 Done Nothing

Writing report Medium Sinh, Truc 10/3 9/4 Done Nothing

Code demo High Sinh, Truc 5/4 20/4 Done Re-edit

Future work Low Sinh, Truc 20/4 30/6 Defined Nothing

Table 1. Project plan. Above are our main tasks assignments.



Final Capstone Project 22 of 75

Items Link Description

SGD
Towards Scalable Multi-Domain Conversational Agents: The

Schema-Guided Dialogue Dataset (arxiv.org)

Training

Fusedchat 2109.04137.pdf (arxiv.org) Training

Multiwoz 2.4

MultiWOZ 2.4: A Multi-Domain Task-Oriented Dialogue Dataset

with Essential Annotation Corrections to Improve State Tracking

Evaluation (aclanthology.org)

Evaluation

Table 2. Source data

https://arxiv.org/pdf/1909.05855.pdf
https://arxiv.org/pdf/1909.05855.pdf
https://arxiv.org/pdf/2109.04137.pdf
https://aclanthology.org/2022.sigdial-1.34.pdf
https://aclanthology.org/2022.sigdial-1.34.pdf
https://aclanthology.org/2022.sigdial-1.34.pdf


Final Capstone Project 23 of 75

4. METHODOLOGY

4.1 Set up the system’s architecture

Our system consists of 3 modules, including 2 main modules that we mentioned above: DST

model, Dialogue Response model, and intermediate module to handle conversion from user

actions and intentions into system actions.

For the DST model, which we refer to as GradDST, we propose a methodology that

incorporates template input model for training, which utilizes a set of instructions, context,

current user query, ontology, and list of user actions. Subsequently, the model is tasked with

choosing the most logical representation to learn through the process of reading and extracting

information from the input model. After that, GradDST will have to perform 3 parallel tasks: 1.

Determine whether the current user query is TOD or ODD, 2. Determine the user’s actions and

intentions in the current user query, 3. Determine the information that the user has provided

or updated (user state) throughout the conversation. For instance, if user input: ”I want to

book a 5-star hotel in District 1, how much does it cost per night?”, GradDST’s output will be

”(type) TOD (action) inform>hotel-star-5 || inform>hotel-destination-District 1 || request>

hotel-none-none || inform intent>hotel-intent-ReserveHotel (state) hotel-star-5 || hotel

-destination-District 1”.

As for the Dialogue Response model, referred to as GradRES, we propose a

methodology that incorporates a template-based input model for training. This model utilizes

a set of instructions, context (including the current user query), ontology, and system actions.

The primary task of GradRES is straightforward - it is required to generate a text response

primarily based on system actions. For instance, if the system actions are HOTELS:

[offer(name=CayXanh) and offer(star=4) and offer intent(ReserveHotel)], then GradRES will

generate the response: “We recommend CayXanh, a 4-star hotel. Would you like to make a

reservation?”.



Final Capstone Project 24 of 75

We have configured system actions in the template-based input model as opposed to

user actions and intentions. This raises the question of the origin of these system actions.

Consider a scenario where user actions and intentions from GradDST are substituted in place

of system actions. In such a case, our GradRES would be tasked with executing two tasks: 1.

Predicting system actions based on user actions and intentions, 2. Generating a system

response from the system actions predicted in task 1. We believe that this would impose an

undue burden on the learning process of GradRES and result in suboptimal outcomes for both

research metrics and product development.

Therefore, we introduce an intermediate module between GradDST and GradRES

which we refer to as GradACT, and is tasked with converting user actions and intentions into

system actions. We do not use a language model for GradACT, we will do it by using basic

functional programming. Because GradACT needs to interact with the database to get

information of objects during the search process, request information, or modify the number of

remaining rooms, etc. And the most important reason is that converting user actions and

intentions to system actions by basic functional programming will be 100% correct.

4.2 Training method

In Task-Oriented Dialogue (TOD) systems, two prevalent training methodologies are

employed: End-to-End (E2E) and Modular. The E2E method is often favored in studies

conducted by large research laboratories due to its inherent advantages. These include

consistency, synchronization, and smoothness between modules. This approach accumulates

all losses into a single comprehensive loss, allowing for the simultaneous updating of weights

across all modules. However, the Modular method is also respected due to its ability to

address the limitations of the E2E method. To understand the effectiveness of these methods,

we can compare them based on the following evaluation criteria.



Final Capstone Project 25 of 75

4.2.1 Consistency and Compatibility Between Modules

As previously mentioned, the implementation of an end-to-end training methodology can

significantly enhance the consistency of the modules throughout the entire process. This

approach ensures that all errors are accumulated and calculated at the final stage, leading to

the optimization of the entire system. The close association fostered by this method enhances

the relevance of the responses generated by the GradRES module. This is achieved by aligning

the responses more closely with the user’s query, as well as the user’s actions and intentions as

interpreted by the GradDST module.

Furthermore, the GradACT module is also optimized under this methodology. It is

designed to provide more appropriate system actions in response to the user’s actions and

intentions. This optimization process ensures that the system’s responses are not only accurate

but also contextually appropriate, thereby enhancing the overall user experience.

However, it is important to note a key limitation associated with the modular method.

The primary issue lies in the lack of connection between the individual modules. Given that

these modules are trained independently, it is possible for each module to perform well in

isolation. However, when these modules are combined, the overall performance may not meet

expectations.

This is primarily due to the fact that the independent training of each module does not

account for the interdependencies and interactions that occur when the modules are integrated

into a single system. As a result, despite the individual effectiveness of each module, the

overall system performance may be suboptimal due to the lack of coordination and coherence

between the modules.



Final Capstone Project 26 of 75

4.2.2 Flexibility to Change and Upgrade the System

This evaluation criterion elucidates the distinct advantage of the modular method over the

end-to-end method. In the context of training, the end-to-end method amalgamates all

modules into a single entity. Consequently, the model will generate and store only 1

checkpoint file for all three modules.

This implies that if any issues arise during the training process, or if there is a need for

modifications in subsequent versions, a significant amount of time will be required to retrain

the system from scratch. For instance, if modules 1 and 2 are functioning optimally and a

system issue is identified in module 3, the necessary revisions will be made to module 3. After

that, this will necessitate a comprehensive retraining of the system, including all three

modules, thereby consuming a considerable amount of time.

Similarly, if we were to discover an improved solution that yields superior results for

module 1, the entire system, encompassing all three modules, would need to be retrained from

the beginning. This process can be time-consuming and may not be the most efficient

approach.

On the other hand, the modular method offers a more optimal solution. The key

advantage of this method lies in the independent checkpoint file of each module. If any

module encounters issues or requires upgrades, only the affected module needs to be

retrained. This significantly reduces the time required for retraining, thereby enhancing the

efficiency of the process.

In conclusion, while the end-to-end method has its merits, the modular method’s ability

to independently train and upgrade each module presents a more efficient and time-saving

approach. This highlights the superior advantages of the modular method in comparison to

the end-to-end method.



Final Capstone Project 27 of 75

4.2.3 Optimal training time

As previously highlighted, the modular method exhibits a significant advantage over the

end-to-end method in terms of training time, particularly when there is a need to replace or

upgrade the system. But what about the scenario where all three modules are functioning

without any issues? Even in this case, the modular method proves to be more time-efficient.

Training three modules using the end-to-end method necessitates a large and powerful

GPU that can accommodate and process all three modules simultaneously. However, this is a

challenging requirement as not everyone has access to such high-quality GPUs. Therefore, the

end-to-end method is typically more suitable for smaller projects, which consist of smaller

modules that can operate on standard GPUs or large research laboratories, which work on

projects comprising larger modules, are usually the ones that can afford to invest in these

expensive hardware devices.

But what if we want to undertake projects with large modules similar to those in large

research labs, but we only have standard laptops or GPUs available from platforms like Colab

or Kaggle, and we aim to train quickly? Is it possible to outperform in terms of time ? The

answer lies in adopting the modular approach. Instead of training all three modules on a

single large GPU, we can train the three modules in parallel on three different smaller GPUs.

This strategy enables us to achieve results faster than research groups using the end-to-end

method, even though our equipment may not be as advanced as theirs.

In conclusion, the modular method, with its ability to independently train each module,

offers a more efficient and time-saving approach, making it a superior choice over the

end-to-end method, especially when resources are limited.



Final Capstone Project 28 of 75

4.2.4 Suitability for Research or Production Needs

In this evaluation, we will set aside the previously discussed three criteria and operate under

the assumption that we have an abundance of financial resources, hardware capabilities, and

time. The question then arises: which method is more suitable for academic research and

writing paper, and which is more appropriate for practical product application?

For research purposes, the end-to-end method is arguably more suitable. This is

primarily because it tends to yield higher results compared to the modular method. Research

groups often opt for the end-to-end approach as they strive to achieve the highest possible

results and maintain a high standing in metric rankings. While this may entail higher costs and

a longer time commitment, the priority for these groups is to achieve high results on the test

set.

However, when it comes to the application of the Task-Oriented Dialogue (TOD) system

as a product, the end-to-end method may not be as effective. The system will need to interact

with various business domains, including unseen domains. Each business has its own unique

policies and regulations, necessitating adjustments to the intermediate module to

accommodate each specific business.

The end-to-end method, due to its integrated nature, cannot be disassembled. As a

result, while it may perform well on test sets, it lacks the flexibility needed to adapt to the

specific needs of each business. Therefore, despite its advantages in a research se�ing, the

end-to-end method may not be the most effective approach for practical product application.

In conclusion, while both the end-to-end and modular methods have their respective

strengths, their suitability varies depending on the context. The end-to-end method may be

more appropriate for research purposes, while the modular method offers greater flexibility

and adaptability for practical product applications.



Final Capstone Project 29 of 75

4.3 Optimization in training

4.3.1 Model parallelism

Model parallelism constitutes a distributed training approach wherein the deep learning

model undergoes partitioning across multiple devices, whether within or across instances.

This overview delves into model parallelism, highlighting its utility in addressing challenges

inherent in training DL models, which often boast considerable size. Additionally, it outlines

offerings within the SageMaker model parallel library aimed at facilitating the management of

model parallel strategies and memory consumption.

4.3.1.1 Understanding Model Parallelism

The efficacy of deep learning models in tasks like computer vision and natural language

processing escalates with their increasing size, marked by expansions in layers and

parameters. Nevertheless, the capacity of a single GPU’s memory imposes a cap on the

maximum model size feasible for training. The limitations of GPU memory pose bo�lenecks

during DL model training:

● They confine the model size that can be trained since the memory footprint of a model

scales proportionately to the parameter count.

● They restrict the per-GPU batch size during training, thereby diminishing GPU utilization

and training efficiency.

To surmount these constraints associated with single-GPU training, SageMaker offers

the model parallel library. This resource aids in distributing and training DL models efficiently

across multiple compute nodes. Moreover, leveraging this library enables the a�ainment of

optimized distributed training utilizing EFA-supported devices. These devices bolster

inter-node communication performance with a�ributes like low latency, high throughput, and

OS bypass.



Final Capstone Project 30 of 75

4.3.1.2 Assessing Memory Requirements Prior to Implementation

Before deploying the SageMaker model parallel library, it is prudent to gauge the memory

prerequisites for training large DL models. Consider the following aspects:

For a training job employing AMP (FP16) and Adam optimizers, the GPU memory

required per parameter amounts to approximately 20 bytes. This breakdown comprises:

● An FP16 parameter (2 bytes)

● An FP16 gradient (2 bytes)

● An FP32 optimizer state (8 bytes, based on Adam optimizers)

● An FP32 copy of the parameter (4 bytes, necessary for the optimizer apply operation)

● An FP32 copy of the gradient (4 bytes, necessary for the optimizer apply operation)

Even for relatively modest DL models featuring 10 billion parameters, the memory

demand can surpass 200GB. This exceeds the typical GPU memory capacity, such as that of the

NVIDIA A100 with 40GB/80GB or V100 with 16/32 GB available on a single GPU. Notably,

besides the memory requirements for model and optimizer states, other factors like activations

generated during the forward pass contribute to memory consumption, amplifying the overall

demand. For distributed training endeavors, employing Amazon EC2 P3 and P4 instances

equipped with NVIDIA V100 and A100 Tensor Core GPUs, respectively, is recommended. For

detailed specifications encompassing CPU cores, RAM, a�ached storage volume, and network

bandwidth, consult the Accelerated Computing section of the Amazon EC2 Instance Types

page. Even with the utilization of accelerated computing instances, it becomes apparent that

models with approximately 10 billion parameters, such as Megatron-LM and T5, and even

larger models with hundreds of billions of parameters like GPT-3, cannot accommodate model

replicas on individual GPU devices.



Final Capstone Project 31 of 75

4.3.2 DistributedDataParallel

DistributedDataParallel (DDP) is a parallel computing technique used in deep learning to train

models across multiple devices or nodes. It is a part of the PyTorch library and is designed to

scale the training process, allowing for faster training times with larger models and datasets.In

DDP, the model is replicated on every device, and each replica handles a subset of the input

data. The replicas operate independently in the forward pass, computing their own outputs

and gradients. In the backward pass, gradients from each replica are combined across all

devices using an operation called all-reduce.The primary advantage of DDP is its scalability.

