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INTRODUCTION



Problem & Motivation

e Medical Visual Question
Answering (Med-VQA) is a
challenging task that
combines the fields of CV
and NLP.
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Question

Is the lesion causing
significant brainstem
herniation?
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e Med-VQA is still in its
infancy and is far from
practical usel1].

[1] Bazi, Y., Rahhal, M. M., Bashmal, L., & Zuair, M. (2023). Vision-Language Model for Visual Question Answering in Medical Imagery.
Bioengineering, 10(3), 380. https://doi.org/10.3390/bioengineering10030380
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Question: Is this a
singular or
multilobulated lesion?
Answer: Multilobulated

e The current medical data is
limited. [2]
--->The efficacy of medical
models is suboptimal.

[2] Nguyen, B. D., Do, T., Nguyen, B. X., Do, T., Tjiputra, E., & Tran, Q. D. (2019). Overcoming Data Limitation in Medical Visual
Question Answering. ArXiv. /abs/1909.11867
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1. Introduce an architecture Med-VQA with Associative Memory
Module (AMM)

2. Practical Prototype Learning in features fusion.
3. We achieved an improved result on VQA-RAD.
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Are
regions of
the brain
infarcted?

— Text encoder
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Are regions of
the brain
infarcted?
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Visual-Linguistic Features Fusion
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Visual-linguistic features
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Encoder-Decoder Attention
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Prototype
Learning

Associative
Memory
Module

Overview of model architecture

Classification Layer
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Image Encoder
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The architecture of EfficientNet-b5 model
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Text Encoder

Pre-trained: RadBERT-RoBERTa-4m
By: UCSD-VA-health

e Trained with 4 million radiology )
reports deidentified from US VA 0™

° Name: DOB: 12/28/1954 Female
Exam Date: 0/8/14
O S p I a Referring Phys.: GunnarHeuser.M.D.

This is a 39-year-old female with exposure to mold and mercury. The patient has symptoms of seizures, memory loss, and numbness in hands and left arm.

PROCEDURE

Using a 3 Tesla Siemens Verio MRI Open system. the following sequences were obtained:
1) Localizer. 4) DWT axial.

2) T1 3D sagitial MPRAGE. 5) SWI axial.

3) T2 FLAIR sagittal. 6) T2 FLAIR axial. 7) T2 TSE axial.

Source



https://affordablemri.com/radiology-reports/
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Overview of Attentive Memory Module
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Outer Product Attention

.
KU

A% (@K V) =3 F@@Ok)®n,

=1

%

d, xd_ d . d . .
Where ;il@E R ™ 5q, ki eR", veER', & 1s outer product, () 1is

element-wise multiplication and F 1s chosen as the tanh function.
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Given memory input M:

M, = LN(W,M)
My = LN(W, M)
M, = LN(W,M)

T SAM(M)[I) = A% (M[l), My, M)

Where wow, W, Is weight parameter, LN is Layer Normlization
Source: Hung el al (2020)

Extract items
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Associative Memory Module

S
|

fF)®F (x)
Construct item | |
memory M =M _ +4X

M o= FM x)OM  +IM x)OX
t 1 L t—1 L F_q L L

’ where f1 and f2 are fully connected neural networks

I and F _are input and forget gate

and current input data X .
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Associative Memory Module

Construct relation memory

v = SD}CT.'}'H{IIUE(;E jT)MT lfz(;rj
| @ t t t— t

L

- T T L T
() MF | M= ML eSO+ B 1,6)

where o and a, are scaling hyper-parameters

where fg 1s a fully connected neural network
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Associative Memory Module

Transfer

ol r
M =M +aG °~V M
t t 3 1 f t

where V _ 1s a function use to the input tensor be flattens the first two dimensions.

f
(n, xd)x d

. . dx d
G  1sa Multilayer perceptron neural network that maps R ™ — R

a, 1s a combining hyper-parameter

—_—
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| Transfer
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-
0 = G2 ﬂViﬂGEﬂVgﬂMt

t
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where V.z 1s a function that the mput tensor flattens the last two dimensions

G, and G , are Fully Connected neural networks
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Figure: Self-Attention (left) and Cross-Attention (Right).
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Encoder-Decoder attention
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Figure: Encoder-Decoder attention.
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Prototype Learning Block

Prototype Learning Block x N
T IIIHHH _D’ Hopfield Layer
Add, Norm and scale

Self-Attention Layer
E Add, Norm and scale

|

Figure: Detail of Prototype Leaning Block.
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Prototype Learning Block

Formula of Hopfield layer with R is input

Z = sa:rftmax( p R Wgamm ) Wstore
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Answer components

Fully Connected layer for classification

Image source: https://builtin.com/machine-learning/



TRUONG DAI HOC FPT

Methodology

Loss function

Focal Loss:

() = — (1 —p)log(p)

Fﬂmi

Image source: Lin el al (2017)



EXPERIMENTAL RESULT



Table 3. Comparisons our method with the state-of-the-art methods on the VQA-RAD test
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set
Methods Closed Open Overall
BAN-VQAMIx [*] 74.0 53.8 65.9
CMSA-MTPT [*] 77.3 56.1 68.8
MMQ-BAN [*] 75.8 53.7 67.0
FITS [¥*] 82.0 68.2 76.5
hi-VQA - - 76.3
Q2ATransformer 81.2 79.19 80.48
Ours 81.98 79.39 80.93
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Model Accuracy (%) Average training
time (s/epoch)
w/o AMM 62.4 61
n =1 68.8 635
4
n = 6 75.2 96
n = 12 79.7 119

Comparison of models with different
hyper parameters of AMM

\ —— Model with out Associative Memory Module
3.5 1 ‘\ —  Model with number of slot 1
—— Model with number of slot 6
3.0 1 —— Model with number of slot 12
2.5 1
@ 2.0 -
9
1.5 1
1.0 4
0.5 1
0.0 1
0 20 40 60 80 100
Epochs

Training process of model with/without
AMM hyper-parameter modidication
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Figure 4.4: GPU consumption of model on VQA-RAD. The usage 1s calculated on the
entire model process with batch size 16 and similar to the above hyper-parameter.
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No of prototype/block 5 10 15
500 30.1 | 80.4/7 | 79.90
1000 30.24 | 80.93 | 80.24
1500 30.18 | 80.51 | 80.04

The model accuracy (%) of each set number prototype
and number of block prototype learning.
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e An architecture in medical VQA based on Associative Memory and
Prototype Learning.

e The result is not significantly improved.



FUTURE WORK
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e Experiment on other datasets with similar limitations and improve the
model.

e Experiment on some data augmentation techniques to enrich the
datasets.
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Visualization

QUEEtiDHI Whalt i1s the localion Whera i< tha colon most

- - |5 the diaphragm flat
of the mass? _ _ which organ system is _ :
prominent from this view? abnormal in this image? on either side?
ANSWEr:  Head ofthe pancreas | eft cardiovascular No
uestion : :
C.! Positional Location Maodality Yes,/No
Category:
Q2A- L
. undg
Tranformer Right
Our
Right lung

Model:



