



# **A Deep Learning Model for** Helmet Detection and **Automatic License Plate** Recognition

Supervisor: Bui Van Hieu Team: AIP409\_G4

Hoa Lac Campus 20 December 2023





# **MY TEAM**

### Bui Van Hieu Instructor

## Pham Trung Hieu Leader





#### Vu Van Nghiep Member



# Table of contents

- **01** Introduction
- 02 Methodology
- **03** Experiment and Result
- **04** Web application deployment



# 01. Introduction

1.1 Problem & motivation1.2 Related works1.3 Contributions







### 1.1 Problem and motivation

- About 1.35 million people died and more than 50 million were injured in road traffic accidents worldwide every year.
- 78% are due to head trauma.
- Wearing a helmet reduces the risk of death by 42% and the risk of injury by 69%.



## Problem 01: Overlapping heads or license plates

In complex traffic environments, A and B are motorcyclist:

- How to assign head area and license plate to A?
- A's head area is in the box of B
- A's license plate is in the box of B
  => unclear positioning of violators and corresponding license plates.



# Problem 02: External conditions lead to the extraction of incorrect information

- Small image size
- Low resolution
- Different aspect ratios
- Different shooting angles
- => Post-processing steps are required



Helmet Detection and Automatic License Plate Recognition



#### **Helmet detection**

- Distinguish between people helmets and without wearing helmets.
- Distinguish motorcyclists from pedestrians.

#### License plate extraction

- Recognize license plates with different ratios and many different formats
- Distinguishing characters with high similarity



## 1.2 Related works



Plate #1

|                | Plate      | Confidence |
|----------------|------------|------------|
| 1              | KA41EM0395 | 89.353058  |
| 4              | KA41M0395  | 80.161301  |
| $\overline{a}$ | KA416M0395 | 79.876579  |
| ÷              | KA41KM0395 | 79.874893  |
| $\overline{a}$ | KA41BM0395 | 79.874687  |

#### Advantage:

- Propose a good processing pipeline
- Apply post-processing techniques to increase accuracy

#### 2020 YOLOv2



## 1.2 Related works

Advantage:

• Propose a threshold to minimize false positives





The center point of the target box is located in the upper 1/2 area of a rider target box, keep the target box

The center point of the target box is located in the lower 1/3 area of a rider target box, keep the target box

- Advantage: • Combine the advantages of the previous two methods and improve it Defect:
  - Cannot be recognized properly in heavy traffic conditions



#### 2023 SG-YOLOv5

## 1.2 Related works

### 01

Consolidate and develop methods from previous articles to address limitations in detecting head areas and license plates.

#### 02

A post-processing method was developed, which facilitates the discrimination and tracking of multiple objects within a single frame. This technique also increases the accuracy of extracting license plate information.

#### 03

Creat a novel public dataset, comprising a total of 6562 images include 4 classes: motorcyclist, helmet, no\_helmet, and license plate, each image annotated with precise bounding boxes.

#### 04

Create a website with a friendly and easy-to-use interface so users can upload videos, run model and adjust parameters for an intuitive look.

# . ω Contribution

# 02. METHODOLOGY

2.1 Overview Pipeline2.2 Object Detection2.3 Optical Character Recognition2.4 Post-processing Technique



## 2.1 Overview Pipeline



WORKFLOW OVERVIEW



## 2.1 Overview Pipeline

### PIPELINE PROCESS



# 2.1 Overview Pipeline

# What is YOLO?





#### Joseph Redmon

# 2.2 Object Detection Why should we use YOLOv8?

On the MS COCO dataset, an important benchmark metric is inference time (ms/Frame, lower is better) or Frames per Second (FPS, higher is better).

|            |                     | _         | 400  |                  |
|------------|---------------------|-----------|------|------------------|
| Model      | Inference time (ms) |           | 300  |                  |
| YOLOv7     | 3.5                 | 0, B=1)   | 200  |                  |
| YOLOv4     | 12                  | FPS (V100 | 100  |                  |
| YOLOv3     | 29                  |           | 0    | Faster RCNN-FPN+ |
| Mask R-CNN | 333                 |           | -100 | May '20 Sep '20  |
|            | •                   | 3         |      | Other mode       |

