Clothes Design utilizing Generative Al
Final Year Project Final Report

Nguyen Quang Phuoc

Nguyen Ngoc Minh

Instructor Luong Trung Kien

! STARS ." E;ﬂ Fpt University

RATED FOR EXCELLENCE

2012

TRUONG DAI HOC FPT

Bachelor of Artificial Intelligence

Hoa Lac campus - FPT University

2023

Acknowledgment

We would like to thank Mr. Hanh, our advisor, and future Doctor Luong Trung Kien
for providing us with computer hardwares and researching places. Their unwavering
support and trust in our project have been invaluable. Additionally, we acknowledge
Mr. Luong Trung Kien from FPT University for his continuous guidance and support
throughout our final year project. His valuable feedback has helped improve our
research quality. We also thank FPT University for giving us a good learning
environment to study and develop well. Finally, we appreciate the support of our
friends and families who encouraged us during the project journey. Their motivation

helped us overcome challenges and complete this research work.

Abstract

The dynamic domain of text-to-image generation has witnessed remarkable
advancements in recent years, particularly in applications like fashion design and
artistic creation, where Al algorithms have demonstrated their capabilities. In
addressing the intrinsic challenge of acquiring well-labeled datasets for training, we
embraced a framework outlined in [7]. This framework hinges on the collaboration of
two pivotal models: the Prior Model and the Decoder. Through careful curation of
publicly available datasets, we meticulously prepared datasets for both pre-training
and fine-tuning phases, with a deliberate choice of the MS-COCO dataset owing to its
suitability and content integrity. Our efforts lay in the development of a
comprehensive pipeline for text-to-image generation, complemented by a demo for
deploying a model API. This demonstrated the potential of our approach in
establishing a user-friendly service for designing Print On Demand images. The
efforts not only showcase the current state-of-the-art in Al-driven image generation
but also position our framework as a practical and accessible solution for users

seeking personalized and creative image design experiences.

Keywords: Text-to-image, Shifted Diffusion, Clothes design, Print On Demand,
Shirts

Table of Contents

Acknowledgment.............ooo i e nna 2
N o 53 1 - T 3
1. INTRODUCTION.......cceeeeeeeeeeeennnnnnnnnnnnnnn s s s s s s s s s s s e s s e s e e e 6
1.1 Problem. ... 6
1.2 Dat@set... e 7
LIRC IO o) =Tex 1) T 10
LR IS Yoo o1 U RERPPRRPR 10
2. RELATED WORK........ccoiiiiiiiinnnssnssnnnns 1"
3. LITERATURE REVIEW OF METHODOLOGY........ccccoeirmmnnnninnnnnnnnnnssssssnenns 14
3.1 Prior Model (Shifted Diffusion)...........ccoooeiiiiiiiiiiie e 14
3.2 Decoder Model (Stable Diffusion 2)............cceeiiiiiiiiiiiiiiiiiiiiiiiiiieens 15
4. IMPLEMENT ..ot ee s s s s s s s s s s s s s s ss nsssssssssssssssssnsnnnen 16
4.1 Implementation............coooo i 16
4.2 Text-to-image generation pipeline..........ccoooeviiiiiiiiiii e, 18
4.3 Languages and lIbrari€s.........ccoouv i 20
5. EXPERIMENTAL RESULTS. ... s s s s s s s s 20
5.1 ENVIFONMENT......oeiiii e e 20
9.2 RESUN .. 20
6. CONCLUSION....... .o s s s s s s s s s s s s s s s s assnnnns 26
RefEreNCEeS....... et r s r s r e e e e e n e 27

List of Tables

Table 1: Language-free text-to-image performance comparison...................... 9
Table 2: Review dataset for Text-to-Image task............ccccoiiiiiiinnnnn. 10
Table 3: Hyperparameters on training the Prior Model.............c.....iiiel 16
Table 4: FID results of our model on MS-COCO..........ccooviiiiiiiiiiiiieeeeeen. 19

Table 5: FID results comparison on MS-COCO calculated on 1000 samples 20

List of Figures

Figure 1: Example of MS-COCO image-text pairs.........ccccceeeeeeiiiiieiiiicieeeee, 10
Figure 2: Example of Amazon Clothes Design images..........cccoeveveeeieeeeeeeenn. 11
Figure 3: Text-to-image generation proCess............cooovvviiiiiiiiiiiiiiiiieeeeeeeeeeeee, 16
Figure 4: Sleeve and Pocket POD size image generation..........ccccccceeveven.n.e. 21
Figure 5: Full Shirt Design POD size image generation....................cccceeeen. 21
Figure 6: Full Shirt Design POD size new image generation process............ 23
Figure 7: Printed Shirt demMO..........ooiiiiiiiii e 24
Figure 8: Comparing our model’s out image (on the left) versus the sample

images generated by Midjourney (on the right)...........cccoooieiiiiiiiiii e 24
Figure 9: Model’s output after changing the prompt..............cciiiiiiiiiiiinnnnne. 25

1. INTRODUCTION

1.1 Problem and related work

Text-to-image generation is increasingly achieving good results and has been
widely applied in recent years as research results and products in this field are
becoming more and more popular and bring surprising results. In 2017, Amazon
claimed that they “may be poised to lead the way when it comes to replacing stylists
and designers with ever-so-chic Al algorithms” [1]. DeepVogue, a fashion design Al
created by DeepBlue Technology, won the runner-up prize, and “People’s Choice
Award” at China International Fashion Design Innovation Competition 2019 [2]. Al is
demonstrating its strong ability in creating art and becoming an effective tool in
helping people, even with poor designing backgrounds, create their own artworks. The
emergence of image generative models such as GANs [3] (e.g. CGAN [4], AttnGAN
[5]), then diffusion models (e.g. DDPMs [6]) has achieved the ability to generate
high-quality images that can comply according to the user's text conditions, but also
very diverse.

We, together with advisor Luong Trung Kien and his university friend To
Nguyen Hanh, had an idea about applying the image generation model to the
application of designing Print On Demand (POD) drawings for clothes, especially
when printed shirts have been one of the most attractive products for young people
today. A system for designing POD drawings, like the Al models Midjourney and
DALL-E, is a text-to-image generation problem.

For this project, manually labeling image-caption pairs is a very
time-consuming task for a small team. Therefore we decided to approach this problem
using the method mentioned in the article Shifted Diffusion for Text-to-image
Generation with Language-free Text-to-image Generation setting [7]. The result
demonstrated in the paper had shown that the paper's method has achieved better
results compared to other pioneering text-to-image generation models.

This innovative approach leverages advanced image generation techniques to
create tailor-made visuals for a diverse array of shirts, catering to the unique
preferences of consumers. By adopting diffusion models, which excel in capturing
intricate details and nuanced styles, this methodology seeks to revolutionize the POD
industry by offering high-quality, customizable designs. In this context, we explore the
integration of diffusion models, the challenges encountered, and the solutions devised
to enhance the stability and quality of image outputs. Through this exploration, we aim
to present a compelling narrative on the potential and advancements in utilizing
diffusion models for the dynamic and ever-evolving landscape of POD shirt image
generation.

Evaluating the quality and performance of text-to-image generation models is
crucial in improving the text-to-image generation task results, common metrics and
datasets play a vital role in this evaluation process. Metrics such as Inception score
(IS) [8] and Frechet Inception Distance (FID) [9] are widely used metrics that assess

the quality and diversity of generated images. IS measures the diversity and
confidence of class predictions within generated images, while FID quantifies the
similarity between generated and real images in feature space or the distance between
their feature vectors. In the case of IS, higher values are preferable, whereas for FID,
lower values are preferred. R-precision [5], on the other hand, evaluates the alignment
of generated images with textual descriptions by measuring how many real images are
ranked higher than the generated ones based on their relevance to the text. For
benchmarking, datasets like CUB (Caltech-UCSD Birds-200-2011) [10] and COCO
(Microsoft Common Objects in Context) [11] provide rich resources, with CUB
specializing in bird images and COCO offering a diverse range of everyday scenes and
objects. These metrics and datasets collectively empower researchers to assess
text-to-image generation models in terms of image quality, diversity, and textual
alignment, facilitating advancements in this exciting and challenging domain.

After the publication of the Generative Adversarial Network (GAN) paper [3],
GAN demonstrated superior image generation capabilities compared to previous
methods, leading to a series of ongoing efforts to enhance their performance. GAN is a
type of deep learning model consisting of two neural networks, a generator, and a
discriminator, that are trained simultaneously through adversarial training. The
generator aims to create data, such as images, that is indistinguishable from real data,
while the discriminator's role is to differentiate between real and generated data. This
competitive process helps the generator improve its ability to generate increasingly
realistic and high-quality data, making GANs a powerful tool for tasks like image
generation, style transfer, and data augmentation. There are multiple of GAN's
variations, including the development of Conditional Generative Adversarial
Networks (cGAN) [10], which allow users to impose specific conditions on generated
images, laying the foundation for text-to-image models using GANs. On the other
hand, Attentional Generative Adversarial Networks (AttnGAN) [6], building upon the
progress in text-to-image generation, improved image generation accuracy by
incorporating an attention mechanism to focus on word-level features. In 2018, the
year of its publication, AttnGAN surpassed other GAN models, achieving new
state-of-the-art results on both CUB and COCO datasets in terms of Inception Score
(IS). Particularly noteworthy was its remarkable 170.25% increase in IS performance
on the COCO dataset.

In 2020, when the paper Denoising Diffusion Probabilistic Models [6] by Ho
et al was published, diffusion modeling gained attention and has since grown rapidly.
Diffusion models represent a noteworthy advancement in the realm of generative
modeling. Their approach, which involves iteratively refining data by adding noise,
offers a fresh perspective on generating high-quality samples. This technique stands
out due to its training stability, overcoming challenges often associated with traditional
Generative Adversarial Networks (GANs), such as mode collapse. A study by OpenAl
in 2021 [12] showed that Diffusion Models outperformed state-of-the-art GANS at
that time like BigGAN-deep and StyleGAN2 on LSUN [13] and ImageNet [14]
datasets in terms of FID with similar computing costs, and could generate images with
a higher level of diversity. OpenAl's DALL-E 2 [15] and Google's Imagen [16] - two
of the most large-scale text-conditional image generation models - have leveraged

diffusion models and can be generalized with the validation set of MS-COCO,
respectively achieving state-of-the-art Zero-shot FID results and even surpassing many
GAN-based models trained directly on the MS-COCO set. Research by 2 papers has
shown that helping the diffusion model grasp the semantics of input conditional text
by taking advantage of the ability to link the relationship between images and text
using the latent space of the pre-trained CLIP model [17] (DALL-E 2) and the ability
to effectively encode text of large language models like T5 [18] (Imagen), diffusion
models can work effectively on text-to-image generation tasks by generating high
quality and diverse images but still close to the given conditions.

However, having a training dataset for text-to-image generation tasks is not
always an easy task, labeling image-text pair data in large quantities requires a lot of
manpower and resources. Therefore, there have been studies on training models using
datasets with few or only images. CLIP model is trained on a large set of image-text
pairs, its ability to perform zero-shot text snippet prediction given an image has been
utilized as the basis for recent Language-Free Training Text-to-Image Generation
research. CLIP-GEN [19] embeds training images with CLIP to get their textual
semantics and uses the embedded image as a conditional input alternative to
descriptive text in methods that use paired text-image data. Combined with VQGAN
that had been trained in the pre-training stage, the method aims to optimize
Conditional Autoregressive Transformer, specifically in this case GPT2 architecture
was used, to restore the low-level image information that the CLIP model failed to
extract. The findings indicate that due to its extensive training on a vast image dataset,
the model can produce high-quality images and attain commendable Inception Score
(IS) and Frechet Inception Distance (FID) scores on the MS-COCO dataset though it
still falls short of outperforming certain GAN-based models like AttnGAN in terms of
IS. Despite being trained without textual information, the model demonstrated an
understanding of the semantic concepts found in the validation set sentence
descriptions. However, there were instances of failure, particularly in comprehending
numeric concepts, such as the count of objects in the picture. Much like CLIP-GEN,
the approach presented in LAFITE's method [20] utilizes CLIP's multimodal feature
space for generating pseudo text features that approximate the actual text feature. The
authors used StyleGAN2 [21], a state-of-the-art model in the field of GANs for image
generation, as the generator and reformed it from unconditional to conditional
generative model. The proposed method has been shown to be effective through
extensive experiments. It achieved state-of-the-art results in standard text-to-image
generation tasks, outperformed most existing models trained with full image-text pairs
at the time the paper was published, and achieved better results in terms of IS and FID
on MS-COCO dataset in language-free settings compared to the CLIP-GEN model.
The latest version of LAFITE, Lafite2 [22], has improved the results on both
MS-COCO and CUB datasets by introducing a new method of generating pseudo text
features using a two-step process of retrieval and optimization. The relevant pseudo
text features are first identified given an image, then these features are then optimized
for better alignment. This method for creating synthetic text features can be combined
with text-to-image models such as conditional StyleGAN2, similar to their previous
LAFITE paper, or LDM model, and has become one of the pioneering methods for

language-free text-to-image generation. The final method we researched and selected
to approach the problem is presented in the article [7]. Although the method
mentioned in the article does not focus on improving text feature extraction from
training images like previous studies, this method achieved the best overall results on
the MS-COCO and CUB datasets compared to the three methods mentioned
previously and the results are currently state-of-the-art for the language-free
text-to-image generation task (Table 1).

Methods IS 1 FID |
CLIP-GEN [19] 21.40 20.70
Lafite [20] 27.20 18.04
Lafite-2 [22] 31.16 10.26
Corgi [7] 34.14 10.33

Table 1: Language-free text-to-image performance comparison

1.2 Dataset

1.2.1 Data overview

To train and fine-tune the models, we meticulously curate two distinct
datasets. One comprises image-caption pairs, the other consists of images alone. We
will use common and publicly available datasets for the text-to-image generation task
for the image-caption pairs dataset. As for the image-only dataset, we will crawl POD
images to help guide the model to generate images with this style. During the training
process, the training image will be transformed using the CLIP’s preprocess to align
with text embedding. The transforming process consists of Resize the image to
224x224 pixels using BICUBIC interpolation, CenterCrop, Normalize and then
convert the images to tensors.

1.2.2 Image-caption pairs data

For the first dataset, we have considered using several datasets that are
publicly available to the community and also commonly used (Table 1). “k” represents
the unit of “thousand”, and “M” represents the unit of “million”.

Dataset Size Category #train/val/test Total
(pixels)

MS-COCO [11] 640x480 Humans and objects 118k/5k/0k 123k

CUB-200-2011[10] 500x500 Birds 6k/0/6k 12k

CC3M [23] >400x400 All that pass the filters 3.3M/16k/13k 3.3M

LAION 400M [24] 256x256 All except NSFW 413M

Table 2: Review dataset for Text-to-Image task

After carefully considering the hardware conditions of the computer, we
decided to choose the MS-COCO dataset. This dataset has image categories suitable
for our training purposes, and also reduces exposure to NSFW content compared to
two datasets CC3M and LAION 400M collected in large quantities from the web.

man with a red helmet on a small moped on a dirt road.

Figure 1: Example of MS-COCO image-text pairs

A woman wearing a net on her head cutting a cake. A child holding a flowered umbrella and petting a yak.

We use the train split of the MS-COCO 2017 as data for pre-training the Prior
Model. The average image resolution of the dataset is 640x480 pixels. The dataset
provides 118 thousands images with 5 different captions for each image to train an

Image Captioning model, our purpose was to train a Text-to-Image one so we only

need 1 caption for 1 image respectively.

We begin by downloading the dataset and initiating the preprocessing phase.
Subsequently, we partition the processed text into six smaller segments. Each segment
1s associated with a metadata.jsonl file adhering to the format: {file name, text}. This
format effectively maps each image to its corresponding caption, aligning with the

'imagefolder' format used in HuggingFace datasets.

10

1.2.3 Image-only Data

The image-only dataset sourced from Amazon comprises meticulously captured
representations of designed shirts, skillfully clipped to isolate the garment's visual
features. The dataset exhibits a diversity of image formats, predominantly consisting
of PNG, JPG, and PSD file types. Notably, the images showcase a variance in
dimensions, with an average width ranging from 2800 to 6500 pixels and an average
length spanning from 3000 to 7000 pixels. This dataset's composition reflects a
comprehensive collection of visual assets, encapsulating the intricate details and
design nuances of shirts, thereby providing a robust foundation for endeavors in
computer vision and image processing.

——~

=

(il

Figure 2: Example of Amazon Clothes Design images

Despite assistance from Mr. Hanh, we encountered challenges in crawling a
substantial amount of data. The Amazon.com website detected an abnormal number of
GET requests, leading to the collection of only approximately 200 images. We
attempted to utilize these images as a dataset for fine-tuning our Decoder. To prevent
overfitting and preserve the model's pretrained knowledge [25], we employed a small
number of training steps and a low learning rate. Unfortunately, this approach yielded
negligible effects, as the fine-tuning process had minimal impact on the overall
performance of the model. Therefore we will use the public Decoder checkpoint of the
authors to do the evaluation.

11

1.3 Objective

Our goal for this project will be to evaluate the framework mentioned in [7]’s
ability to generate images. We will evaluate whether the model is suitable for POD
image generation, and from there will find a way to apply it to create products.

1.4 Scope

In this project, we will fine-tune the model and possibly retrain it if necessary.
This practice helps us better understand how hyperparameters affect the model's
training process and helps us develop the ability to optimize hardware within our
budget capabilities.

Along with that, instead of just applying what is already available on GitHub,
we will refine and design a text-to-image pipeline that meets both Mr. Hanh’s POD
images generation requirements and the hardware constraints of 12GB VRAM GPU
and 32GB RAM that Mr. Hanh provided at the office.

Then, to demonstrate the high applicability of this pipeline, we will deploy the
model's API and combine it with a User Interface (UI) to demo a shirt design website
that we plan to develop in the future.

2. LITERATURE REVIEW OF METHODOLOGY

Utilizing the framework outlined in [7, Fig. 2c], the architecture will comprise
two primary models: the Prior Model (Shifted Diffusion Model) responsible for
producing image embeddings based on the text captions provided by users, and the
Decoder (Stable Diffusion 2) which use the image embeddings to generate output
images for the user.