By distributing the computation across multiple devices, DDP allows for training larger

models and processing larger datasets than would be possible on a single device. This makes it

a key tool in the training of large-scale deep learning models.However, DDP also has its

challenges. One of the main challenges is the need to synchronize the model parameters across

all devices after each update, which can be communication-intensive. Additionally, because

each device computes its own gradients independently, there can be discrepancies between the

gradients computed by different devices, leading to potential issues with model

convergence.Despite these challenges, DDP remains a powerful tool for distributed deep

learning, enabling researchers and practitioners to train larger and more complex models than

ever before. It is continually being improved and optimized, with ongoing research aimed at

addressing its limitations and expanding its capabilities.

4.3.2.1 FSDP

During DistributedDataParallel (DDP) training, each process or worker possesses a copy of the

model and handles a batch of data independently. Subsequently, allreduce is employed to

aggregate gradients across various workers. In DDP, both the model parameters and optimizer

states are duplicated across all workers. Fractional Sharded Data Parallelism (FSDP) represents

a form of data parallelism wherein model parameters, optimizer states, and gradients are

partitioned across DDP ranks.



Final Capstone Project 32 of 75

When utilizing FSDP for training, the GPU memory usage is reduced compared to DDP

across all workers. This reduction enables the training of notably large models, facilitating the

accommodation of larger models or batch sizes on the device. However, this advantage is

counterbalanced by increased communication volume, albeit mitigated by internal

optimizations like concurrent communication and computation, which alleviate

communication overhead.

Fig 2. Pytorch Fully Sharded Data Parallel (FSDP).

At a high level FSDP works as follow:

In constructor:

● Shard model parameters and each rank only keeps its own shard

In forward path:

● Run all gather to collect all shards from all ranks to recover the full parameter in this FSDP

unit

● Run forward computation

● Discard parameter shards it has just collected



Final Capstone Project 33 of 75

In backward path:

● Run all gather to collect all shards from all ranks to recover the full parameter in this FSDP

unit

● Run backward computation

● Run reduce sca�er to sync gradients

● Discard parameters.

A perspective on FSDP’s sharding involves breaking down the DDP gradient all-reduce

process into two distinct steps: reduce-sca�er and all-gather. In this approach, during the

backward pass, FSDP condenses and distributes gradients, guaranteeing that each rank retains

a portion of the gradients. Following this, it adjusts the respective segment of parameters

during the optimizer step. Subsequently, in the subsequent forward pass, it executes an

all-gather operation to assemble and merge the updated parameter segments.

Fig 3. Decomposing All-Reduce Operations in Distributed Data Parallel Training: A Path to Full

Parameter Sharding.



Final Capstone Project 34 of 75

4.3.2.2 DeepSpeed

DeepSpeed stands as a PyTorch optimization library engineered to streamline distributed

training, rendering it both memory-efficient and swift. Central to its functionality lies the Zero

Redundancy Optimizer (ZeRO), which facilitates the training of expansive models at scale.

ZeRO operates through several key stages: ZeRO-1: Divides optimizer state across GPUs.

ZeRO-2: Partition gradients across GPUs. ZeRO-3: Distributes parameters across GPUs.

Moreover, in environments constrained by GPU resources, ZeRO empowers the offloading of

optimizer memory and computation from the GPU to the CPU, thereby enabling the training

of exceedingly large models on a single GPU. DeepSpeed GradBot 17 seamlessly integrates

with the Transformers Trainer class for all ZeRO stages and offloading functionalities. Users

need only provide a configuration file or utilize a provided template. For inference tasks,

Transformers support ZeRO-3 and offloading, facilitating the loading of substantial models.

This guide elucidates the deployment of DeepSpeed training, encompassing the activation of

various features, configuration file setup for distinct ZeRO stages, offloading, inference

procedures, and leveraging DeepSpeed without the Trainer interface.

4.3.3 Combine Model Parallel and Data Parallel

Model parallelism and data parallelism are two distinct strategies employed in the field of

machine learning to optimize computational efficiency.

Model Parallelism involves the partitioning of a model into equal segments, each of which is

allocated to a separate GPU. The number of GPUs utilized is equivalent to the number of

model segments post-partitioning. This approach mitigates the need for a singular, high-cost

GPU to house the entire model, instead leveraging multiple, more cost-effective GPUs. On the

other hand, Data Parallelism entails replicating the entire model across multiple GPUs. This

strategy facilitates accelerated data training, with the speed of training proportional to the

number of GPUs employed. However, this method necessitates that each GPU possesses the

capacity to accommodate the full model, thereby requiring the use of high-end, expensive

GPUs.



Final Capstone Project 35 of 75

In our approach, we incorporate the principles of both model parallelism and data

parallelism. As illustrated in the Figure 4, the model is segmented into four equal parts and

distributed across four GPUs (labeled 0, 1, 2, 3). Each data batch is initially processed in device

0, followed by a sequential feed-forward operation across the remaining devices.

Subsequently, back-propagation is performed from device 3 back to device 0. It is observed

that when device 1 is processing a data batch, device 0 remains idle, and similarly, when

device 2 is processing a data batch, devices 0 and 1 are idle. This represents an inefficiency in

resource utilization. To address this, we propose to initiate the feed-forward operation for the

next batch on device 0 while device 1 is still processing the current batch. This operation is

repeated four times. While this approach does not yield results as optimal as data parallelism,

it significantly outperforms model parallelism and closely reaches the speed of data

parallelism. Given that it requires only four GPUs and a model size four times smaller than the

data parallel strategy, yet achieves nearly the same speed, this method presents an optimal

solution for maximizing hardware resources, particularly for smaller research teams.

Fig 4. Efficient Machine Learning with Hybrid Parallelism: The diagram shows a hybrid approach using
model and data parallelism for efficient machine learning. It optimizes resource utilization and closely

matches the speed of data parallelism, ideal for smaller research teams.



Final Capstone Project 36 of 75

4.4 Choosing checkpoint model

Upon comprehensive analysis of prior research, we have determined that Flan-T5 backbone

[25] is the most suitable checkpoint model for our study. Flan-T5 is a variant of T5 that

robustly enhances the generality of instruction fine tuning compared with non-finetuned

models. Flan-T5 model is an advanced iteration of the T5 model, which has been extensively

utilized in previous studies on Dialogue State Tracking models. While Flan-T5 retains all the

capabilities of its predecessor, it also introduces a host of superior features, making it

particularly well-suited for our project. Except that, these flan models also prove zero-shot

ability, which significantly influences our paper on experiments with hybrid dialogue. The

zero-shot ability of our model is also presented in Table 4.

All previous slot values have to be utilized to compute the JGA score. Here, we clarify

that there are two existing formulas. With encoders like FastSGT [1], SGD-base [26], and

SGP-DST [27], these model’s abilities can only predict the current slot values and have to use

another set to store previous ones. FastSGT and SGD-base combine prior predicted slot values

with the current expected state to compute the JGA score, while these prior predicted slot

values will be replaced by the gold ones on SGP-DST. On the other hand, encoder-decoder

seems naive when encouraging the LLM model itself to predict all previous ones, e.g., SDT [4],

D3ST [5], AnyTOD [6]. By using encoder-decoder architecture, we mainly use the second

formula to compute the JGA score and also provide results in Table 4 and Table 5..

4.4.1 Multitask pre-training

For the Dialogue State Tracking model, we have established a framework that includes three

parallel tasks: 1. Classification of Task-Oriented Dialogue (TOD) or Open-Domain Dialogue

(ODD), 2. Prediction of user actions and intentions, 3. Prediction of the user request state

(these tasks will be elaborated upon in subsequent sections). The necessity for a multitasking

pre-trained model is paramount, as it aids in reducing training time and enhancing the

efficiency of our model.



Final Capstone Project 37 of 75

Flan-T5 is a multitasking pre-trained model designed for . The model has been scaled to

1,836 fine-tuning tasks by integrating four mixtures derived from previous studies: Muffin,

T0-SF, NIV2, and CoT. Muffin includes 80 tasks, comprising 62 existing tasks and an additional

26 new tasks introduced in this study, which include conversation data and program synthesis

data. T0-SF consists of 193 tasks, which include tasks from T0 that do not overlap with the data

used in Muffin. The remaining tasks are NIV2 (1,554 tasks) and CoT (9 tasks).

In terms of our criteria for selecting a checkpoint model, the ability to pre-train for

multitasking is of utmost importance. While Flan-T5 possesses this capability, it is not the only

model to do so. Other pre-trained models, including T5, the predecessor of Flan-T5, also have

this ability and have been the optimal choice in most previous studies in this field. They

examined the assessment results on challenging benchmarks, including: (1) MMLU, which

includes exam questions from 57 tasks such as math, history, law, and medicine, (2) BBH,

which includes 23 challenging tasks from BIG-Bench, (3) TyDiQA, a question answering

benchmark in 8 diverse languages, and (4) MGSM, a multilingual benchmark of word

problems manually translated into 10 languages.

Fig 5. Our fine tuning data comprises 473 datasets, 146 task categories, and 1,836 total tasks.



Final Capstone Project 38 of 75

Fig 6. Results of Flan T5 and T5 on MMLU, BBH, TyDiQA, MGSM.

4.4.2 Instruction training and Chain of Thought training

Flan T5 is trained on many tasks by using instruction training method, so this checkpoint

model’s ability to understand context when having to perform unseen tasks will be much

be�er when compared to T5, in the condition that we fine tune it by instruction training

method the same way it was pre-trained. In addition, Flan-T5 is also pre-trained using the

Chain of Thought training method. The effect of this method is to help the model deduce the

steps in the generation process logically and consistently between the steps and between the

generated sentences compared to the information provided by the user. For example in the

picture... the following is a comparison of using Chain of Thought training and not using

Chain of Thought training. We clearly see the answer of using Chain of Thought training as

much be�er than the other.



Final Capstone Project 39 of 75

Fig 7. Compare using chain-of-thought training and not using chain-of-thought training.

Fig 8. Compare using instruction training and not using instruction training.



Final Capstone Project 40 of 75

4.5 Complexity of building Schema-guided Definition

For previous DST models, they could only operate on seen domains because they had to

predict domain, slots which the current user query belonged to. Imagine a situation, the DST

model is only trained on 2 seen domains: hotel and hospital. If the user inputs: ”Please book

me a table at a restaurant in District 1”, the output of the DST model may be: inform<hotel

-destination-district 1 || inform intent<hotel-intent-ReserveHotel”. The reason for the wrong

result is because the DST model only consider the domain between hotel and hospital without

knowing about the existence of the restaurant domain, and after choosing the wrong domain,

it will continue to predict the slot (destination) belongs to the Hotel domain, and assign the

value District 1 and that wrong slot. The secret to GranDST’s zero shot learning capabilities is

that it is provided with an ontology (shema-guided), which is a dictionary containing

information about the domain, the slots encoded as digital slots, along with descriptions for

those slots. While other DST models have to predict the domain the user is talking about,

GradDST is provided in the ontology, so is it wrong with the goal? The answer is no, because

this system serves specific businesses, so when users interact with the system, they already

know in advance what domain they and the system will chat with. Forcing the DST model to

predict the domain the user is referring to is really unnecessary and can also lead to incorrect

predictions.

The next issue is why we converted the slots to digital slots, along with descriptions for

those slots. So what’s more about a conversion like this? Let’s compare these two cases.

1. HOTEL:(destination; number of rooms; check in date; number of days; star rating, hotel

name; street address; phone number; price per night; has wifi)

2. HOTEL:(slot0=location of the hotel; slot1=number of rooms in the reservation; slot2=start

date for the reservation; slot3=number of days in the reservation; slot4=star rating of the hotel;

slot5=name of the hotel; slot6=address of the hotel; slot7=phone number of the hotel;

slot8=price per night for the reservation; slot9=boolean flag indicating if the hotel has wifi)”



Final Capstone Project 41 of 75

We believe that providing a list of original slots will continue to be a burden for

GradDST because slots will use _ to join words in a slot into a new phrase, which will cause

the model to learn the meaning of these original slots during training. However, learning to

understand these new phrases will become meaningless if it has to be done on unseen

domains, because then, the slots in those unseen domains will be new phrases and the model

will have to struggle to choose. output a slot that matches the value the user input among a list

of slots that have never been learned before. To solve that problem, we add after each slot a

description of the meaning of those slots in both training and testing. As stated above, we use

checkpoint model Flan-T5 for GradDST with the best context understanding ability at the

present time, which will do a very good job of understanding the description of each slot and

selecting the appropriate slot with value provided by the user. So, if we already have a

description for each slot, then we don’t need to leave the original slots alone so that the model

has to learn these phrases. Therefore, to generalize, we will convert these slots into digital

slots, so that the model only focuses on the following descriptions and does not need to know

what the slot is.

GradDST requires building an ontology (shema-guided) from a business domain (single

or multi-domains). This ontology helps the DST to understand its meaning and facilitates

predicting the user actions and user state. For example, in an agent supporting hotel

reservations chatbot, the designer defines the parameters to track along with description as

[name=name of the hotel, star=star rating of the accommodation, number of rooms=number of

rooms in the reservation, check in date=start date for the reservation,...].