#### The fastest real-time object detection algorithm (Inference time)





## 2.2 Object Detection

# Why should we use YOLOv8?



The fastest real-time object detection algorithm (Inference time)

## 2.3 Optical Character Recognition

# PP-OCRv4

### Text Detection: DB model (DB-Resnet50)

#### Text Recognition: SVTR\_LCNet



# Output



| [[[454.0, | 256.0], | [594.0, | 256.0], | [594.0, | 319.0], | [454.0, | 319.0]], | ['KHUVUC', 0.64736557]]       |
|-----------|---------|---------|---------|---------|---------|---------|----------|-------------------------------|
| [[[608.0, | 251.0], | [744.0, | 253.0], | [743.0, | 317.0], | [607.0, | 314.0]], | ['CACHLY', 0.97865313]]       |
| [[[242.0, | 283.0], | [395.0, | 280.0], | [395.0, | 308.0], | [242.0, | 311.0]], | ['KHUVUCCACHLY', 0.99591464]] |
| [[[264.0, | 311.0], | [383.0, | 311.0], | [383.0, | 353.0], | [264.0, | 353.0]], | ['DACBIET', 0.99107796]]      |

One vector includes the following information: • Text position: Coordinates of the bounding boxes around the detected text (top-left, topright, bottom-left, bottom-right).

- Content of the text
- Score

Province code

# License Plate Recognition

### Overview

- PaddleOCR detect and extract each line.
- A License Plate includes 8 or 9 characters





# License Plate Recognition

| Letter | Number |  |  |
|--------|--------|--|--|
| I      | 1      |  |  |
| Z      | 2      |  |  |
| J      | 3      |  |  |
| А      | 4      |  |  |
| S      | 5      |  |  |
| G      | 6      |  |  |
| В      | 8      |  |  |
| D      | 0      |  |  |

4 main formats

- The third character is always A
- The third character is recognized as N
- => conversion based on similarity



**A**:

**N**:

A, B, C, D, E, F, G, H, K, L, M, N, P, S, T, U, V, X, Y, Z

> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Which head belongs to which motorcycle? Which license plate belongs to which motorcycle?



Calculate the percentage of intersection area between two bounding boxes to find motorcyclist from head.



CIP needs to be greater than the threshold of 0.947 to be considered that the two bounding boxes have intersected.

We can easily observe that:

- The bounding box of the person's head in the image is within the bounding boxes of the two motorcycles.
- The position of the head bounding box is not appropriate compared to the motorcycle located above.



The next issue is that one head can correspond to two motorcycles. Similarly, one motorcycle can have two license plates.



Height of no\_helmet HHB = Height of motorcyclist



- 95% of the bounding box data for "No Helmets" falls within the range from 0.11 to 0.29.
- 95% of the bounding box data for "License Plates" falls within the range from 0.64 to 0.82.



Histogram of threshold values for no\_helmet and license plate

- y2\_head must satisfy the condition of being within the range from 0.11 to 0.29.
- y1\_plate must satisfy the condition of being within the range from 0.64 to 0.82.



#### he range from 0.11 to 0.29. he range from 0.64 to 0.82.







The CIP and HHB methods may behave inaccurately in cases of diagonal angles and two individuals riding motorcycles in parallel.



Identify motorcycles by determining the frequency of appearance.







The result after post-processing on the sequence of frames where objects appear.



#### Filter license plate information for each line by selecting the highest score.



| Frame | License plate<br>line top | License plate line<br>bottom | Score line<br>top | Score line<br>bottom |
|-------|---------------------------|------------------------------|-------------------|----------------------|
| 1     | 35B2                      | 47480                        | 0.82              | 0.87                 |
| 2     | 35B2                      | 47430                        | 0.90              | 0.73                 |
| 3     | 35BZ                      | 47480                        | 0.67              | 0.81                 |

Final output: 35B2-47480

# **03.** Experiment and Result

3.1 Data collection3.2 Implementation3.3 Result and Analysis







## 3.1 Data collection

- Source: phone camera, internet, traffic camera.
- Resolution: 2560x1440.
- Different traffic situations: crowded roads, sparse roads, camera angles from left to right and right to left.