2.1 Prior Model (Shifted Diffusion)

Prior Model is a decoder-only Transformer used to predict CLIP image
embedding corresponding to the user's text input. As mentioned in [7], the model
involved utilizing a sequence of multiple inputs, including encoded text, CLIP text
embedding, an embedding representing the diffusion timestep, an embedding
representing the index of corresponding Gaussian, and a noised image embedding.
Instead of predicting the noise, the model is trained to predict the unnoised image
embedding directly

12

The reason this model is called Shifted Diffusion is because of comparison
with the sampling process mentioned in DALL-E 2 [15] which the authors call
"vanilla sampling process", the authors present a sampling process that is said to better
approximate CLIP image embeddings. As illustrated in [7, Fig. 3], the goal of Shifted
Diffusion is to shift the starting point of the sampling process into the effective output
space of the CLIP image encoder. The diffusion process normally uses a standard
Gaussian noise distribution N(0, I), the starting point of the sampling process will be
random noise, which may cause it to be at a far location from the target embedding.
Therefore, the author changed the starting point of the sampling process by changing
the noise distribution from standard Gaussian to N(u,), with p and Z being the mean
and standard deviation of the ground-truth images in the training set respectively.
Hence, the altered diffusion process will convert a ground-truth image embedding into
a random image embedding rather than a random Gaussian noise. This modification
assists in bringing the initial point of the image-denoising process closer to the target
embeddings, consequently able to reduce the number of steps of the sampling process
to approximate the target embeddings. The forward diffusion process moves from:

Q(Zt | Zt—l) ::N(Zt; \/1 - Bt Z,,, BtI)

to:

q(z, |z, ;) =Nz;\1 — Bt z,,+s,B.X)

where z, is image embedding at timestep t for =T, ..., 1, B is the variance of Gaussian
noise that controls the step sizes, and ¢(-|-) is the forward diffusion process. A new
term s, is added at every timestep t indicates the shift term, and is chosen to be equal to

(1 =—+/1 — PB)u. The reason for this choice is so that q(z; | zy) can approximate the
distribution of the image embeddings N(z;p,X). Mathematical proofs have been
mentioned in the article [7].

2.2 Decoder Model (Stable Diffusion 2)

The methodology behind Stable Diffusion, a groundbreaking generative Al
model for photorealistic image synthesis, involves a unique approach to image
generation, differentiating it from conventional models. Launched in 2022, Stable
Diffusion operates as a diffusion model, employing Gaussian noise to encode an
image and subsequently using a noise predictor and reverse diffusion process to
recreate the original image. Notably, it deviates from traditional pixel space utilization,

13

opting for a reduced-definition latent space to significantly reduce processing
requirements while maintaining image quality.

Key architectural components include a variational autoencoder for
compression and decompression, forward diffusion to add noise, reverse diffusion to
undo the noise, a noise predictor (U-Net), and text conditioning. The variational
autoencoder compresses images into a smaller, more manageable latent space, and
forward diffusion progressively adds noise. Reverse diffusion undoes this process,
enabling the generation of diverse and unique images.

The noise predictor, employing a U-Net model, is crucial for denoising images
by estimating and subtracting noise from the latent space. Text conditioning, a
common form of conditioning, involves using CLIP tokenizer and a text transformer
to embed textual prompts into the model. This conditioning, combined with a random
seed, allows for the generation of distinct images within the latent space.

3. IMPLEMENT

3.1 Implementation
- Data processing:

The MS COCO 2017 train split dataset undergoes a systematic treatment to
facilitate effective utilization in training the Prior Model. The processed text is
meticulously partitioned into six smaller segments, and for each segment,
metadata.jsonl files are created, adhering to a standardized format denoted as
{file_ name, text}. This segmentation process ensures a structured organization of
textual data, aligning with the 'imagefolder' format commonly employed in
HuggingFace datasets. Simultaneously, for the Amazon clothes design dataset, a
distinct preprocessing approach is adopted. Leveraging CLIP's preprocess
functionality, the images are transformed systematically. This transformation involves
a sequence of operations, starting with resizing the images to a uniform dimension of
224x224 pixels using BICUBIC interpolation for optimal quality. Subsequent steps
include applying a CenterCrop operation, normalizing the images to ensure consistent
features, and ultimately converting the processed images into tensors. This rigorous
preprocessing methodology ensures that both datasets are suitably formatted and
prepared for subsequent stages of model training and evaluation.

- Model Training:

14

The Decoder checkpoints represent Stable Diffusion 2, fine-tuned for 10,000
to 30,000 steps on various datasets including MS-COCO [11], Localized Narratives
[26], CelebA-HQ [27], and CUB [10]. The Prior Model checkpoints encompass both a
small model with 16 decoder layers and a large model with 20 layers; however, the
specific number of training steps for each model is unspecified.

To optimize cost while achieving effective results, we opt to continue the
fine-tuning process using these checkpoints. This approach allows us to leverage the
prior knowledge encoded in the checkpoints and further enhance the model's
performance.

In selecting the Decoder checkpoint, we chose the one trained on the
MS-COCO dataset as the broader range of images in MS-COCO is deemed more
effective for the scope of clothing design. The checkpoint trained on Localized
Narratives dataset is also trained on the MS-COCO split of the dataset, and since the
Decoder is only trained on image, both of the MS-COCO dataset checkpoint and
Localized Narratives dataset checkpoint are trained on the same image set.

Conversely, the Prior Model checkpoints are not directly applicable since they
were trained with the text embeddings of T5-11B [18], the 11 billion parameters
checkpoint of the T5 model developed by the Google Research Team. Due to our
system limitations, we are unable to meet the requirements for the T5-11B model.
Consequently, we find it necessary to retrain the Prior Model from the ground up,
utilizing the Flan-T5-Large [28] model — the largest TS model within our capacity. The
Flan-T5-Large model has the approximately same number of parameters with the
T5-Large (780M parameters to 770 parameters) while performing better than all older
T5 versions, even outperforming the 11 billion TS5 checkpoint [28, Tab. 5].

Following dataset preparation, the model is trained using a single Q RTX 8000
GPU rented from the Vast.ai' server, equipped with 45 GB VRAM. The training
process is conducted on 118,286 examples from the MS-COCO 2017 train split. Given
the lack of detailed hyperparameter information in the referenced paper [7] and
constraints on hardware resources, we make adjustments to select hyperparameters
such as "train batch size," "

nn

num_train_epochs," "gradient accumulation steps," and
"t5 model" to optimize resource utilization. Other hyperparameters adhere to the
default values provided by the authors.

To expedite model convergence and reduce computational costs during the
inference phase, we halve the number of layers compared to the original model. Our
final important hyperparameters are shown in Table 3. The training process concludes
after 14.25 hours, encompassing 9250 optimization steps.

! https://vast.ai

15

Parameter Value

train_batch size 128
num_train_epochs 10
gradient_accumulation_steps 1
t5 model google/flan-t5-large
model layers 8

Table 3: Hyperparameters on training the Prior Model

3.2 Text-to-image generation pipeline

Create Text Embeddings

CLIP tokenize onca
| o] =

User Input

"a yellow and blue train riding a track by some trees'

TS5 embedding

Optional
parameters

Decoder |._ Image 1 oimsen | prior Model
embedding P

Generate Image

Figure 3: Text-to-image generation process

Figure 3 illustrates the process of our text-to-image generation, employing a
pipeline akin to the StableDiffusionPipeline in the diffusers [29] library. Our approach
begins by receiving a text input prompt from users. In addition to the input prompt,
users can adjust several optional parameters to tailor the generated images to their
preferences. These parameters include "guidance scale," "num inference steps,"

"height," "width," and "negative prompts."

The "height" and "width" parameters determine the size of the output image,
compulsory to be divisible by 8, the default values for "height" and "width" are 512
and 512, and we also recommend using these values for optimal and stable results.
"guidance scale" enhances the connection between the input prompt and the output
image, albeit with a trade-off in image quality. Increasing the "num_inference steps"
generally improves the quality of the output image, albeit at the cost of slower image
generation speed. The '"negative prompts," a widely adopted feature in image
generation prompts, assists in guiding what should be excluded from the image
generation process, thereby enhancing image accuracy. For more detailed information,
please refer to the diffusers GitHub repository.

Upon obtaining the user's input prompt, we create both the CLIP text
embeddings and the TS5 embeddings for the prompt. The code provided in paper [7] by
the authors employs a method called MultiCLIP, utilizing three CLIP models for
encoding text and images. To generate MultiCLIP embeddings, the input prompt is
first tokenized and subsequently processed through three CLIP models: ViT-B/32,
ViT-B/16, and RN101. All three CLIP models share a common base configuration,
featuring a 12-layer 512-wide model with 8 attention heads for the Text Transformer.
They also share identical image resolution (214) and embedding dimension (512). The
outputs from these three models are concatenated to form the final MultiCLIP
embeddings. Regarding T5 embeddings, the input prompt undergoes tokenization
using TS5's AutoTokenizer and is subsequently encoded by the T5EncoderModel.
These embeddings are then input into the diffusion process of the Prior Model to
derive the image embedding. The resulting image embedding is utilized in generating
an image through a Stable Diffusion 2 Decoder, which has been trained to produce
images based on their embeddings. Finally, the images will be used as the
Real-ESRGAN [34] model’s input to go through the upscale process to make the
photo resolution larger, thereby being able to be applied to many purposes, especially
POD. The specific reasons for applying the Real-ESRGAN model will be presented in
more detail in section 5.2.

Additionally, other parameters and the embedding for the negative prompt are
integrated into the pipeline. This comprehensive set of inputs helps tailor the image
generation process to meet the specific demands of the users.

17

Upon finalizing our pipeline, the next step involves deploying the model API
for practical use by users. We employ the FastAPI [30] framework in Python and
utilize the pyngrok [31] library to establish an ngrok tunnel, facilitating the
deployment of the model for demonstration purposes.

3.3 Languages and libraries

The implementation described above primarily utilizes the Python
programming language along with several libraries and frameworks that have been
mentioned where they were first presented.

4. EXPERIMENTAL RESULTS

4.1 Environment

The training of both the Stable Diffusion and Shifted Diffusion models
necessitates a minimum of 24GB VRAM. Our attempts to train on Kaggle and Google
Colab were hindered by insufficient hardware capabilities. While Kaggle provides two
T4 GPUs, almost meeting the requirements with slight VRAM deficiency of 10MB
VRAM with train_batch_size = 4 and gradient accumulation_steps = 4, the free GPU
resources on both platforms were insufficient. Consequently, we opted to rent
hardware from Vast.ai for enhanced training capabilities, utilizing a single Q RTX
8000 GPU with 45 GB VRAM.

For the image generation pipeline, the hardware requirements with all models
loaded on GPUs amount to 7GB of RAM and 11 GPU VRAMs. To compute the FID
score for evaluating model performance, a P100 GPU with 16GB VRAM and a CPU
with 32GB RAM from Kaggle were employed for image generation and comparison.
This strategic choice of hardware rental ensures efficient training and evaluation
processes, overcoming limitations posed by free GPU resources on other platforms.

4.2 Result

Regarding evaluation, we will gauge the model's performance based on the
FID score, utilizing the MS-COCO 2017 validation split. This split comprises 5,000
distinct images, each accompanied by its captions. Similar to the train split, the
validation split offers 5 different captions for each image. To establish pairs for
evaluation, we will retain the first caption found in the annotation file of the validation

18

split and pair it with its corresponding image. However, our system resources did not
meet the requirement to calculate FID score on the whole 5,000 images of the
validation split, therefore we randomly chose a different number of examples from the
split to evaluate our dataset, and the maximum number of samples that the hardware
can handle is 1000. The results are displayed in Table 4.

Number of samples FID
50 280.66
200 197.04
500 149.70
1000 107.87

Table 4: FID results of our model on MS-COCO

While FID exhibits greater stability against noise compared to IS [9], as
indicated in the article [32], it is essential to note that FID carries a substantial bias.
The score finds it hard to converge to its believed true value, with different numbers of
samples used to calculate, the score returns different values. As can be seen in Table 4,
with the increasing number of samples used for calculation, the FID of the model also
gradually decreases. It is therefore unfair to compare the FID we obtained with
published state-of-the-art results because those results were calculated with 30
thousand samples.

Therefore, we will compare the FID results achieved with 2 models:
stable-diffusion-2-base checkpoint is provided by Stability Al on huggingface, Lafite
checkpoint is supervised training on MS-COCO set that achieves 8.12 FID when
evaluated on 30000 samples on MS-COCO. We use both of these checkpoints to
recalculate the FID results on the same 1000 samples of MS-COCO validation split,
the results are demonstrated in Table 5.

