

Capstone Project Extraction Information from Vietnamese ID Card Images

Members

Đỗ Công Duy (Leader) HE150348

Vũ Đoan Quang HE153583

Vũ Hoàng Tài Toàn HE150224

INTRODUCTION

Table of content

- 1.Introduction
- 2. Approaches to the problem
- 3. Proposal method
- 4. Data preparation
- 5.Results
- 6.Demo Code

Approaches to the problem

Approaches to the problem 1. Detect 4 corners of ID card

Approaches to the problem 1.Detect 4 corners of ID card

Approaches to the problem

2. Image processing techniques

To crop the ID card as a rectangle

Approaches to the problem 2. Image processing techniques

	CÔNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc SOCIALIST REPUBLIC OF VIET NAM Independence - Freedom - Happiness
	CAN CƯỚC CONG DA
Charles and the second second second	Citizen Identity Card
	Số / No.:
	Họ và tên / Full name:
	Ngày sinh / Date of birth:
	Giới tính / Sex: Nữ Quốc tịch / Nat
	Quê quán / Place of origin:
Có giá trị đến: 12/11/2026 Date of expiry	Noi thường trú / Place of residence:

Approaches to the problem

3. Our proposed method

PROPOSAL METHOD

ID CARD ALIGNMENT

ID card alignment

Segmentation model
Alignment algorithm
Classification model

Segmentation model

Semantic Segmentation Instance Segmentation

=> Instance segmentation model

Segmentation model

Input

Expected output

YOLACT model architecture

Propotype net

- Prototype net is 1 Full-Conv
- Return K prototype mask
- One point to note is that larger K does not mean better output quality

Prediction head

Object detector:

- Predict C class confidences
- Predict bounding 4 offset

Yolact adds a third branch to predict K mask coeficients

• Example with K = 4 : get Prototype Mask as image below and [1, 1, 1, -1] and

• Example with K = 4 : get Prototype Mask as image [-1, 1, -1, 1].

Input

Expected output

Image size 1026x640

• Contour and Convex hull

• Remove points on line with this $\cos \theta = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|}$

CÔNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc SOCIALIST REPUBLIC OF VIET NAM Independence - Freedom - Happiness

CĂN CƯỚC CÔNG DÂN

Citizen Identity Card

só/ No.: 036171002843

Họ và tên / Full name:

Ngày sinh / Date of birth: 09/03/1971

Giới tinh / Sex: Nữ Quốc tịch / Nationality: Việt Nam

Quê quản / Place of origin: Nam Thắng, Nam Trực, Nam Định Nơi thường trú / Place of residence: 12 Ngõ 7

2031 Cầu Đơ 4, Hà Cầu, Hà Đông, Hà Nội

getPerspectiveTransform

Image size 1026x640

Classification model

• Transfer learning ResNet50 for classify in 2 cases

Input

class_15

Expected output

YOLOv7's Model Backbone

Backbone

YOLOv7's Model Compound Model Scaling

Scaling up depth: Increase the number of convolutional layers in each stage Ex: Computational block $2x2 \longrightarrow$ scaling up depth \longrightarrow Computational block 2x2

Scaling Up With Cross Stage Merge: Add cross stage merge layers between stages Ex: scaling up depth \longrightarrow Add cross stage merge layers between computational block \longrightarrow cross stage merge combines feature maps from two computational block

YOLOv7's Model Implicit Knowledge

Feature	Implicit Knowledge	E۶
Source of knowledge	Training process	La
Representation	Vector, neural network, combination	Fe
Incorporation methods	Addition, multiplication	N
Benefits	Learns complex relationships, improves performance	Er lo

TEXT RECOGNITION

Input

Expected Output

Sô´/ No.: 036171002843 Họ và tên / Full name: PHẠM THỊ PHƯƠNG Ngày sinh / Date of birth: 09/03/1971 Giới tính / Sex: Nữ Quôć tịch / Nationality: Việt Nam Quê quán / Place of origin: Nam Thăńg, Nam Trực, Nam Định Nơi thường trú / Place of residence: 12 Ngõ 7, Câù Đơ 4, Hà Câù, Hà Đông, Hà Nội Có giá trị đêń / Date of expiry: 09/03/2031

VietOCR

VietOCR

DATA

ID Cards Dataset: 644 images, Photos are collected from relatives and social media

Synthetic Images: Half of dataset were rotated ID cards for classification model.

Synthetic Text Images: 500 alignment images for text area detection.

Synthetic Cropped Images: 8000 images, 16 classes for OCR transfer learning.

RESULTS

Results

- YOLACT for instance segmentation
- mAP@[0.5:0.05:0.95]

Saving state, iter: 11000 [171] 11000 || B: 0.028 | C: 0.005 | M: 0.087 | S: 0.009 | T: 0.129 || ETA: 11 days, 20:20:14 || timer: 1.971 all .55 .60 .65 .70 .50 .75 97.21 box 100.0 100.0 100.0 100.0 100.0 100.0 99.58 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 mask ----+ ------

.80	.85	.90	.95	
+	++	++	+	÷
100.0	98.77	96.62	76.75	
100.0	100.0	100.0	95.81	
				÷

Results• Yolov7 for text detection

Class	Р	R	mAP@.5
All	98.5%	96.80%	96.10%
No_Title	100%	99.20%	99.60%
No	99.60%	100%	99.60%
Name_Title	94.30%	92.60%	90.50%
Name	96%	90.90%	88.60%
Date_Title	97.70%	96.20%	94.70%
Date	99.90%	100%	99.60%
Sex_Title	99.90%	100%	99.50%
Sex	99.90%	100%	99.60%
Nation_Title	99.50%	98.10%	98.50%
Nation	100%	98.10%	98.80%
Origin_Title	95.70%	96.20%	93.80%
Origin	95.80%	89.30%	88.30%
Residence_Title	97.70%	92.70%	91.60%
Residence	98.60%	96.20%	96.50%
Expiry_Title	99.70%	100%	99.50%
Expiry	100%	100%	99.60%

mAP@.5:.95
74%
67.30%
81.70%
70.70%
75.30%
74.90%
77%
75.30%
76.80%
75.50%
75.80%
73.20%
68.50%
62.90%
76.10%
78.10%
75.40%

ResultsTransfer learning VietOCR for text recognition

Class	Pre-Train Model	Transfer Learning Model
All	64.23%	98.19%
ID_Title	73.82%	100%
ID	59.45%	97.65%
Name_Title	75.55%	100%
Name	49.83%	95.71%
DOB_Title	76%	100%
Date of birth	57.47%	96.12%
Sex_Title	74.66%	100%
Sex	57.44%	99.29%
Nation_Title	76.39%	100%
Nation	71.85%	100%
Origin_Title	70.06%	100%
Origin	50.24%	89.56%
Residence_Title	71.68%	100%
Residence	49.33%	94.07%
Expiry_Title	72.04%	100%
Expiry	53.17%	98.73%

Results

Transfer learning ResNet50 for classification model

Product Demo

THANK YOU