Then, at each turn, the purpose of a DST module is to use the dialogue history up to

that turn to predict a dialogue state, which represents the user’s goal and progress in using the

system. In a similar vein to prior research [4, 5] each element in this schema is characterized by

a natural language description, and the entire dialogue flow is designed as a conversation

graph flow.



Final Capstone Project 42 of 75

4.6 Predefined structure model

4.6.1 Schema-guided representation

In the context of D3ST, as cited in [5], an ontology serves as a comprehensive dictionary that

interprets the descriptions of the slots that have been mapped into ordinal slots. The process of

converting slots into numeric slots significantly simplifies the model’s task of performing

operations for unseen domains. This is primarily because the model relies on descriptions

without necessitating an understanding of the names of the slots in those domains.

An ontology encompasses all the domains present in the dialogue. Consequently, the

model must learn to select domains that align with the current turn. Furthermore, the ontology

is appended to the domain name at the commencement of each dictionary chain. This

facilitates the model in identifying the domains at the current turn with greater ease.The

overview representation is denoted as

where M and N are the number of domains and slots of each domain, respectively.

This representation provides a comprehensive overview of the model’s structure and

functioning, thereby enhancing its efficiency and effectiveness in handling task oriented

dialogues. This approach underscores the pivotal role of ontologies in improving the

performance of task-oriented dialogue systems.

4.6.2 Dialogue context representation

In alignment with the methodologies employed in previous research [28, 29], we designate

each user’s u�erance as the current query sample. The remaining history is preserved as the

context dialogue for each u�erance. To distinguish the speaker of each turn, we append the

prefix tokens ”user” and ”system” to each u�erance.



Final Capstone Project 43 of 75

Ultimately, a comprehensive dialogue context is constructed by concatenating all the

system and user u�erances. This context is represented as

where ’t’ represents the current query’s position in the sub-dialogue sample.

This approach ensures a systematic and organized representation of the dialogue, facilitating

efficient processing and analysis.

4.6.3 Action enhances constraint

In the final stage of our process, we construct a list of user actions that will be incorporated

into the input template for each turn. Given that our label contains the current action, this list

of user actions serves to assist the model in selecting the most appropriate action. This, in turn,

reduces the likelihood of predicting an action that is not present in the raw datasets. The

formula for this is represented as

Leveraging the advantage of the Flan-T5 checkpoint, which is based on instruction

based training, we integrate Machine Reading Comprehension with instructions. This

integration provides detailed explanations of tasks, thereby ensuring that the model has a clear

understanding of the tasks it needs to perform and the manner in which they should be

executed. In the instructions, we format the detailed content input by incorporating the

aforementioned context, query, ontology, and user actions. The format of this integration is

presented in Figure 9. This comprehensive approach ensures that our model is well-equipped

to handle a wide range of tasks effectively and efficiently.



Final Capstone Project 44 of 75

Fig 9. Overview of GradBot approach for schema-guided multi-domains dialogues. The bo�om figure
includes specific examples for dialogue context, user action, ontology and current query while the top

figure stimulates predictions.

4.7 DST as guided Reading Conversation

GradTOD, our model, is concurrently trained on three distinct tasks:

● Type Classification: This task involves classifying the dialogue as either TaskOriented

Dialogue (TOD) or Open Domain Dialogue (ODD).

● Current Action Prediction: This task focuses on predicting the user’s actions for each turn.

● Current State Prediction: This task aims to predict the state for each turn.

Each dialogue in the utilized chat dataset contains chitchat u�erances. Therefore, in

addition to defining the state like other models, we incorporate an additional task to identify

the type (TOD/ODD). This task is designed to evaluate the model’s ability to distinguish

between general conversation and task-oriented conversation. Moreover, the current action is

appended to the label to establish a strong correlation between the user’s action and the user’s

state. Through this process, the model learns that if the user’s action is ’inform’, the state will

be updated. However, actions such as ’request’, ’thank’, ’bye’, and others will maintain the

same state as the previous turn. This multi-task training approach equips GradTOD with the

capability to handle complex dialogues effectively, thereby enhancing its performance and

usability in various applications.



Final Capstone Project 45 of 75

5 DATASETS

Table 3. Statistics for SGD, FusedChat, and MultiWoz2.4, computed across train, validation, and test
sets. FusedChat incorporates MultiWoz2.4, with the addition of ODD to its TOD part. In SGD,

”unique” slots are represented in italics, and the number of slot values includes those for ”categorical”
slots.

5.1 Fusedchat

5.1.1 Overview

Fusedchat dataset [23] is an essential dataset created by merging task-oriented dialogue (TOD)

and open-domain dialogue (ODD). This amalgamation of ODD and TOD fosters a seamless

connection and robust contextual interplay between the two dialogue modes. Hence, this

dataset can support the backbone system to accelerate comprehension when dealing with

reality. As an extension of the renowned MultiWoz dataset [30], Fusedchat integrates

additional ODD turns either before or after the existing TOD turns, with 3670 and 4768

instances correspondingly according to [23]. Besides, due to the noise Fusedchat dataset itself,

e.g. redundant domains, and inconsistency values, which were inherited from MultiWoz2.4

[31]. Indeed, a dialogue model that allows for rich interactions between two dialogue modes

can significantly enhance the conversational experience. By not being confined to a single

mode, the model can be�er emulate human-level conversation capabilities. For instance, it can



Final Capstone Project 46 of 75

facilitate a more engaging and dynamic interaction, akin to cha�ing with a friendly assistant

(in Figure 10).

Fig 10. Their dialogue system allows a user and a digital assistant to switch between Task-Oriented
Dialogue (TOD) and Open-Domain Dialogue (ODD) modes. An example includes a query about

college fees (TOD) and a chat about personal growth and finance (ODD).

5.1.2 Fusedchat Construction

In the process of constructing our dataset for inter-mode dialogue sessions, we primarily

engage dialogue creators to append or prepend self-authored Open-Domain Dialogues

(ODDs) to existing Task-Oriented Dialogues (TODs). The dialogue creator assumes the roles of

both the user and the dialogue system.

For the existing TODs, they have chosen the MultiWOZ2.4 dataset due to its

widespread recognition in the field. MultiWOZ encompasses TODs across seven domains,

including restaurants, a�ractions, trains, police, hospitals, taxis, and hotels. Users interact with

the dialogue agent to perform predefined functions, such as booking restaurants or locating

hospitals. In FusedChat se�ing, dialogue creators have the freedom to add any ODD that is

contextually consistent with the existing TOD.



Final Capstone Project 47 of 75

5.1.2.1 General requirements for the added ODDs

This section outlines the guidelines for dialogue creators in adding Open-Domain Dialogues

(ODDs) to existing Task-Oriented Dialogues (TODs).

● Role-playing: Creators write fictitious ODDs, playing both the “system” (an AI

conversational agent capable of open-domain and task-oriented dialogues) and the “user”

(a human speaker interacting with the AI for casual conversation and task completion).

● Relevance: To maintain relevance between the TOD and added ODD, creators are

encouraged to center the ODD around similar or related topics as in the TOD. The added

ODD and existing TOD should connect naturally, with strong contextual dependency.

● Characteristics of ODDs: The created dialogues should reflect the casual, non task-specific

nature of ODDs, as opposed to the task-oriented nature of TODs.

Based on a pilot experiment, they found that creators often wrote dialogues focused on

task-specific functionalities, which are technically TODs, not ODDs. To address this, they

deployed a real-time turn-level ODD vs TOD classifier, trained on three traditional ODD

datasets and MultiWOZ. They also provided creators with guidelines to avoid pitfalls, such as

fabricating information beyond common sense.

5.1.2.2 Appending ODDs

In the appending scenario, dialogue creators add Open-Domain Dialogues (ODDs) to existing

Task-Oriented Dialogues (TODs) from the MultiWOZ dataset. The added ODD should

seamlessly follow the TOD.They observed that dialogues in the original MultiWOZ dataset

often conclude with a “User: Thank you. System: Goodbye.” exchange. To facilitate the

appending of ODDs, they remove such exchanges from the end of the TOD based on dialogue

act annotations.The content of the appended ODD should be contextually dependent on the

preceding TOD. This is ensured by having creators write at least one round of exchange that

reflects concepts or knowledge from the existing TOD segment. For instance in Figure 11, in a

dialogue about querying and booking a Thai restaurant, the user might express concern about



Final Capstone Project 48 of 75

whether their friends would enjoy the restaurant. This is considered an ODD u�erance as it

does not invoke any task-oriented function. The system’s ODD response, supported by

commonsense and empathy, reflects content from a previous TOD turn.

Fig 11. An TOD + ODD instance from FusedChat

5.1.2.3 Prepending ODDs

In the prepending scenario, dialogue creators are given a Task-Oriented Dialogue (TOD)

segment from the MultiWOZ dataset and asked to prepend an Open-Domain Dialogue (ODD)

to it. The ODD should naturally lead into the provided TOD. The original TODs in MultiWOZ

are self-contained. To model inter-mode dependency, we conduct u�erance rewriting based on

co-reference and ellipsis, which are key to making the TOD dependent on the prepended

ODD. They aim to create ODD + TOD sessions where the TOD is conditioned on the ODD.

This involves dialogue state tracking, where the dialogue system processes the user u�erance

for [slot type, slot value] pairs (e.g., [Destination: Cambridge]) to understand the user’s needs



Final Capstone Project 49 of 75

and respond appropriately (in Figure 12). Their method for modeling inter-mode dependency

involves ODD-dependent dialogue state tracking. We randomly select a slot value mentioned

in the first user turn in the TOD and ask the dialogue creators to use this slot value in the

prepended ODD. The first dialogue user turn is then rewri�en to refer to it implicitly. This

rewriting mainly involves co-reference and sometimes ellipsis, both of which are important

features in multi-turn TODs.

Fig 12. An ODD + TOD instance from FusedChat

5.2 Schema-Guided Dialogue (SGD)

5.2.1 Overview Schema-Guided

Dialogue dataset [26] is the largest multidomain for task-oriented dialogue datasets until now.

It spans 45 diverse domains over hotels, banks, events, homes, travel, flights, media, movies,



Final Capstone Project 50 of 75

rental cars, and more. Each part continues to split into various forms, e.g., hotels decomposed

as hotels 1, hotels 2, hotels 3, and so on. This dataset utilizes 25 domains for training and

reuses the identical domains combined with 10 more ones for validation. This large number of

dialogues will offset the minor number one in the Fusedchat dataset. The test set also

comprises these 35 domains to evaluate the model’s zero-shot learning capabilities.

Fig 13. Example schema for a digital wallet service

5.2.2 Schema-Guided Approach

In the Schema-Guided approach, each service offers a schema that enumerates the supported

slots and intents, accompanied by their natural language descriptions (in Figure 13). The

dialogue annotations are directed by the schema of the underlying service or API (in Figure

14).

For instance, the departure and arrival cities are captured by slots in both schemas that

function analogously but bear different names. Moreover, the values for the number of stops



Final Capstone Project 51 of 75

and direct-only slots underscore the idiosyncrasies between services interpreting the same

concept.

The natural language descriptions in the schema are utilized to derive a semantic

representation of intents and slots. The assistant employs a single, unified model devoid of

domain or service-specific parameters to make predictions based on these schema elements.

The use of a single model facilitates the representation and transfer of common knowledge

across related concepts in different services. As the model uses the semantic representation of

schema elements as input, it can interface with unseen services or APIs on which it has not

been trained. It also exhibits robustness to changes such as the addition of new intents or slots

to the service.

Fig 14. In the context of two distinct flight services, dialogue state tracking labels are applied after each
user statement. With the schema-guided method, these annotations depend on the service’s schema,

located at the extreme left/right.

5.2.3 Data Representation

The dataset in question comprises dialogues between a virtual assistant and a user. These

dialogues can encompass multiple services spanning a variety of domains. Each dialogue is

structured as a sequence of turns, with each turn containing an u�erance from either the user

or the system.Annotations for each turn are organized into frames, with each frame

corresponding to a specific service. For user turns, the annotations include the active intent,

the dialogue state, and slot spans for the various slot values mentioned in the turn. For system



Final Capstone Project 52 of 75

turns, the annotations consist of system actions that represent the semantics of the system

u�erance. Each system action is depicted using a dialogue act, which may have optional

parameters. In addition to the dialogues, a normalized representation of the interface exposed

is provided as a schema for each service used in the dataset. This schema includes details such

as the name of the service, the list of tasks supported by the service (intents), and the a�ributes

of the entities used by the service (slots).The schema also contains natural language

descriptions of the service, intents, and slots. These descriptions can be utilized for the

development of models that can condition their predictions on the schema. This professional

description provides a comprehensive overview of the dataset’s structure and content.

5.2.4 Comparison With Other Datasets

In order to mirror the constraints inherent in real-world services and APIs, they have imposed

certain limitations on our dataset. For instance, SGD does not disclose the complete set of

potential values for specific slots. This is because it is impractical to have such a list for slots

like date or time, which have an infinite number of possible values, or for slots like movie or

song names, which are periodically updated with new values. These slots are specifically

designated as non-categorical slots. In our evaluation sets, they ensured the inclusion of a

significant number of values that were not previously seen in the training set. This was done to

assess the performance of models on unseen values. Certain slots, such as gender and number

of people, are classified as categorical, and we provide a list of all possible values for these

slots. However, these values are not assumed to be consistent across services. For example,

different services may use (’male’, ’female’), (’M’, ’F’), or (’he’, ’she’) as possible values for the

gender slot.

Real-world services can only be invoked with specific slot combinations. For instance,

most restaurant reservation APIs do not allow users to search for restaurants by date without

specifying a location. While this constraint does not impact the dialogue state tracking task, it

does limit the possible conversational flows. Therefore, to prevent flows that are not supported

by actual services, they restrict services to be called with a list of slot combinations. The



Final Capstone Project 53 of 75

different service calls supported by a service are listed as intents, with each intent specifying a

list of required slots. An intent cannot be called without providing values for these required

slots. Each intent also contains a list of optional slots with default values, which can be

overridden by the user. In SGD, they also have multiple services per domain with overlapping

functionality. The intentions across these services are similar but differ in terms of intent

names, intent arguments, slot names, etc. In some cases, there is no one-to-one mapping

between slot names (e.g., the ’num stops’ and ’direct only’ slots in Figure 14). With an

ever-increasing number of services and service providers, they believe that having multiple

similar services per domain is much closer to the situation faced by virtual assistants than

having one unique service per domain.

5.3 MultiWoz 2.4

5.3.1 Overview

MultiWoz2.4 dataset [31] is the last refinement for primarily evaluating metrics on

task-oriented dialogue up-to-date. Statistics are the same as preceding MultiWoz versions.

Because all annotation updates are refined mainly on the validation set and test set, as well as

having large numbers of dialogues spanning many domains, we will use this dataset to

evaluate zero-shot abilities and compare our model with other backbones. Though

MultiWoz2.4 is built originally from version 2.1, which does not leverage versions 2.2 and 2.3,

it still has a renowned publication and has been widely used when evaluating research in

recent years.

5.3.2 Annotation Error Types

Dialogue state tracking primarily aims to monitor the user’s u�erances, with the dialogue state

predominantly relying on these u�erances. In accordance with this premise, we have identified

and rectified six types of annotation errors in the validation and test sets of MultiWOZ 2.1.



Final Capstone Project 54 of 75

Fig 15. Examples of each error type.

The Figure 15 are the identified error types:

● Context Mismatch: The slot value does not align with the dialogue context. This category

also includes values with typographical errors.

● Missing Annotation: The slot is not labeled, despite its value being mentioned. In some

instances, the annotations are deferred to subsequent turns.

● Not Mentioned: The slot has been annotated, but its value has not been mentioned.

● Incomplete Value: The slot value is either a substring or an abbreviation of its full form

(e.g., ”Thurs” vs. ”Thursday”). In certain cases, the slot should contain multiple values, but

not all values are included.

● Implicit Time Processing: This pertains to slots that take time as a value. Rather than

replicating the time specified in the dialogue context, the value has been implicitly

processed (e.g., adding 15 minutes).

● Unnecessary Annotation: These superfluous annotations exacerbate inconsistencies as

different annotators have varying opinions on whether to annotate these slots. Generally,



Final Capstone Project 55 of 75

the values of these slots are mentioned by the system to respond to previous user requests

or provide supplementary information. We found that in most dialogues, these slots are

not annotated. Consequently, we remove these annotations. However, name-related slots

are an exception. If the user requests additional information (e.g., address and postcode)

about the recommended ”name”, the slots will be annotated.



Final Capstone Project 56 of 75

6 METRICS

6.1 Joint Goal Accuracy

Joint target accuracy (JGA) is a widely recognized and frequently used metric in the field of

conversation state monitoring. Its definition, as established in SGD [25], its effectiveness is very

good in evaluating the performance of models in this field. The basic principle of JGA is to

compare the model’s belief state prediction with the actual truth label. A prediction is

considered correct if it matches the truth label exactly. This strict requirement for accuracy

emphasizes the precision and accuracy required by the JGA, thus making it a reliable measure.

However, it is important to note that this precision also introduces certain limitations to the

JGA metric. One such limitation is that the truth label includes all states from the previous

state. This means that for a prediction to be considered accurate, the model needs to accurately

predict not only the current state but also positions from previous dialogue turns. This

requirement increases the difficulty, causing this metric’s score to often be very low compared

to other metrics. To elucidate the concept of Joint Goal Accuracy (JGA) in a more

comprehensive and professional manner, let us consider a specific dialogue instance, identified

by the ID MUL0379, which is sourced from the Fusedchat dataset (Fig. 15). This particular

example is referenced from a scholarly article detailing their TRADE model, and it serves as an

illustrative case for the application of the JGA metric. In the graphical representation

associated with this dialogue, there are a total of five conversational turns. Within this context,

’GT’ denotes the symbol representing the ground-truth belief states, while ’PR’ signifies the

symbol for the predicted belief states as designated by them. The criterion for a ’Matched’

status being recorded as ’True’ is predicated on the complete compatibility of the slot and

value pairs between GT and PR. Conversely, the presence of even a singular discrepancy

results in a ’Matched’ status being recorded as ’False’.

A closer examination of the TRADE model’s performance in this instance reveals that

during turns 0, 1, and 4, there is a complete alignment between the model’s predictions and



Final Capstone Project 57 of 75

the goal labels, thereby warranting a ’Matched’ status of ’True’ for these turns. However, for

turns 2 and 3, the requirement is such that the emergence of at least one mismatched pair of

slots and values will suffice to record a ’Matched’ status of ’False’.

Fig 16. Overview simultaneously enhances the construct meaning of the input and target value.



Final Capstone Project 58 of 75

Assuming a hypothetical scenario where the dataset comprises only five such samples,

the computation of JGA would involve a binary conversion of ’Matched’ statuses, with ’True’

being equated to 1 and ’False’ to 0. Subsequently, the average JGA for these samples would be

determined by the formula:

This is a�ributed to the fact that even a minor error in the model’s prediction can

disproportionately affect the overall evaluation, rendering all correct predictions nullified in

the face of a single mistake. This underscores the need for a nuanced understanding of the

metric’s implications and the potential for exploring alternative measures that may offer a

more forgiving assessment of a model’s predictive capabilities.

6.2 Slot Accuracy

Slot Accuracy (SA) is an alternative metric to Joint Goal Accuracy (JGA) that evaluates the

performance of dialogue systems by individually comparing each predicted domain-slot-value

triplet against its corresponding ground-truth label. This metric is referenced in the work of

Wu et al. (2019) [?]. They define S as the set of unique domain-slot pairs present within the

dataset, GT represent the set of ground-truth belief states, and PR denote the set of predicted

belief states at any given turn t. The formula for calculating slot accuracy at turn t is expressed

as follows:

In this equation, X is defined as the set difference GT \ PR, and Y as PR \ GT. The terms

|X| and |Y| quantify the number of false negatives and false positives, respectively. The set X

encompasses the domain-slot-value triplets that are present in the ground-truth belief states

but are conspicuously absent in the predicted belief states. This discrepancy indicates that the



Final Capstone Project 59 of 75

model has failed to predict these specific triplets, which is a critical oversight in terms of

accuracy. Conversely, the set Y comprises domain-slot-value triplets that are found within the

predicted belief states but do not have a corresponding presence in the ground-truth belief

states. This suggests that the model has either incorrectly predicted a slot that does not exist or

has erroneously assigned a value to a slot, thereby deviating from the ground truth.

For example, in the MultiWOZ dataset, the total number of unique domain-slot pairs

|S| is 30. We assume that the model is missing two domain triplets |GT \ PR| = |X| = 2 and

|GT \ PR| = |Y| = 0, the slot accuracy would be calculated as (30−2−0) / 30 , resulting in a

value of 93.33%.

However, the metric of slot accuracy can sometimes present a misleadingly optimistic

view of a dialogue system’s performance. This illustrates how slot accuracy can overestimate

the performance of a Dialogue State Tracking (DST) system. To further demonstrate this point,

let us consider a scenario where no predictions are made for any turn, i.e., PR = 0 for all t.

Under these circumstances, the formula for slot accuracy simplifies to (|S|−|GT|) / |S| .

Typically, |GT| is significantly smaller than |S| because only a limited number of domain-slot

pairs are active at any given time within a conversation. Consequently, even with no

predictions made, the slot accuracy metric would remain relatively high. This example

underscores the potential for slot accuracy to provide an inflated assessment of DST

performance, especially in datasets with a larger number of domain-slot pairs, slot accuracy is

a poor metric to evaluate DST.

6.3 F1 Score

The F1 Score is indeed a crucial metric for evaluating the predictive performance of a model,

particularly in the context of classification tasks. It is valued for its ability to harmonize the

precision and recall of a model, providing a single measure that balances both the false

positives and false negatives. To elaborate, the F1 Score is the harmonic mean of precision and

recall, where precision is the ratio of true positive predictions to the total predicted positives,



Final Capstone Project 60 of 75

and recall is the ratio of true positive predictions to the actual positives. The formula for the F1

Score is given by:

In the scenario of dialogue systems, where the type of current turn (ODD or TOD)

might be classified, the F1 Score can be particularly insightful. It allows us to ascertain if there

is any confusion between these classes by providing a measure that considers both the

instances where the model correctly identifies a class (precision) and the instances where the

model correctly identifies all relevant samples of a class (recall). By computing the F1 Score for

each class, we can gain a nuanced understanding of the model’s ability to distinguish between

ODD and TOD turns. This metric, therefore, serves as a valuable tool for developers and

researchers to evaluate and improve the performance of dialogue systems.



Final Capstone Project 61 of 75

7. RESULTS AND DISCUSSION

7.1 Performance on FusedChat

Table 4. Experimental results on the FUSEDCHAT test set with Join Goal Accuracy (JGA), Slot
Accuracy (SA), F1-score performance. Two models from FUSEDCHAT [23] are cited to compare for
JGA and SA metrics, their parameters are not referred to in the original paper so that we hide it.

Addition F1 column is reported to ensure proper tracking of the dialogue’s type (ODD or TOD). Our
GradTOD model’s performance is wri�en in italics.

The performance of our model on FusedChat is comprehensively demonstrated in Table 4. Our

model exhibits exceptional performance, achieving an F1 score above 95% for each type of

dialogue. This indicates that the model is proficient in predicting the state for Task-Oriented

Dialogues (TODs) and retaining the state when responding to chitchat. In addition to this, we

have referenced two models from FusedChat [23] - the two-in-one and classification-based

models - to compare the Joint Goal Accuracy (JGA) metric. As per the data presented in Table

3, these two models achieve a JGA score of approximately 59% to 60%. However, our

GradTOD model significantly enhances performance by approximately 23%. We a�ribute this

superior performance to the instruction-finetuned ability of the Flan-T5 model and the

method proposed in Section 4. These elements enable the model to learn what information

needs to be included: whether it’s the classification of TOD or OpenDomain Dialogue (ODD),

the action of the current user’s text, or the state of the current user’s text.

Furthermore, since Flan-T5 is pre-trained for the Chain of Thought task, this model will

perform three tasks in order and ensure coherence between the three components. More



Final Capstone Project 62 of 75

specifically, the type of dialogue will be classified first. Then, determining the action of the

second task will link the results of the first task to generate an appropriate action, which

performs the suitable intent of user text. Once the results of the second task are available, our

model will track which slot values are represented for the user’s state based on the user’s

actions.

For instance, a user action that informs a specific slot in the second task will require the

necessary value and update that slot in the user state in the third task. Other actions such as

request, thank, bye, etc. will not update the user state. From these reasons, we confirm that

using Flan T5 is the most optimal choice at present to achieve such outstanding results in both

JGA and Slot Accuracy (SA) metrics, 82.5% and 99.6% respectively. This underscores the

efficacy of our model in handling both TODs and ODDs, thereby providing a robust solution

for dialogue systems.

7.2 Performance on SGD

Table 5. Experimental results on the SGD test set with Join Goal Accuracy (JGA) performance on seen
and unseen domains, the value with Large Language Model (params more than 1B) and our GradTOD

model wri�en in bold and in italics, respectively.



Final Capstone Project 63 of 75

The performance of various models on the SGD dataset is comprehensively presented in Table

5. In addition to evaluating Joint Goal Accuracy (JGA) across all domains, we have also

recorded results on seen and unseen domains to provide a more generalized view. The models

used for evaluation on the SGD test set include the baseline from SGD [26], SGP-DST [27],

multi-task BERT [15], D3ST [5], SDT [4], and AT from AnyTOD [6]. As per the data in Table 4,

recent encoder models such as SGP-DST and multi-task BERT have achieved commendable

Average JGA scores of above 72.2% and 82.7% respectively. However, the SGD baseline model,

despite its innovative encoder backbone as in the SGD+ dataset [1], has only achieved a score

of 25.4%.

In contrast, Seq2Seq models have demonstrated superior performance, achieving an

approximate score of 89%. This can be a�ributed to the scaling of the recent model

transformer’s size and the exploration of the inherent capabilities of Seq2Seq models. When

considering the seen domain, our GradTOD model has experienced a setback compared to

previous models, achieving only an 83.3% score on JGA metrics. However, this model has

performed exceptionally well in unseen domains, achieving an approximate score of 89.2%.

This experiment has met our expectations in demonstrating the model’s ability for domain

adaptation, also known as zero shot ability. With our continued development, the GradTOD

model has achieved an average score of 88.6%, validating our claim about the effectiveness of

leveraging the instruction-finetuning technique and the proposed method. This underscores

the accuracy of our model in predicting dialogue states and its potential in enhancing the

performance of dialogue systems.



Final Capstone Project 64 of 75

7.3 Performance on MultiWoz 2.4

Table 6. Comparison of performance between state-of-the-art research on MultiWoz 2.4 test set. The
result of SOM-DST on MultiWoz 2.4 is referred to on [34]. The highest score with Encoder only and
Large Language Model (Seq2Seq) are wri�en in bold while our GradTOD model is wri�en in italics,

respectively.

The performance metrics of various models on the MultiWoz 2.4 dataset are meticulously

documented in Table 6. The models under consideration for this comparative analysis include

SOM-DST [32], AUX-DST & meta AUX-DST from metaASSIST [33], D3ST [5], and AnyTOD

[6]. These models are instrumental in evaluating the zero-shot ability during domain transfers.

A careful observation of Table 5 reveals that encoder models exhibit a commendable

proficiency in predicting the current state. Interestingly, these models even surpass Seq2Seq

models in terms of Joint Goal Accuracy (JGA) scores. Encoder models boast a JGA score

ranging from approximately 75% to 79%, while Seq2Seq models’ scores fall within the range of

72% to 76%.

This disparity in performance can be a�ributed to the existing optimized techniques

that are inherent in encoder models, such as slot carryover [15] and operation [32]. These

techniques effectively address the underestimation of JGA metrics. On the other hand,

encoder-decoder models rely solely on their intrinsic capabilities to predict the user’s state. In

some cases, this results in miscellaneous values during the evaluation of system turns.



Final Capstone Project 65 of 75

In contrast, our model, which incorporates the proposed method, demonstrates some

improvement when evaluated on the test set for JGA and Slot Accuracy (SA), with scores of

76.9% and 99.03% respectively. This underscores the efficacy of our proposed method in

enhancing the performance of the model.



Final Capstone Project 66 of 75

8. CONCLUSIONS AND PERSPECTIVES

In this scholarly article, we aim to demonstrate the immense potential of amalgamating

prompt engineering and conditional generation to proficiently manage Dialogue State

Tracking. Through the successful implementation of our system, GradBot, we have been able

to architect new business logic with a minimal custom ontology. This capability empowers us

to identify policy tasks or domains for unseen applications with a relative ease. Our evaluation

experience, which was conducted on three benchmark datasets, has yielded promising results.

We are optimistic that this study will make a significant contribution to the field of research

and development, stimulating interest and fostering innovation among scholars and

practitioners alike. However, it is important to acknowledge that our research is not devoid of

limitations. One such limitation pertains to the scalability and complexity of context length

history, especially when dealing with thousands of slot values across multiple domains. To

address this challenge, we draw inspiration from the Graph-of-thoughts (GoT) model. This

model effectively reduces the context length by utilizing a graph to represent an ontology.

Simultaneously, we aim to address the weaknesses observed in the transition between

Task-oriented Dialogue (ToD) and Open Domain Dialogue (ODD). This includes transitions

between casual conversation (chitchat) and task-oriented guides within the same domain

(inter-mode), as well as transitions between different domains (outer-mode). Our ultimate goal

is to enhance the model’s ability to generate human-like conversations that are both coherent

and contextually relevant.

In conclusion, while our research does present certain challenges, it also opens up

exciting avenues for further exploration and improvement in the field of dialogue state

tracking. We believe that our findings and methodologies will provide a solid foundation for

future research in this area, ultimately leading to more sophisticated and effective dialogue

systems.

CONFLICTS OF INTEREST: No conflict of interest.



Final Capstone Project 67 of 75

9. REFERENCES

1. Vahid Noroozi, Yang Zhang, Evelina Bakhturina, and Tomasz Kornuta. A fast and robust

bert-based dialogue state tracker for schema-guided dialogue dataset. arXiv preprint

arXiv:2008.12335, 2020.

2. Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, Noah A Smith, and Mari Ostendorf.

Incontext learning for few-shot dialogue state tracking. arXiv preprint arXiv:2203.08568,

2022.

3. Chun-Mao Lai, Ming-Hao Hsu, Chao-Wei Huang, and Yun-Nung Chen. Controllable user

dialogue act augmentation for dialogue state tracking. arXiv preprint arXiv:2207.12757,

2022.

4. Raghav Gupta, Harrison Lee, Jeffrey Zhao, Yuan Cao, Abhinav Rastogi, and Yonghui Wu.

Show, don’t tell: Demonstrations outperform descriptions for schema-guided task-oriented

dialogue. In Proceedings of the 2022 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies. Association

for Computational Linguistics, 2022.

5. Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu, Mingqiu Wang, Harrison Lee, Abhinav

Rastogi, Izhak Shafran, and Yonghui Wu. Description-driven task-oriented dialog

modeling. arXiv preprint arXiv:2201.08904, 2022.

6. Jeffrey Zhao, Yuan Cao, Raghav Gupta, Harrison Lee, Abhinav Rastogi, Mingqiu Wang,

Hagen Soltau, Izhak Shafran, and Yonghui Wu. Anytod: A programmable task-oriented

dialog system. ArXiv, abs/2212.09939, 2022.

7. Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,

Omer Levy, Ves Stoyanov, and Luke Ze�lemoyer. Bart: Denoising sequence-to-sequence

pre-training for natural language generation, translation, and comprehension. arXiv

preprint arXiv:1910.13461, 2019.



Final Capstone Project 68 of 75

8. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

9. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with

a unified text-to-text transformer. The Journal of Machine Learning Research,

21(1):5485–5551, 2020.

10. Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher.

A simple language model for task-oriented dialogue. Advances in Neural Information

Processing Systems, 33:20179–20191, 2020.

11. Kang Min Yoo, Hanbit Lee, Franck Dernoncourt, Trung Bui, Walter Chang, and Sang-goo

Lee. Variational hierarchical dialog autoencoder for dialog state tracking data

augmentation. arXiv preprint arXiv:2001.08604, 2020.

12. Darsh J Shah, Raghav Gupta, Amir A Fayazi, and Dilek Hakkani-Tur. Robust zero-shot

crossdomain slot filling with example values. arXiv preprint arXiv:1906.06870, 2019.

13. Brendan King and Jeffrey Flanigan. Diverse retrieval-augmented in-context learning for

dialogue state tracking. arXiv preprint arXiv:2307.01453, 2023.

14. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

15. Eleftherios Kapelonis, Efthymios Georgiou, and Alexandros Potamianos. A multi-task bert

model for schema-guided dialogue state tracking. arXiv preprint arXiv:2207.00828, 2022.

16. Zhi Chen, Lu Chen, Bei Chen, Libo Qin, Yuncong Liu, Su Zhu, Jian-Guang Lou, and Kai

Yu. Unidu: Towards a unified generative dialogue understanding framework. arXiv

preprint arXiv:2204.04637, 2022.



Final Capstone Project 69 of 75

17. Ruolin Su, Jingfeng Yang, Ting-Wei Wu, and Biing-Hwang Juang. Choice fusion as

knowledge for zero-shot dialogue state tracking. In ICASSP 2023-2023 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

18. Zhaojiang Lin, Bing Liu, Andrea Mado�o, Seungwhan Moon, Paul Crook, Zhenpeng

Zhou, Zhiguang Wang, Zhou Yu, Eunjoon Cho, Rajen Subba, et al. Zero-shot dialogue

state tracking via cross-task transfer. arXiv preprint arXiv:2109.04655, 2021.

19. M. Moradshahi, Sina J. Semnani, and Monica S. Lam. Zero and few-shot localization of

task-oriented dialogue agents with a distilled representation. In Conference of the

European Chapter of the Association for Computational Linguistics, 2023.

20. Rahul Goel, Waleed Ammar, Aditya Gupta, Siddharth Vashishtha, Motoki Sano, Faiz

Surani, Max Chang, HyunJeong Choe, David Greene, Kyle He, et al. Presto: A multilingual

dataset for parsing realistic task-oriented dialogs. arXiv preprint arXiv:2303.08954, 2023.

21. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Sco� Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are

few-shot learners. ArXiv, 2020.

22. Kai Sun, Seungwhan Moon, Paul A. Crook, Stephen Roller, Becka Silvert, Bing Liu,

Zhiguang Wang, Honglei Liu, Eunjoon Cho, and Claire Cardie. Adding chit-chat to

enhance taskoriented dialogues. In North American Chapter of the Association for

Computational Linguistics, 2020.

23. Tom Young, Frank Xing, Vlad Pandelea, Jinjie Ni, and E. Cambria. Fusing task-oriented

and open-domain dialogues in conversational agents. In AAAI Conference on Artificial

Intelligence, 2021.



Final Capstone Project 70 of 75

24. Zhiyu Chen, Bing Liu, Seungwhan Moon, Chinnadhurai Sankar, Paul A. Crook, and

William Yang Wang. Ketod: Knowledge-enriched task-oriented dialogue. ArXiv,

abs/2205.05589, 2022.

25. Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,

Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,

Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan

Narang, Gaurav Mishra, Adams Wei Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai,

Hongkun Yu, Slav Petrov, Ed Huai hsin Chi, Jeff Dean, Jacob Devlin, Adam Roberts,

Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models.

ArXiv, abs/2210.11416, 2022.

26. Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan.

Towards scalable multi-domain conversational agents: The schema-guided dialogue

dataset. In AAAI Conference on Artificial Intelligence, 2019.

27. Yu-Ping Ruan, Zhenhua Ling, Jia-Chen Gu, and QUAN LIU. Fine-tuning bert for

schemaguided zero-shot dialogue state tracking. ArXiv, abs/2002.00181, 2020.

28. Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul Crook, Zhenpeng Zhou, Zhiguang Wang,

Zhou Yu, Andrea Mado�o, Eunjoon Cho, and Rajen Subba. Leveraging slot descriptions

for zero-shot cross-domain dialogue state tracking. arXiv preprint arXiv:2105.04222, 2021.

29. Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Dialogue state tracking with a language

model using schema-driven prompting. arXiv preprint arXiv:2109.07506, 2021.

30. Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Inigo Casanueva, Stefan Ultes, ˜

Osman Ramadan, and Milica Gasic. Multiwoz - a large-scale multi-domain wizard-of-oz

dataset for task-oriented dialogue modelling. In Conference on Empirical Methods in

Natural Language Processing, 2018.



Final Capstone Project 71 of 75

31. Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz. Multiwoz 2.4: A multi-domain

taskoriented dialogue dataset with essential annotation corrections to improve state

tracking evaluation. In SIGDIAL Conferences, 2021.

32. Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-Woo Lee. Efficient dialogue state

tracking by selectively overwriting memory. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, Online, July 2020. Association for

Computational Linguistics.

33. Fanghua Ye, Xi Wang, Jie Huang, Shenghui Li, Sam Stern, and Emine Yilmaz. Metaassist:

Robust dialogue state tracking with meta learning. In Conference on Empirical Methods in

Natural Language Processing, 2022.

34. Fanghua Ye, Yue Feng, and Emine Yilmaz. ASSIST: Towards label noise-robust dialogue

state tracking. In Findings of the Association for Computational Linguistics: ACL 2022,

pages 2719–2731, Dublin, Ireland, May 2022. Association for Computational Linguistics



Final Capstone Project 72 of 75

10. APPENDIX

The Fusedchat dataset is renowned for its numerous outstanding features, which greatly

enhance its usability and potential applications. We use the metadata tag in the next system

u�erance (ut+1) to create the current state and the dialog act tag in the current user u�erance

(ut) tag to create the current action. However, there are some inconsistencies in the slots and

values between these two tags. While these bugs may present challenges in terms of data

processing, we have provided solutions for improvement and refinement. By addressing these

issues, our goal is to further enhance the quality and reliability of the Fusedchat dataset,

making it an even more valuable resource for various research and development endeavors.

Table 7. Example of Metadata miss slots

Metadata miss slots: one of the bugs that we encountered in the Fusedchat dataset is

related to the metadata tags. Specifically, there are some missing slots within the metadata tag,

while the dialog act tag still has the action information for those slots. This inconsistency

between the two tags can potentially lead to confusion and inaccuracies during data

processing. For example, in dialog MUL1598 in the dialog act tag in the first log:

”Restaurant-Inform”: [[”area”, ”north”], [”price range”, ”expensive”]], and the metadata tag in

the second log is only each slot ”area”: ”north”. We resolve this issue by implementing a

conditional check within the dialog act tag. If we identify a slot linked to inform action, but

that slot is not specified in the metadata tag, we will include it in the metadata tag.