19

Models FID g9 |
Lafite [20] 141.40
stabilityai/stable-diffusion-2-base? 116.98
Corgi [7] 107.87

Table 5: FID results comparison on MS-COCO calculated on 1000 samples

Compare to the stable-diffusion-2-base checkpoint, we achieved slightly better
results as the Decoder we are using is also utilizing the pre-trained knowledge of the
stable-diffusion-2-base checkpoint, and also the Prior Model and the Decoder were
respectively retrained and fine-tuned focus on the MS-COCO set, therefore improved
the result achieved. And for the Lafite checkpoint, both of our training process and the
checkpoint are mainly focus on using MS-COCO as the training data, although our
training process has an advantage in terms of data quantity because we use
MS-COCO's 2017 train split with 118k samples compare to 83k samples of 2014 train
split used to train the Lafite checkpoint. However, it can be seen that at this time our
model has shown a more robust performance on generating common objects compared
to a checkpoint which had achieved 8.12 FID. Therefore, this framework has shown
its capability of being applied to real world’s problems, specifically POD image
generation.

Because we used Stable Diffusion 2 to fine-tune into our Decoder with default
setting config, the height, and width of the output image during the fine-tuning process
were: unet sample size * vae scale factor = 512x512 (the Stable Diffusion 2’s
default values of unet sample size and vae scale factor are 64 and 8 respectively).
Consequently, in text-to-image generation tasks, our model performs better in quality
and stability when constructing 512x512 images. We generated images in some of the
popular shirt’s Print On Demand image sizes to compare them. The image size
referenced is based on the article [33]. We will use the prompt: “a yellow and blue
train riding a track by some trees” and the negative prompt: “no tree, wavy rail, low
resolution” as inputs for this image generation test.

2 https://huggingface.co/stabilityai/stable-diffusion-2-base

20

384x288 288x192 240x1344

Figure 4: Sleeve and Pocket POD size image generation

When generating images for printing on Sleeves and Pockets, it is observed
that photos with dimensions of 384x288, suitable for Adult Short Sleeve or Pocket,
exhibit the highest quality. These images appear well-balanced, fully meeting the
conditions specified in the input prompt. In the case of 288x192 images intended for
printing on Youth Short Sleeve or Pocket, there is a noticeable decline in detail and
quality. Finally, for photos intended for Long Sleeve printing, the images capture the
specified details in the prompt and maintain good quality. However, they may start to
incorporate redundant or illogical details.

105631200 864x1056 1056x1200

Figure 5: Full Shirt Design POD size image generation

When generating images for Full Shirt Design, we have specified sizes for
Adult Men's, Adult Women's, and Youth shirts as 1056x1200, 864x1056, and
864x1008, respectively. Nevertheless, with increasing resolution, the image begins to
exhibit signs of deterioration. Objects start merging into one another, and the details
gradually become less coherent. While the image maintains a certain level of quality, a
significant portion of the details in the image loses logical consistency.

21

We can see that due to being trained to create images with a resolution of
512x512, a resolution that is too low will reduce image quality, and a resolution that is
too high will cause the image to have irregular details.

To address this issue, our approach involves utilizing the Real-ESRGAN
model, as presented in [34], to enhance the resolution of the generated image post the
image generation process. After experimentation, we determined that the model
achieves optimal performance with a resolution of 512x512. Consequently, we will
employ this resolution during the image generation to ensure stability and quality in
the outputs. The total number of pixels for this optimal result will be proportionally
divided into height and width based on the user's original aspect ratio. This adjustment
will be applied to both higher and lower resolutions. The newly derived height and
width will serve as parameters for the text-to-image pipeline, replacing the previous
ones. Subsequently, once the image is generated, we will resize it back to its original
resolution.

In cases where the user's resolution exceeds ours, we will use the
RealESRGAN x4 model to upscale the generated image. By default, the model
upscales the image four times compared to its original resolution. Therefore, we will
first upscale the image and then resize it back to its original resolution. If the original
image resolution’s height and width total pixels exceeds 4096 (the height and width’
sum of the resolution after upscaling from the optimal 512x512), the image will
remain in the upscaled resolution post the upscaling step. We are not currently
applying a larger resolution upscaler due to the possibility of anomalous details. If we
have a GPU with larger resources, we can switch to using diffusion upscaler to
increase the image quality after upscaling and also the stability of the output. On the
other hand, if the user's resolution is lower than ours, we will straightforwardly resize
the image back to its original resolution. Given that resizing the image to a lower
resolution has a minimal impact on image quality, our solution ensures stable image
quality for both high and low resolutions in our model pipeline.

22

1056x1200 B64x 1056 1056x 1200

Figure 6: Full Shirt Design POD size new image generation process

The aforementioned processing enhancements not only substantially improved
the quality of the generated image but also accelerated the diffusion speed, given the
reduced image resolution required for generation. Previously, generating an image
with Full Shirt Design resolution on a Colab T4 GPU took approximately 1 minute;
now, the process completes in less than 20 seconds. As depicted in Figure 6, the
results indicate that, although the new images may still exhibit flaws, their quality has
markedly improved compared to the previous versions and has become more stable.
The reasons for inaccurate generated detail will be discussed at the end of this part.

To demo the application of text-to-image generation on POD design, we
generate an image of sunset with the following parameters: prompt = ‘romantic sunset
on the beach’, negative prompt='low resolution', height=512, width=512,
guidance rescale=2.0, num_inference steps=50. The shirt demonstration will be in
Figure 7. This demo does not include all possible demos in shirt printing as we are
limited in UI design. We refer to the UI from the repo Github [35].

23

Figure 7: Printed shirt demo

Lastly, we would like to discuss how Prior Model affects the overall image
generation quality. We have tried some example prompts from the blog post [36] to
evaluate our model. Due to the lack of training image style, our model is limited to
generating normal life images, similar to the data from MS-COCO that was used to
train the model, therefore we will test on common objects image generation of the
model.

A cat on the sofa A child playing on a sunny happy beach, her laughter as they
build a simple sandcastle, emulate Nikon D6 high shutter
speed action shot, soft yellow lighting

Figure 8: Comparing our model’s out image (on the left) versus the sample images
generated by Midjourney (on the right)

It can be seen in Figure 8 that for the first prompt “A cat on the sofa”, our
model resulted in an image that is precisely described by the text. Although the image
quality is not the same as the sample ones, however both the model output image and
the sample images can be best described using the same caption. Moving on to the
second prompt, the model can only catch some ideas about the prompt: a child, beach.
The “Nikon D6 high shutter speed action shot, soft yellow lighting” is a sign that the
model is trained on a diverse set of data crawled from the internet. This part of text
cannot be recognized by our model, therefore we will remove it and re-generate the
image. The prompt becomes “A child playing on a sunny happy beach, their laughter
as they build a simple sandcastle”.