#### Heatmap annotations



Image Ratio 5248 Train 80% Validation 984 15% 330 5% Test Total 6562 100%

### 3.1 Data collection

• Brightness: between -10% and +10%. • Blur: up to 0.25px . • Rotation: between -5° and +5°. • Resize to 800x800.

#### GPU

Tesla P100-PCIE\_16GB

CPU

Intel Xeon E-2300

#### Language

Python 3.10





#### Hyperparameters

- Epoch: 120
- Batch\_size: 16
- Input shape : 800x800
- Learning rate: 0.01

Helmet and License plate Detection

- The original data set included photos taken from the phone camera for not very positive results, mAP is 78%.
- Reasons: data imbalance
- Solution: add more picture contain no\_helmet class

motorcyclist license plate helmet no\_helmet

0

0

motorcyclist license plate helmet no\_helmet



Helmet and License plate Detection

Overall, Precision is 94.9%, Recall is 95.3% and mAP is 97.9%

=> The model has the ability to accurately and comprehensively predict different classes





| Class        | Precision | Recall | mAP50 |
|--------------|-----------|--------|-------|
| helmet       | 0.942     | 0.93   | 0.969 |
| no_helmet    | 0.946     | 0.932  | 0.973 |
| notorcyclist | 0.959     | 0.993  | 0.991 |
| icense plate | 0.936     | 0.949  | 0.978 |

Helmet and License plate Detection

Advantage:

- Identify flat cap
- Multi object detection

Recognition ability (total 300 objects):

- Old method: 246 objects (82%)
- Our method: 295 objects (98.3%)

=> increase 16.3%







Helmet and License plate Detection

#### Disadvantage:

 Poor recognition in some cases of strange helmet colors

 Unable to identify motorcyclists wearing hoods





#### **License Plate Recognition**

Tested on 2383 images, PaddleOCR, found an accuracy of 69.8%. After apply postprocessing => 90.4%.

#### **Disadvantage:**

 Poor recognition in some cases such as flashing, being obscured, or license plates with peeling paint.





#### **Overall results**

Our model successfully identifying 208 out of the 220 motorcyclist. => Accuracy: 94.55%



# 04. Web Application Deployment

4.1 System Architecture4.2 HDALPR System



# 4.1 System Architecture

#### It comprises key components:

- Frontend
- Backend
- Model Inference Engine



#### 4.2 HDALPR System

#### 👌 Menu

#### 🛆 Home

#### Opload

#### i≡ Tasks

Settings

#### 음 About



# HELMET DETECTION AND AUTOMATIC LICENSE PLATE RECOGNITION SYSTEM

Chào mừng đến với trang chủ của chúng tôi!

Chúng tôi rất vui mừng chào đón bạn tới "Helmet Detection and Automatic License Plate Recognition System" - một dự án đầy thách thức và đầy sáng tạo. Tại đây, chúng tôi tận hưởng việc phát triển và nâng cấp hệ thống nhận diện mũ bảo hiểm và tự động nhận diện biển số xe, nhằm đảm bảo an toàn và hiệu quả trong việc quản lý giao thông và bảo vệ người tham gia.

Dự án của chúng tôi không chỉ là sự kết hợp giữa công nghệ và sáng tạo, mà còn là một cam kết vững chắc về an ninh và tiện ích. Chúng tôi hy vọng rằng hệ thống của chúng tôi sẽ đóng góp vào việc tạo ra môi trường giao thông an toàn và hiệu quả cho cộng đồng.

Hãy cùng chúng tôi trải nghiệm sức mạnh của công nghệ và đóng góp vào sứ mệnh làm thay đổi thế giới của chúng tôi. Cảm ơn bạn đã thăm trang của chúng tôi và hãy khám phá thêm về những cải tiến và tính năng mới nhất của dự án!





Our proposed method has overall accuracy about 94.55%.

Outstanding advantages of the method:

- to old methods
- technique

Future work:

- weather types

# Conclusion

• Track and distinguish the head area and license plate of each vehicle

• Significantly improved accuracy compared

Propose a meticulous post-processing

• Distinguishing poor quality helmets Increase recognition ability in different