Final Capstone Project 73 of 75

Table 8. Example of Dialog act miss slots

Dialog act miss slots: this bug will be the opposite of the first error. The user performs

an action to provide information, but dialog act is not recorded with this slot, even though this

slot is recorded in the metadata tag. For example, in dialog MUL1598 in the dialog act tag the

5th log is missing the information ”people”: ”1”, but this pair of slot values is present in the

metadata tag at the 6th log. We fixed it by checking for extra slots in the metadata tag, if any

slot was missing in the dialog act tag then we added an inform action for that slot in the dialog

act tag

Table 9. Example of Metadata and dialog act miss slots

Metadata and dialog act miss slots: the third bug is the most difficult for us. The user

performs the action informing the slots, but these slots are absent from both the metadata tag

and the dialog act tag. For example, in dialog MUL0145 in the dialog act tag the 9th log and

the metadata tag at the 10th log also do not record the information of ”for three”, ”Friday”,



Final Capstone Project 74 of 75

and ”16:00”. We have come up with many solutions but they are all ineffective, so we decided

to filter data like this to not have a negative impact on the training results.

Table 10. Example of Dialog act miss slots and values

Dialog act miss slots and values: there are some elements in dialog act that, although

the action is informed, do not contain any slots or values, or both slot and value are none. This

is obviously meaningless so we decided to eliminate these samples during training. For

example, dialog PMUL4645, in the dialog act tag at 11th log: ”Taxi-Inform”: [[”none”,

”none”]]. Or dialog MUL2285, at 13th log: ”Train-Inform”: []

Table 11. Example of Inconsistent values

Inconsistent values: there is another small bug that is the inconsistency of values in the

whole data set such as [dontcare, dont care, don’t care] will be standardized to dontcare. The

time values are not consistent between the metadata tag and the dialog act tag. For example, in

dialog PMUL1554 in the 7th log, the time in the text is 9:45, but the value of the slot arrive in



Final Capstone Project 75 of 75

the metadata tag is 09:45 and the value in the dialog act tag is 9:45. These value inconsistency

errors are not too serious, but they will negatively affect training because there are no common

standards. And more importantly, the JGA metric result will be low, because if the label is

don’t care, and the prediction is don’t care, then JGA will be 0, this is similar to 9:45 and 09:45.

Link of out paper about GradDST - is called GradTOD (Dialogue State Tracking model):

GradTOD - A Unified Dialogue State Tracking Model for Task-Oriented and Open Domain

Dialogues | IEEE Conference Publication | IEEE Xplore

https://ieeexplore.ieee.org/document/10402219/authors#authors
https://ieeexplore.ieee.org/document/10402219/authors#authors


GradTOD - A Unified Dialogue State Tracking
Model for Task-Oriented and Open Domain

Dialogues
1st Truc Nguyen Liem

Department of Information Technology
FPT University

Ho Chi Minh City, Vietnam
Email: trucnlse161876@fpt.edu.vn

2nd Sinh Nguyen Cao Hoai ∗

Department of Information Technology
FPT Unviersity

Ho Chi Minh City, Vietnam
Email: sinhnchse151023@fpt.edu.vn

3rd Hung Nguyen Quoc ∗

Department of Information Technology
FPT Unviersity

Ho Chi Minh City, Vietnam
Email: hungnqse162007@fpt.edu.vn

4th Tien Nguyen Van
Pythera AI

Faculty of Information Technology
Open University

Ho Chi Minh City, VietNam
Email: tien.nguyen@gradients.host

5th Hieu Pham Trung
Pythera AI

Faculty of Information Technology
Open University

Ho Chi Minh City, Vietnam
Email: hieu.pham@gradients.host

Email: hieu.pt@ou.edu.vn

6th Vinh Truong Hoang
Faculty of Information Technology

Open University
Ho Chi Minh City, Vietnam

Email: vinh.th@ou.edu.vn

Abstract—The task-oriented dialogue domain system requires
classifying intent and replying to a specific goal domain. In the
sub-module of Task-oriented, the Dialogue State Tracker (DST)
is well-known as a variety processing tracker. However, existing
DST models often specialize in only task-oriented domains (ToD),
leading to limited performance when applied to scenarios. In
this paper, we propose GradTOD, a unified DST model that
predicts both two task types, task-oriented dialogue (TOD) and
open-domain dialogue (ODD). Our model leverages the recent
advances in prompt engineering and conditional generation to
perform zero-shot learning. After experiments, GradTOD has
achieved an 88.6% and 82.5% score on Joint Goal Accuracy
metrics when evaluating the Scheme-Guided Dialogue (SGD) and
FusedChat test sets correspondingly, demonstrating the adaption
ability for multi-domains.

I. INTRODUCTION

The task-oriented domain has attracted a lot of attention
not only in academics but also in industry. This objective is
to achieve specific strategies, such as providing information
or performing an action that satisfies the user’s request. One
of the crucial components of the task-oriented domain is Dia-
logue State Tracking (DST), which tries to predict appropriate
actions to resolve the goals. At every turn, DST has to look up
the dialogue history (whole or sliding window) to the current
turn to determine the specific slot values in the slot list [1],
[2]. In our observation, there are two kinds of Dialogue State
Tracking designed:

1) The traditional method uses an Encoder module ex-
ploiting multihead layers to build classified data intent
prediction, slots prediction, and slot filling [1], [3];

∗
Equal contribution

2) Seq2Seq module uses prompting to show semantics
between turns and ontology through conversation to
predict a required value [4]–[6].

In industrial applications, DST is required to adapt flexibly
new domains (services) without prior training for a specific
task. For this purpose, the role of zero-shot prediction on un-
seen domains becomes indispensable in Dialogue State. Some
previous work [4]–[6] uses guided schema as a description to
show the semantics of schema element with input sentence.
With recent advances in pre-trained language models [7]–
[9], augmented language techniques are gaining more and
more attention. These methods have demonstrated impressive
improvement and zero-shot adaptability [3], [10], [11]. More-
over, the in-context learning framework (ICL) shows efficiency
methods and techniques in DST without the re-training stage
by combining prompting and examples for a task [12], [13].

More specifically, Figure 1 shows an example conversation
with the associated dialog state of the attraction domain. The
user wants to find information about a specified name and
request more data about the phone number, address, and area.
Simultaneously, they share their claim about why they need
a museum when having internet. The system must answer
questions based on their knowledge (close/open question-
answering domain) or even daily conversation (chitchat). It
requires an intelligent chatbot with novel architectures and
approaches such as dialogue state tracking, switching domain
classification, and supporting generative AI-specific knowl-
edge to improve the performance of the conversational agent.
However, there still haves a noticeable gap until now between
existing benchmark datasets and real-life human conversations.



Fig. 1. An example of Attraction Domain on Fusedchat datasets. The conversation builds from MutiWoz2.4 by rewriting the existing Task-oriented domain
turns and adding new Open Dialogue domain turns.

These datasets cover a limited number of domains, unrealistic
constraints focus on a few skill sets and do not have empathy
or persona consistency, etc.

Motivated by this research, we propose a recent advance
in prompt engineering and conditional generation to adapt
zero-shot learning applications useful in the business domain.
The effectiveness of our proposed method is experimented on
the FusedChat, SGD, and MultiWoz2.4 datasets, achieving a
remarkable performance on automatic and human evaluations.
Our proposed methods can be summarized as follows:

• We introduce a simple method but effective controls
tracking conversation flow and easily expand the new
business domains (services). Our evidence shows that,
under this very general setting, natural language descrip-
tions lead to better quality over abbreviated notations
supporting Task-oriented Domain and Open Dialogue
Domain.

• While several researchers/developers focus on using the
Large Language Model to give a strong performance
experience. We are interested in exploring the potential of
small language modeling on a variety of tasks in Dialogue
State Tracker based on a contextual semantics ontology.

The remainder of the article is structured as follows. Section
II discusses about our relevant works. The key idea for the
Dialog State Tracker combines prompting and conditional
generation with ontology performing the details is explained
in Section III. The outcome and the work’s conclusion are
then reported in Sections IV to V, respectively.

II. RELATED WORKS

Dialog State Tracking: This is the core of building a
conversational system. All these methods can be divided
into two categories: Classification (Encoder) and Generation
(Seq2Seq). Recently, transformer-based pre-trained models,
such as BERT [14] have achieved remarkable results in a
range of natural language processing tasks. Thus, a multi-task
BERT-based model [15] is proposed to solve intent prediction,
slot filling and request slot filling by encoding the history and
service schema. These approaches, however, are not applicable
to unseen values and not able to scale up large domains. To
address this issue, a UniDU framework is introduced in [16]
that achieves effective information exchange across diverse
dialogue-understanding tasks. His study found the intuitive
multitask mixture training method which making the unified
model bias convergence to more complex tasks.

Enhance Reading Comprehension: Unlike the above re-
search, several researchers found that generation extractive
(Machine Reading for Question Answering) works well in
answering textual QA tasks by the ability to read the context.
Taking this advantage, CoFunDST [17] combined Dialogue
State Tracking with Machine Reading Comprehension, which
applied to context-choice fusion as an extensive knowledge
to predict slots and values among available candidates to
improve a zero-shot performance. Another experiment of this
comprehension task, TransferQA [18] introduces construct-
ing negative question sampling and context truncation, two
effective methods that handle ”none” value slots and push
the model better on generalization ability in unseen domains.



Fig. 2. Overview of GradTod approach for schema-guided multi-domains dialogues. The bottom figure includes specific examples for dialogue context,
user action, ontology and current query while the top figure stimulates predictions. In our observation, the state and current action labels in FusedChat have
different slot values (details in Appendices A). Thus, we combine prediction all in one sample to make the same evidence between state and current action
simultaneously enhance the construct meaning of the input and target value.

Simultaneously improving model abilities, Moradshahi’s ap-
proach [19] stated that collecting large amounts of data for
every dialogue domain is often costly and inefficient. Thus,
his study applies the transfer learning technique, which only
uses a limited task-oriented subset in source data language
to build a high-quality model for other target ones. The
experiments achieved unexpected results when training only
with 10% training data points but increasing 10% performance
to the previous SOTA research on both zero-shot and few-
shot learning. On multilingual application, PRESTO [20], a
public multilingual conversation dataset for real-world NLU
tasks, and the applied-based mT5 model are considered as
baseline training of this field. The experiments show this
module performs well on various linguistic phenomena.

Effection dataset: Recent state-of-the-art researchs [21]–
[23] improved existing ToD datasets by designing different
methods such as enhancing context, samples, and method
processing to make that real human-level conversation.
FusedChat [22] rewrote Task-oriented dialogue and added
new open domain dialogue (chitchat) into one benchmark.
ACCENTOR [21] proposed a data augmentation method
for generating conversation leveraging pre-trained generative
models and a custom filter to minimize human annotation
effort. Based on these approaches, we analyze our model
training on FusedChat and SGD datasets, then evaluating
single and multi-domain dialogue. This approach allows both
TOD and ODD adapting to business domain.

III. METHODOLOGY

Following previous DST research, we leverage the
instruction-finetuned ability of Flan-T5 [24] as our baseline
and combine with it the technique of elements on multi-task
[25] to define input. We propose the template training with
instruction, context, ontology, and a list of user actions. After

that, the model must choose which sensible representation to
learn by reading and extracting the information input.

A. Complexity of building Schema-guided Definition

GradTod requires building an ontology (shema-guided)
from a business domain (single or multi-domains). This
ontology helps the DST to understand its meaning and
facilitates predicting the user state. For example, in an
agent-supporting hotel reservations chatbot, the designer de-
fines the parameters to track along with description as
[name=name of the hotel, star=star rating of the accommoda-
tion, number of rooms=number of rooms in the reservation,
check in date=start date for the reservation,...].

Then, at each turn, the purpose of a DST module is to
use the dialogue history up to that turn to predict a dialogue
state, which represents the user’s goal and progress in using
the system. In a similar vein to prior research [4], [5] each
element in this schema is characterized by a natural language
description, and entire the dialogue flow is designed as a
conversation graph flow.

B. Predefine structure model

Schema-guided representation As D3ST [5], ontology will
be a dictionary that interprets the descriptions of the slots that
have been mapped into ordinal slots. Converting slots into
numeric slots makes it easier for the model to perform tasks
for unseen domains because it relies on descriptions without
understanding the names of the slots in those domains. An
ontology contains all the domains in the dialogue, the model
must learn to choose domains that match the current turn.
Besides, the ontology is added to the domain name at the
beginning of each dictionary chain, this will make it easier
for the model to identify the domains at the current turn.
The overview representation is O = {sD0

0 = dD0
0 , sD0

1 =
dD0
1 , ..., sD0

N = dD0

N , ..., sDM

N = dDM

N }, where M, N to be a
number of domains and slots of each domain, respectively.



Dialogue context representations Following the previous
research [26], [27], we set each user’s utterance to be the
current query sample and remaining the history as context
dialogue for each utterance we append prefix ”user” and
”system” tokens, signaling the speaker of each turn. In the
end, full dialogue context is created by concatenating all the
system and user utterances C = {u0, s0, ..., ut−1, st−1}, where
t=0, 1, 2,.. to be a current query’s position in sub dialogue
sample.

Action enhances constraint Finally, we construct the list
of user actions that will be inserted into the input template
for each turn. Because our label contains current action, a list
of user actions will support the model in choosing the most
appropriate action, reducing the probability of predicting an
action that does not exist in raw datasets. Formula as A =
{inform, request, ..., thank, general asking}

With the advantage of checkpoint Flan-T5 being instruction-
based training, we combine the Machine Reading Comprehen-
sion with instructions to give detailed explanations of tasks so
that the model clearly understands what tasks it needs to do
and how to perform them. In the instructions, we format the
detailed content input by inserting these above context, query,
ontology and user actions. Format is presented in Figure 2.