24

A child playing on a sunny happy beach, their laughter as they A laughing child building a simple sandcastle on a sunny
build a simple sandcastle happy beach

Figure 9: Model’s output after changing the prompt

In Figure 9, after removing the redundant part of the prompt that the model is
not able to understand, the model output has been more focusing on the child and the
surrounding beach, the image just lacks “laughter” and ‘“sandcastle”. We then go
further to summarize the prompt, which then helps the model constrain the output
image to make the child actually build something. It can be inferred from this example
that while the model is able to understand the ideas of the prompts, longer prompts
have shown to become less effective than the shorter ones, and also distract the model
from focusing on some details. There are 2 main reasons for the issue: 1. The
MS-COCO only consists of short descriptions about the picture, which is less in detail
compared with large web-crawling-based datasets such as LAION-5B, LAION-400M.
These large datasets contain detailed descriptions of the image, therefore the models
trained on these datasets are able to generate more diverse objects and styles. And 2.
Our Prior Model was trained from scratch with nearly 10k steps, it cannot yet provide
the same efficient textual embeddings as commercial Al text-to-image service. By
further training the model with a more diverse training dataset, the performance of the
model should improve significantly.

25

5. CONCLUSION

Our project showcases a pipeline that enables fine-tuning on an image-only
dataset, alleviating the need for extensive image labeling while still delivering
commendable results. By implementing the model architecture outlined in [7],
individuals can fine-tune a model on their own dataset to attain a desired image style -
in this instance, POD images. Moreover, the pipeline is designed for deployment and
application with a UlI, offering users a user-friendly service that caters to their specific
demands.

Nevertheless, there exist limitations in the current models that could be
enhanced in future work. In the context of a POD service, customers often have a
significant demand for printing shirts with textual quotes, which remains a notable
limitation for diffusion models. The model is trained to generate images that
correspond to text descriptions rather than generating the text itself. Consequently, the
challenge arises in producing "readable text" as part of the generated images. DALL-E
2, using the same architecture of Prior Model and Decoder, is also reported in [37] to
struggle with text generation and even seemed to have developed a hidden vocabulary
internally. To address this challenge, the use of combining Diffusion models with
ControlNet [38] can help to preserve edges and lines condition, therefore maintaining
the original wording requirements.

In this project, we've conducted a relatively brief training of the Prior Model,
spanning approximately 10,000 steps—a modest iteration compared to other
commercial text-to-image generation Al services. Although the results have not met
our desire, they have shown that slight training can provide us with a pipeline
Through additional fine-tuning of the model, we anticipate a significant enhancement
in the quality of image generation.

In future works, our aim 1is to leverage Large Language Models (LLMs) for
processing input prompts. The idea is inspired by the paper [39]. This includes tasks
such as translation to facilitate easier use without the necessity of knowing English to
compose a suitable prompt. Additionally, we plan to explore pre-processing tasks for
input prompts, aiming to enhance the effectiveness of the image generation process.
The LLMs will be fine-tuned to predict a detailed version of a prompt, specify
elements that can improve the image quality. For example, a prompt “An old
fisherman™ can be processed into “Portrait of an old fisherman at sea, using natural
light to highlight weathered textures.” (example prompt taken from the website
https://mspoweruser.com/prompts-ai-art/). To do this a large dataset of effective
prompts should be prepared, the LLMs will be used to summarize the effective
prompts into its shorter version, and then the LLMs will be fine-tuned to do the
reverse job: predict effective prompts from the brief one.

26

References

1]

2]

3]

[4]

[5]

[6]

(7]

8]

9]

[10]

[11]

“Amazon Has Developed an Al Fashion Designer | MIT Technology Review.”
Accessed: Sep. 30, 2023. [Online]. Available:
https://www.technologyreview.com/2017/08/24/149518/amazon-has-developed-an-ai-f
ashion-designer/

“Al designer takes applause on Shanghai catwalk - SHINE News.” Accessed: Sep. 30,
2023. [Online]. Available: https://www.shine.cn/biz/tech/1904243580/

I. Goodfellow et al., “Generative Adversarial Networks,” Commun ACM, vol. 63, no.
11, pp. 139144, Jun. 2014, doi: 10.1145/3422622.

M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014,
Accessed: Sep. 30, 2023. [Online]. Available: https://arxiv.org/abs/1411.1784v1

T. Xu et al., “AttnGAN: Fine-Grained Text to Image Generation with Attentional
Generative Adversarial Networks,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 1316—1324, Nov. 2017,
doi: 10.1109/CVPR.2018.00143.

J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” Adv Neural
Inf Process Syst, vol. 2020-December, Jun. 2020, Accessed: Oct. 03, 2023. [Online].
Available: https://arxiv.org/abs/2006.11239v2

Y. Zhou, B. Liu, Y. Zhu, X. Yang, C. Chen, and J. Xu, “Shifted Diffusion for
Text-to-image Generation,” 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10157-10166, Jun. 2023, doi:
10.1109/CVPR52729.2023.00979.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved Techniques for Training GANS,” Adv Neural Inf Process Syst, pp.
2234-2242, Jun. 2016, Accessed: Sep. 30, 2023. [Online]. Available:
https://arxiv.org/abs/1606.03498v1

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs Trained
by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” Adv
Neural Inf Process Syst, vol. 2017-December, pp. 6627-6638, Jun. 2017, doi:
10.18034/ajase.v8il.9.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. J. Belongie, “The Caltech-UCSD
Birds-200-2011 Dataset,” 2011.

T. Y. Lin et al., “Microsoft COCO: Common Objects in Context,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740-755, May
2014, doi: 10.1007/978-3-319-10602-1 48.

27

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on Image Synthesis,” Adv
Neural Inf Process Syst, vol. 11, pp. 8780—8794, May 2021, Accessed: Oct. 03, 2023.
[Online]. Available: https://arxiv.org/abs/2105.05233v4

F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “LSUN: Construction of
a Large-scale Image Dataset using Deep Learning with Humans in the Loop,” Jun.
2015, Accessed: Oct. 04, 2023. [Online]. Available: https://arxiv.org/abs/1506.03365v3

O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int J
Comput Vis, vol. 115, no. 3, pp. 211-252, Sep. 2014, doi: 10.1007/s11263-015-0816-y.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
Text-Conditional Image Generation with CLIP Latents,” Apr. 2022, Accessed: Oct. 04,
2023. [Online]. Available: https://arxiv.org/abs/2204.06125v1

C. Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding,” Adv Neural Inf Process Syst, vol. 35, May 2022, Accessed: Oct. 04,
2023. [Online]. Available: https://arxiv.org/abs/2205.11487v1

A. Radford et al., “Learning Transferable Visual Models From Natural Language
Supervision,” Proc Mach Learn Res, vol. 139, pp. 8748-8763, Feb. 2021, Accessed:
Oct. 04, 2023. [Online]. Available: https://arxiv.org/abs/2103.00020v1

C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer,” Journal of Machine Learning Research, vol. 21, pp. 1-67, Oct. 2019,
Accessed: Oct. 04, 2023. [Online]. Available: https://arxiv.org/abs/1910.10683v4

Z. Wang, W. Liu, Q. He, X. Wu, and Z. Yi, “CLIP-GEN: Language-Free Training of a
Text-to-Image Generator with CLIP,” Mar. 2022, Accessed: Oct. 04, 2023. [Online].
Available: https://arxiv.org/abs/2203.00386v1

Y. Zhou et al., “LAFITE: Towards Language-Free Training for Text-to-Image
Generation,” Nov. 2021, Accessed: Oct. 04, 2023. [Online]. Available:
https://arxiv.org/abs/2111.13792v3

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and
Improving the Image Quality of StyleGAN,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 8107-8116, Dec.
2019, doi: 10.1109/CVPR42600.2020.00813.

Y. Zhou, C. Li, C. Chen, J. Gao, and J. Xu, “Lafite2: Few-shot Text-to-Image
Generation,” Oct. 2022, Accessed: Oct. 04, 2023. [Online]. Available:
https://arxiv.org/abs/2210.14124v1

P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceptual Captions: A Cleaned,
Hypernymed, Image Alt-text Dataset For Automatic Image Captioning.” 2018.
Accessed: Dec. 01, 2023. [Online]. Available: https://research.google/pubs/pub47380/

C. Schuhmann et al., “LAION-400M: Open Dataset of CLIP-Filtered 400 Million
Image-Text Pairs,” Nov. 2021, Accessed: Dec. 01, 2023. [Online]. Available:
https://arxiv.org/abs/2111.02114v1

28

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Y. Lu, S. Singhal, F. Strub, O. Pietquin, and A. Courville, “Countering Language Drift
with Seeded Iterated Learning,” 37th International Conference on Machine Learning,
ICML 2020, vol. PartF168147-9, pp. 6393—6403, Mar. 2020, Accessed: Dec. 13, 2023.
[Online]. Available: https://arxiv.org/abs/2003.12694v3

J. Pont-Tuset, J. Uijlings, S. Changpinyo, R. Soricut, and V. Ferrari, “Connecting
Vision and Language with Localized Narratives,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 12350 LNCS, pp. 647-664, Dec. 2019, doi:
10.1007/978-3-030-58558-7 38.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,”
pp. 3730-3738, Nov. 2014, Accessed: Dec. 14, 2023. [Online]. Available:
http://arxiv.org/abs/1411.7766

H. W. Chung et al., “Scaling Instruction-Finetuned Language Models,” Oct. 2022,
Accessed: Dec. 12, 2023. [Online]. Available: https://arxiv.org/abs/2210.11416v5

Patrick von Platen et al., “Diffusers: State-of-the-art diffusion models,” GitHub
repository. Accessed: Dec. 14, 2023. [Online]. Available:
https://github.com/huggingface/diffusers

Sebastian Ramirez, “fastapi: FastAPI framework, high performance, easy to learn, fast
to code, ready for production,” GitHub repository. Accessed: Dec. 14, 2023. [Online].
Available: https://github.com/tiangolo/fastapi

Alex Laird, “pyngrok: A Python wrapper for ngrok.,” GitHub repository. Accessed:
Dec. 14, 2023. [Online]. Available: https://github.com/alexdlaird/pyngrok

M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying MMD
GANS,” 6th International Conference on Learning Representations, ICLR 2018 -
Conference Track Proceedings, Jan. 2018, Accessed: Dec. 28, 2023. [Online].
Available: https://arxiv.org/abs/1801.01401v5

Alex Clem, “T-Shirt Design Guide | PicMonkey.” Accessed: Dec. 13, 2023. [Online].
Available: https://www.picmonkey.com/blog/tshirt-design

X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-ESRGAN: Training Real-World Blind
Super-Resolution with Pure Synthetic Data,” Proceedings of the IEEE International
Conference on Computer Vision, vol. 2021-October, pp. 1905-1914, Jul. 2021, doi:
10.1109/ICCVW54120.2021.00217.

“GitHub - accodes2 1/tshirt3d: Custom 3D TShirt designer. Design your own T-shirts
from scratch, customize its colors, logo etc. Made using ThreeJS, React]S and Custom
Hooks.” Accessed: Dec. 14, 2023. [Online]. Available:

https://github.com/accodes2 1/tshirt3d

Miguel Rebelo, “How to write effective Al art prompts | Zapier.” Accessed: Dec. 14,
2023. [Online]. Available: https://zapier.com/blog/ai-art-prompts/

29

[37]

[38]

[39]

G. Daras and A. G. Dimakis, “Discovering the Hidden Vocabulary of DALLE-2,” Jun.
2022, Accessed: Dec. 13, 2023. [Online]. Available:
https://arxiv.org/abs/2206.00169v1

L. Zhang, A. Rao, and M. Agrawala, “Adding Conditional Control to Text-to-Image
Diffusion Models,” Feb. 2023, Accessed: Dec. 13, 2023. [Online]. Available:
https://arxiv.org/abs/2302.05543v3

Y. Hao, Z. Chi, L. Dong, and F. Wei, “Optimizing Prompts for Text-to-Image

Generation,” Dec. 2022, Accessed: Dec. 13, 2023. [Online]. Available:
https://arxiv.org/abs/2212.09611v1

30