C. DST as guided Reading Conversation

GradTOD is trained on three tasks at the same time:
1) type-classify TOD or ODD.
2) current action-predict user actions for each turn.
3) current state-predict state for each turn.

Each dialogue of the used chat dataset contains chitchat
utterances, so in addition to defining state like other models,
we add a task to identify the type (TOD/ODD) to evaluate
the ability to classify between general conversation and task
conversation. Furthermore, the current action is added to the
label to create a tight binding between the user’s action and
the user’s state. The model will learn that if the user’s action
is informed, the state will be updated, but actions such as
request, thank, bye,... will have to maintain the same state as
the previous turn.

IV. EXPERIMENT AND RESULTS

A. Datasets

Fusedchat Dataset [22] is an essential dataset created
by merging task-oriented dialogue (TOD) and open-domain
dialogue (ODD). This amalgamation of ODD and TOD fosters
a seamless connection and robust contextual interplay between
the two dialogue modes. Hence, this dataset can support the
backbone system to accelerate comprehension when dealing
with reality. As an extension of the renowned MultiWoz
dataset [28], Fusedchat integrates additional ODD turns either
before or after the existing TOD turns, with 3670 and 4768
instances correspondingly according to [22]. Besides, due to
the noise Fusedchat dataset itself, e.g. redundant domains, and
inconsistency values, which were inherited from MultiWoz2.4
[29], we changed some modifications and also wrote in the
Appendix A.

TABLE I
STATISTICS OF SGD, FUSEDCHAT, MULTIWOZ2.4. THIS STATISTICS IS
COMPUTED ON TOTAL SAMPLES OF TRAINING, VALIDATION AND TEST

SETS. FOR FUSEDCHAT AND MULTIWOZ2.4, THERE EXIST SOME SAME
NUMBERS BECAUSE FUSEDCHAT IS BUILT UPON MULTIWOZ2.4. THE

DIFFERENCE IS FUSEDCHAT COMBINES THE ODD PART TO
MULTIWOZ2.4’S TOD PART. WITH SGD, NUMBER OF ”UNIQUE” SLOTS
WILL BE REPRESENTED (IN ITALIC) AND NUMBER OF SLOT VALUES WILL

CONTAINS THE NUMBER OF VALUES OF ”CATEGORICAL” SLOTS (IN
BOLD).

Statistics / Dataset FusedChat SGD MultiWoz2.4

No. of domains 7 20 7
No. of dialogues 10348 22825 10348

Avg. turn per dialogue 20.3 18.36 12.27
No. of slots 45 184 37

No. of slot values 1936 500 1936

Schema-Guided Dialogue Dataset [30] is the largest mul-
tidomain for task-oriented dialogue datasets until now. It
spans 45 diverse domains over hotels, banks, events, homes,
travel, flights, media, movies, rental cars, and more. Each part
continues to split into various forms, e.g., hotels decomposed
as hotels 1, hotels 2, hotels 3, and so on. This dataset utilizes
25 domains for training and reuses the identical domains
combined with 10 more ones for validation. This large number
of dialogues will offset the minor number one in the Fusedchat
dataset. The test set also comprises these 35 domains to
evaluate the model’s zero-shot learning capabilities.

MultiWoz2.4 Dataset [29] is the last refinement for pri-
marily evaluating metrics on task-oriented dialogue up-to-date.
Statistics are the same as preceding MultiWoz versions and are
referred to Table II. Because all annotation updates are refined
mainly on the validation set and test set, as well as having large
numbers of dialogues spanning many domains, we will use this
dataset to evaluate zero-shot abilities and compare our model
with other backbones. Though MultiWoz2.4 is built originally
from version 2.1, which does not leverage versions 2.2 and
2.3, it still has a renowned publication and has been widely
used when evaluating research in recent years.

B. Metrics

Joint Goal Accuracy (JGA) is one of the most common
metrics used to evaluate the task of dialogue state tracking and
is also defined widely as in SGD [24]. With the JGA metric,
correct is counted when the belief state prediction exactly
matches the truth label. It is also a limitation of these metrics
because the label also contains all states of the previous state,
which requires the model to predict even slots in previous
dialogue turns.

Slot accuracy (SA) [31] is also another standard metric
existing along with joint accuracy. This metric is quite naive
and calculated by comparing each tuple (domain, slot, value)
with its label correspondingly. However, this can be problem-
atic if the number of slot values scales as in multi-domain
circumstances.



TABLE II
EXPERIMENTAL RESULTS ON THE FUSEDCHAT TEST SET WITH JOIN

GOAL ACCURACY (JGA), SLOT ACCURACY (SA), F1-SCORE
PERFORMANCE. TWO MODELS FROM FUSEDCHAT [22] IS CITED TO

COMPARE FOR JGA AND SA METRICS, THEIR PARAMETERS IS NOT
REFERRED IN ORIGINAL PAPER SO THAT WE HIDE IT. ADDITION F1

COLUMN IS REPORTED TO ENSURE PROPER TRACKING OF THE
DIALOGUE’S TYPE (ODD OR TOD). OUR GRADTOD MODEL’S

PERFORMANCE IS WRITTEN IN ITALICS.

System # Params. SA JGA F1
TOD OOD

Two-in-one model - 97.2 59.2 - -
Classification-based model - 97.3 60.0 - -

GradTOD (ours) 250M 99.6 82.5 97.2 95.4

F1 Score is well-known metrics for measuring model’s
prediction. Because this metric captures both precision and
recall, we can ensure whether there is confusion between
the dialogue’s type of current turn (ODD or TOD) when
computing the F1-score for each classes to check.

C. Experiments

Flan-T5 backbone [24] is a variant of T5 that robustly
enhances the generality of instruction finetuning compared
with non-finetuned models. Except that, these flan models
also prove zero-shot ability, which significantly influences our
paper on experiments with hybrid dialogue. Here, we use Flan-
T5 as the backbone to demonstrate the proposed method in
Section III. The zero-shot ability of our model is also presented
in Table II.

All previous slot values have to be utilized to compute
the JGA score. Here, we clarify that there are two existing
formulas. With encoders like FastSGT [1], SGD-base [30], and
SGP-DST of [32], these model’s abilities can only predict the
current slot values and have to use another set to store previous
ones. FastSGT and SGD-base combine prior predicted slot
values with the current expected state to compute the JGA
score, while these prior predicted slot values will be replaced
by the gold ones on SGP-DST. On the other hand, encoder-
decoder seems naive when encouraging the LLM model itself
to predict all previous ones, e.g., SDT [4], D3ST [5], AnyTOD
[6]. By using encoder-decoder architecture, we mainly use the
second formula to compute the JGA score and also provide
results of experiments in Table II and Table III.

D. Results

Implicitly determining ability on FusedChat is demon-
strated on Table II. Our model achieves above 95% on the
F1 score for each dialogue’s type, meaning the model can
handle well when predicting the state for TOD or retaining
the state when responding to chitchat. On top of that, the
two-in-one and classification-based models are referred from
FusedChat [22] to compare the JGA metric. In Table II, these
two models have the JGA score of about 59% to 60%, but
our GradTOD model enhances performance by approximately
23%. We believe the instruction-finetuned ability of model

TABLE III
EXPERIMENTAL RESULTS ON THE SGD TEST SET WITH JOIN GOAL

ACCURACY (JGA) PERFORMANCE ON SEEN AND UNSEEN DOMAINS, THE
VALUE WITH LARGE LANGUAGE MODEL (PARAMS MORE THAN 1B) AND

OUR GRADTOD MODEL WRITTEN IN BOLD AND IN ITALICS,
RESPECTIVELY.

Backbone System # Params. Seen Unseen Avg

Encoder
SGD baseline 110M - - 25.4

SGP-DST 660M - - 72.2
multi-task BERT 110M - - 82.7

Seq2Seq

D3ST BASE 220M 92.5 66.4 72.9
D3STLARGE 770M 93.8 75.4 80.0

D3STXXL 11B 95.8 83.3 86.4
SDTBASE 250M - - 76.3

SDTLARGE 800M - - 83.2
SDTXXL 11B 95.8 86.4 88.8

AnyTODBASE 220M 89.9 62.4 76.2
AnyTODXXL 11B 94.8 82.2 88.5

Seq2Seq GradTOD (ours) 250M 83.3 89.2 88.6

Flan-T5 and the proposed method in section III make the
model learn what information needs to include: TOD or ODD
classification, action of the current user’s text, or state of the
current user’s text. Besides, because Flan-T5 is pre-trained for
the Chain of Thought task, this model will perform three tasks
in order and ensure tightness between the three components.
More specifically, the type of dialogue will be classified first,
and then determining the action of the second task will link the
results of the first task to generate appropriate action, which
performs the suitable intent of user text. Once the results of
the second task are available, our model will track which slot
values are represented for the user’s state based on the user’s
actions. For example, a user action that informs a specific
slot in the second task will require the necessary value and
update that slot in the user state in the third task. Other
actions such as request, thank, bye, etc. will not update the
user state. From those two reasons, we confirm that using
Flan T5 is the most optimal choice at present to achieve such
outperforming results in both JGA and SA metrics, 82.5% and
99.6% correspondingly.

Performance on SGD is provided in Table III. Except for
evaluating Joint Goal Accuracy on all domains, we also record
results on seen and unseen domains to generalize more views.
These used models are baseline from SGD [30], SGP-DST
[32], multi-task BERT [15], D3ST [5], SDT [4], AT from
AnyTOD [6], which used to evaluate on SGD test set. In
Table III, recent encoder models like SGP-DST, and multi-
task BERT achieve above 72.2% and 82.7% on Average JGA
score, except for SGD baseline model here, which only has
a 25.4% score. We cite this model because of the encoder
backbone itself despite having innovation as SGD+ dataset
[1]. On the contrary, Seq2Seq models have better forwarding
when performing approximately 89% score. The explanation
can come from scaling on the recent model transformer’s
size and exploring the inner ability of Seq2Seq models.
When considering the seen domain, GradTOD has a setback
compared to previous models on the seen domain, which



TABLE IV
COMPARISON OF PERFORMANCE BETWEEN STATE-OF-THE-ART

RESEARCH ON MULTIWOZ 2.4 TEST SET. THE RESULT OF SOM-DST ON
MULTIWOZ 2.4 IS REFERRED TO ON [35]. THE HIGHEST SCORE WITH

ENCODER ONLY AND LARGE LANGUAGE MODEL (SEQ2SEQ) ARE
WRITTEN IN BOLD WHILE OUR GRADTOD MODEL IS WRITTEN IN italics,

RESPECTIVELY.

Backbone System # Params. SA JGA

Encoder
SOM-DSTBASE 110M 98.84 75.19

AUX-DST 220M 99.07 78.14
Meta AUX-DST 220M 99.08 78.57

Seq2Seq
D3STBASE 220M - 72.1

D3STLARGE 770M - 70.8
D3STXXL 11B - 75.9

Seq2Seq GradTOD (ours) 250M 99.03 76.9

only achieved an 83.3% score on JGA metrics. Because this
model has performed approximately 89.2% score on unseen
ones, this experiment has gained the satisfied expectation when
proving the ability to domain adaption (zero-shot ability).
With our development, the GradTOD model has reached an
88.6% average score, indicating the correct prediction of our
claim about leveraging the instruction-finetuning technique
and proposed method.

Performance on MultiWoz2.4 is recorded in Table IV.
Here, we follow models: SOM-DST [33], AUX-DST & meta
AUX-DST from metaASSIST [34], D3ST [5] and AnyTOD
[6] to compare zero-shot ability on domain transfers. Ob-
servation from Table IV shows that encoder models handle
well for predicting the current state, which even has a higher
JGA score than Seq2Seq models. Encoder models have a
JGA score of around 75% to 79%, while seq2seq models
are in range from 72% to 76%. A capable reason is these
existing optimized techniques for encoder models such as slot
carryover [15], operation [33] cover underestimation of JGA
metrics, but the encoder-decoder ones completely depend on
itself to predict user’s state, which some cases even have
miscellaneously values of system’s turns. In contrast, our
model with the proposed method has some improvement when
evaluating the test set on JGA and SA, with 76.9% and 99.03%
correspondingly.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the ability to combine prompt
engineering and conditional generation for handling Dialogue
State Tracking. With GradTOD, we can easily design a new
business logic with minimal custom ontology to determine
policy tasks or domains unseen applications. This experience
evaluation on three Benchmark datasets gives promising re-
sults, we hope this study can be an interesting field of research
and development.

One limitation in our research is context length history can
be scaled up and always complicated if has thousands of slot
values in multiple domains. Inspire Graph-of-thoughts (GoT)

[36], the model can reduce the context length by using a
graph to represent an ontology. Simultaneously, we can focus
on the weakness between the transition inter-mode ToD and
ODD (transition between chitchat and task-oriented guide in
the same domain) and outer-mode (transition between each
domain) to generalize human-like conversations.

APPENDIX
FUSEDCHAT’S MODIFICATION

The Fusedchat dataset is renowned for its numerous out-
standing features, which greatly enhance its usability and
potential applications. We use the metadata tag in the next
system utterance (ut+1) to create the current state and the
dialog act tag in the current user utterance (ut) tag to create
the current action. However, there are some inconsistencies
in the slots and values between these two tags. While these
bugs may present challenges in terms of data processing,
we have provided solutions for improvement and refinement.
By addressing these issues, our goal is to further enhance
the quality and reliability of the Fusedchat dataset, making
it an even more valuable resource for various research and
development endeavors.

• Metadata miss slots: one of the bugs that we encoun-
tered in the Fusedchat dataset is related to the metadata
tags. Specifically, there are some missing slots within
the metadata tag, while the dialog act tag still has the
action information for those slots. This inconsistency
between the two tags can potentially lead to confusion
and inaccuracies during data processing. For example, in
dialog MUL1598 in the dialog act tag in the first log:
”Restaurant-Inform”: [[”area”, ”north”], [”price range”,
”expensive”]], and the metadata tag in the second log is
only each slot ”area”: ”north”. We resolve this issue by
implementing a conditional check within the dialog act
tag. If we identify a slot linked to inform action, but that
slot is not specified in the metadata tag, we will include
it in the metadata tag.

• Dialog act miss slots: this bug will be the opposite of
the first error. The user performs an action to provide
information, but dialog act is not recorded with this slot,
even though this slot is recorded in the metadata tag. For
example, in dialog MUL1598 in the dialog act tag the
5th log is missing the information ”people”: ”1”, but this
pair of slot values is present in the metadata tag at the
6th log. We fixed it by checking for extra slots in the
metadata tag, if any slot was missing in the dialog act
tag then we added an inform action for that slot in the
dialog act tag

• Metadata and dialog act miss slots: the third bug is
the most difficult for us. The user performs the action
informing the slots, but these slots are absent from both
the metadata tag and the dialog act tag. For example,
in dialog MUL0145 in the dialog act tag the 9th log
and the metadata tag at the 10th log also do not record
the information of ”for three”, ”Friday”, and ”16:00”.
We have come up with many solutions but they are all



TABLE V
DIFFERENT TYPES OF ERRORS OCCUR IN DIALOGS FROM THE FUSEDCHAT DATASET. EACH ROW IN THE TABLE REPRESENTS AN ERROR TYPE AND THE

EXAMPLES SHOW CONFLICTING SLOTS AND VALUES BETWEEN THE DIALOG ACT TAG AND THE METADATA TAG.

Error Type Dialog’s id Log user (t) Current user (t) Dialog act (t) Metadata (t+1)
Metadata miss slots MUL1598 1 I’m looking for ”area”, ”north” ”area”: ”north”

an expensive ”pricerange”, ”expensive”
restaurant in

the north area
Dialog act miss slots MUL1598 5 Lets try Hakka. ”bookday”, ”tuesday” ”name”: ”hakka”

It will be just ”booktime”, ”16:45” ”reference”: ”KWV7HGEB”
myself at 16:45 ”name”, ”hakka” ”time”: ”16:45”

on tuesday. ”day”: ”tuesday”
”people”: ”1”

”food”: ”chinese”
”pricerange”: ”expensive”
”name”: ”not mentioned”

”area”: ”north”
Metadata and MUL0145 9 I would like to [] ”people”: ””

Dialog act miss slots book a table for ”day”: ””
three on Friday, ”time”: ””

at 16:00. ”food”: ”european”
”pricerange”: ”moderate”
”name”: ”not mentioned”

”area”: ”centre”
Dialog act miss PMUL4645 11 I also need ”none”, ”none” -
slots and values a taxi.

MUL2285 13 I do not need [] -
to book.

Inconsistent values PMUL1554 7 uh why yes you ”arriveby”, ”9:45” ”leaveAt”: ”not mentioned”
are very perceptive ”departure”, ”cambridge” ”destination”: ”ely”
depart cambridge ”destination”, ”ely” ”day”: ”saturday”

arrive by 9:45 ”arriveBy”: ”09:45”
leaves on sat ”departure”: ”cambridge”
going to ely

ineffective, so we decided to filter data like this to not
have a negative impact on the training results.

• Dialog act miss slots and values: there are some ele-
ments in dialog act that, although the action is informed,
do not contain any slots or values, or both slot and value
are none. This is obviously meaningless so we decided
to eliminate these samples during training. For example,
dialog PMUL4645, in the dialog act tag at 11th log:
”Taxi-Inform”: [[”none”, ”none”]]. Or dialog MUL2285,
at 13th log: ”Train-Inform”: []

• Inconsistent values: there is another small bug that is
the inconsistency of values in the whole data set such
as [dontcare, dont care, don’t care] will be standardized
to dontcare. The time values are not consistent between
the metadata tag and the dialog act tag. For example, in
dialog PMUL1554 in the 7th log, the time in the text
is 9:45, but the value of slot arrive in the metadata tag
is 09:45 and the value in the dialog act tag is 9:45.
These value inconsistency errors are not too serious,
but they will negatively affect training because there are
no common standards. And more importantly, the JGA
metric result will be low, because if the label is don’t
care, and the prediction is don’t care, then JGA will be
0, this is similar to 9:45 and 09:45.

REFERENCES

[1] V. Noroozi, Y. Zhang, E. Bakhturina, and T. Kornuta, “A fast and robust
bert-based dialogue state tracker for schema-guided dialogue dataset,”
arXiv preprint arXiv:2008.12335, 2020.

[2] Y. Hu, C.-H. Lee, T. Xie, T. Yu, N. A. Smith, and M. Ostendorf, “In-
context learning for few-shot dialogue state tracking,” arXiv preprint
arXiv:2203.08568, 2022.

[3] C.-M. Lai, M.-H. Hsu, C.-W. Huang, and Y.-N. Chen, “Controllable user
dialogue act augmentation for dialogue state tracking,” arXiv preprint
arXiv:2207.12757, 2022.

[4] R. Gupta, H. Lee, J. Zhao, Y. Cao, A. Rastogi, and Y. Wu, “Show,
don’t tell: Demonstrations outperform descriptions for schema-guided
task-oriented dialogue,” in Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational
Linguistics, 2022.

[5] J. Zhao, R. Gupta, Y. Cao, D. Yu, M. Wang, H. Lee, A. Rastogi,
I. Shafran, and Y. Wu, “Description-driven task-oriented dialog mod-
eling,” arXiv preprint arXiv:2201.08904, 2022.

[6] J. Zhao, Y. Cao, R. Gupta, H. Lee, A. Rastogi, M. Wang, H. Soltau,
I. Shafran, and Y. Wu, “Anytod: A programmable task-oriented
dialog system,” ArXiv, vol. abs/2212.09939, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:254877048

[7] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” arXiv preprint arXiv:1910.13461, 2019.

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[9] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer



learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[10] E. Hosseini-Asl, B. McCann, C.-S. Wu, S. Yavuz, and R. Socher, “A
simple language model for task-oriented dialogue,” Advances in Neural
Information Processing Systems, vol. 33, pp. 20 179–20 191, 2020.

[11] K. M. Yoo, H. Lee, F. Dernoncourt, T. Bui, W. Chang, and S.-g. Lee,
“Variational hierarchical dialog autoencoder for dialog state tracking
data augmentation,” arXiv preprint arXiv:2001.08604, 2020.

[12] D. J. Shah, R. Gupta, A. A. Fayazi, and D. Hakkani-Tur, “Robust
zero-shot cross-domain slot filling with example values,” arXiv preprint
arXiv:1906.06870, 2019.

[13] B. King and J. Flanigan, “Diverse retrieval-augmented in-context learn-
ing for dialogue state tracking,” arXiv preprint arXiv:2307.01453, 2023.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] E. Kapelonis, E. Georgiou, and A. Potamianos, “A multi-task bert
model for schema-guided dialogue state tracking,” arXiv preprint
arXiv:2207.00828, 2022.

[16] Z. Chen, L. Chen, B. Chen, L. Qin, Y. Liu, S. Zhu, J.-G. Lou, and
K. Yu, “Unidu: Towards a unified generative dialogue understanding
framework,” arXiv preprint arXiv:2204.04637, 2022.

[17] R. Su, J. Yang, T.-W. Wu, and B.-H. Juang, “Choice fusion as knowledge
for zero-shot dialogue state tracking,” in ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023, pp. 1–5.

[18] Z. Lin, B. Liu, A. Madotto, S. Moon, P. Crook, Z. Zhou, Z. Wang,
Z. Yu, E. Cho, R. Subba et al., “Zero-shot dialogue state tracking via
cross-task transfer,” arXiv preprint arXiv:2109.04655, 2021.

[19] M. Moradshahi, S. J. Semnani, and M. S. Lam, “Zero and few-
shot localization of task-oriented dialogue agents with a distilled
representation,” in Conference of the European Chapter of the
Association for Computational Linguistics, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257038848

[20] R. Goel, W. Ammar, A. Gupta, S. Vashishtha, M. Sano, F. Surani,
M. Chang, H. Choe, D. Greene, K. He et al., “Presto: A multilin-
gual dataset for parsing realistic task-oriented dialogs,” arXiv preprint
arXiv:2303.08954, 2023.

[21] K. Sun, S. Moon, P. A. Crook, S. Roller, B. Silvert, B. Liu, Z. Wang,
H. Liu, E. Cho, and C. Cardie, “Adding chit-chat to enhance task-
oriented dialogues,” in North American Chapter of the Association for
Computational Linguistics, 2020.

[22] T. Young, F. Xing, V. Pandelea, J. Ni, and E. Cambria, “Fusing
task-oriented and open-domain dialogues in conversational agents,” in
AAAI Conference on Artificial Intelligence, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:237453371

[23] Z. Chen, B. Liu, S. Moon, C. Sankar, P. A. Crook,
and W. Y. Wang, “Ketod: Knowledge-enriched task-oriented
dialogue,” ArXiv, vol. abs/2205.05589, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:248693217

[24] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus,
E. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S.
Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, D. Valter,
S. Narang, G. Mishra, A. W. Yu, V. Zhao, Y. Huang, A. M. Dai,
H. Yu, S. Petrov, E. H. hsin Chi, J. Dean, J. Devlin, A. Roberts,
D. Zhou, Q. V. Le, and J. Wei, “Scaling instruction-finetuned language
models,” ArXiv, vol. abs/2210.11416, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:253018554

[25] P. Gupta, C. Jiao, Y.-T. Yeh, S. Mehri, M. Eskenazi, and J. P. Bigham,
“Instructdial: improving zero and few-shot generalization in dialogue
through instruction tuning,” in Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, 2022, pp. 505–525.

[26] Z. Lin, B. Liu, S. Moon, P. Crook, Z. Zhou, Z. Wang, Z. Yu, A. Madotto,
E. Cho, and R. Subba, “Leveraging slot descriptions for zero-shot cross-
domain dialogue state tracking,” arXiv preprint arXiv:2105.04222, 2021.

[27] C.-H. Lee, H. Cheng, and M. Ostendorf, “Dialogue state tracking
with a language model using schema-driven prompting,” arXiv preprint
arXiv:2109.07506, 2021.

[28] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva,
S. Ultes, O. Ramadan, and M. Gasic, “Multiwoz - a
large-scale multi-domain wizard-of-oz dataset for task-oriented
dialogue modelling,” in Conference on Empirical Methods
in Natural Language Processing, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:52897360

[29] F. Ye, J. Manotumruksa, and E. Yilmaz, “Multiwoz 2.4: A multi-domain
task-oriented dialogue dataset with essential annotation corrections to
improve state tracking evaluation,” in SIGDIAL Conferences, 2021.

[30] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan, “Towards
scalable multi-domain conversational agents: The schema-guided dia-
logue dataset,” in AAAI Conference on Artificial Intelligence, 2019. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:202565722

[31] C.-S. Wu, A. Madotto, E. Hosseini-Asl, C. Xiong, R. Socher,
and P. Fung, “Transferable multi-domain state generator for task-
oriented dialogue systems,” ArXiv, vol. abs/1905.08743, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:160009896

[32] Y.-P. Ruan, Z. Ling, J.-C. Gu, and Q. LIU, “Fine-tuning bert for schema-
guided zero-shot dialogue state tracking,” ArXiv, vol. abs/2002.00181,
2020.

[33] S. Kim, S. Yang, G. Kim, and S.-W. Lee, “Efficient dialogue state
tracking by selectively overwriting memory,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, Jul. 2020.

[34] F. Ye, X. Wang, J. Huang, S. Li, S. Stern, and E. Yilmaz, “Metaassist:
Robust dialogue state tracking with meta learning,” in Conference on
Empirical Methods in Natural Language Processing, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:253098815

[35] F. Ye, Y. Feng, and E. Yilmaz, “ASSIST: Towards label noise-robust di-
alogue state tracking,” in Findings of the Association for Computational
Linguistics: ACL 2022. Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 2719–2731.

[36] Y. Yao, Z. Li, and H. Zhao, “Beyond chain-of-thought, effective
graph-of-thought reasoning in large language models,” arXiv preprint
arXiv:2305.16582, 2023.


