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Abstract

Video colorization is a captivating and significant domain within the field of Computer
Vision. Traditionally, Convolutional Neural Networks (CNNs) have been employed to
extract features from individual video frames, while recurrent networks have been utilized
to capture the inter-frame information. This conventional approach has achieved notable
success in the colorization process. However, a major limitation of traditional CNNs is their
restricted receptive field size, which restricts them to only capturing local information within
a fixed-sized window. Consequently, these models struggle to directly capture long-range
dependencies or pixel relationships across large image or video frame areas. To address this
limitation, recent advancements in the field have embraced the use of Vision Transformers
(ViT) and its variations to enhance performance. In this research, we propose ViTExCo and
SwinTExCo, two end-to-end models specifically designed for the video colorization process.
These models incorporate the Vision Transformer and Swin Transformer architectures as the
backbones, respectively, leveraging their ability to capture global dependencies effectively.
By employing Vision Transformer and Swin Transformer, ViTExCo and SwinTExCo surpass
many other state-of-the-art methods in terms of quantitative and qualitative metrics. Through
comprehensive experiments, we demonstrate the superiority of these proposed methods,
highlighting their ability to achieve remarkable results in video colorization tasks. Overall,
this research contributes to the advancement of video colorization techniques by integrating
the powerful Vision Transformer and Swin Transformer architecture into the colorization
process. The empirical evidence presented in this thesis underscores the effectiveness
and superiority of the proposed ViTExCo and SwinTExCo models, establishing them as a
valuable approach for video colorization in the field of Computer Vision.

Keywords: Video colorization, Exemplar-based, Vision Transformer, Swin Transformer,
Computer Vision
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Chapter 1

INTRODUCTION

1.1 Overview

1.1.1 Context

In the field of Computer Vision, colorization is crucial for enhancing the appearance and
historical value of old black-and-white images and videos. Accurately deducing the original
colors and transforming them into colorized versions has traditionally posed challenges.
However, recent advancements in deep learning have provided us with automated and
realistic methods for videos with colors. By utilizing neural networks, we can revive vintage
footage and generate compelling and engaging content that resonates with viewers while
preserving the source material’s integrity.

1.1.2 Image Colorization

Image colorization involves the process of adding colors to black-and-white images, and
there are various methods to accomplish this. In the past, artists would manually apply colors
to each image, requiring substantial time and skill.

But now, with the progress in computer vision and deep learning, we have various methods
for colorizing images automatically. These techniques use large datasets to train deep neural
networks to understand how grayscale and color images are related. One common approach
is to use Convolutional Neural Networks (CNNs) [3] to identify features and Generative
Adversarial Networks (GANs) [4] to predict colors for each pixel.
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1.1.3 Video Colorization

Video colorization is a natural progression of image colorization techniques, incorporating
temporal consistency across a sequence of frames. While image colorization focuses on
adding colors to individual images, video colorization considers the sequential context of a
video. As a result, applying image colorization methods directly to videos presents additional
challenges. Some of the key problems encountered in video colorization include:

• Temporal consistency: Maintaining color consistency across the entire video is crucial
to avoid flickering or abrupt color changes in the resulting video. Methods need to
consider the temporal relationship between frames to ensure smooth and visually
coherent colorization.

• Time efficiency: Video colorization requires efficient algorithms capable of processing
frames at high speeds. The computational complexity of colorization methods must be
carefully addressed to achieve smooth responsiveness.

• Artifacts and noise: Video colorization introduces artifacts and noise due to imperfect
color predictions or inconsistencies across frames. Reducing these artifacts is essential
to produce visually pleasing and realistic colorized videos.

1.2 Motivation

The motivation behind video colorization stems from the following factors:

• Technical motivation: In recent years, Vision Transformer (ViT) [5] and its variants
have achieved impressive performance in the Computer Vision field. By applying
these new architectures, we desire to create a novel model for video colorization
that not only achieves competitive performance compared to the existing models
but also minimizes computational complexity, enabling faster processing without
compromising the quality of the results.

• Practical motivation: The historical value of colorizing old videos and films cannot be
overstated. By adding color to the monochromatic videos, we enhance their historical
significance and make them more accessible and relatable to contemporary audiences.
It allows us to connect with history on a deeper level and gain a richer understanding
of our shared heritage.
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RELATED WORK

2.1 Related Approaches

The domain of video colorization encompasses three principal methodologies: Interactive
Colorization, Fully Automatic Colorization, and Exemplar-based Colorization. Interactive
Colorization involves techniques that rely on user guidance and input for colorization. Fully
Automatic Colorization strives to automate the colorization process without requiring any
user-provided hints. Exemplar-based Colorization, on the other hand, employs reference
images as a means to propagate colors onto the target video frames. Each approach exhibits
distinct advantages, limitations, and contributions in the field of video colorization.

2.1.1 Interactive Colorization

One of the most basic and direct methods for colorization was using user-provided hints [6–8].
These hints could be in the form of color points, strokes, or scribbles, which guide the model
to determine which colors should be applied to specific positions in the image. Methods
based on the interactive approach often regress pixels’ color values with the assumption
that pixels belonging to the same object or texture pattern area would have a connection in
colors. The hints could be local and global [9], which were fed into an overall network. Some
models leveraged ViT [5] to colorize images such as iColoriT [10]. This method solved the
suffering of partial colorization even in the same local area with the same intensity level
by using ViT to capture long-range dependencies of color areas to overcome the previous
methods’s drawbacks.
Although the interactive approach was relatively simple, it had proven effective in producing
colorized images. However, user-guided methods were unsuited for video colorizing tasks
due to the significant human effort and aesthetic skills required to produce colorful videos.
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The complexity of these techniques necessitated a considerable investment of time and
resources, which may have needed to be more practical for video colorization projects.

2.1.2 Fully Automatic Colorization

Another approach to colorizing grayscale images or videos was training a deep neural
network. Several approaches have been proposed, including using CNNs [3] to encode
the input grayscale image to a latent space and then decode to the colorized image, as
demonstrated in [11, 12]. Other methods [13, 14] employed GANs to generate the color
images. Recently, [15] applied Swin Transformer (SwinT) [16] instead of CNNs for a better
result in colorizing images because it outperformed traditional CNNs in computer vision
tasks.

GANs were also applied to video colorization in [17, 18] and achieved remarkable results.
One of the latest papers for fully automatic colorization was Video Colorization with Hybrid
Generative Adversarial Network (VCGAN) [17]. This paper divided the model’s training
into 2 stages so that it could ensure the production of perceptually plausible colorization.
However, this colorization approach faced several challenges. Firstly, it required a large
dataset and a large network, making the training process difficult. If the training dataset
was limited, the model’s ability to generalize to new videos might have been compromised.
Another limitation was the lack of easy customization in the resulting colorization. Unlike
interactive or exemplar-based methods that allowed users to specify desired colors for
specific objects or regions, the deep learning approach proved to be less flexible in this regard.
Consequently, it might not have been suitable for applications that necessitated customized
colorization.

2.1.3 Exemplar-based Colorization

Examplar-based colorization utilizes many architectures to learn the similarity map between
grayscale images and color reference images. These neural networks are trained on a large
dataset of colorized images, allowing them to understand the complex relationships between
different color palettes and corresponding grayscale inputs. This approach could also be ap-
plied to video colorization by colorizing each frame individually. Deep exemplar-based Video
colorization [19] used 2 subnetworks: the correspondence subnetwork and the colorization
subnetwork to ensure consistency. The correspondence subnetwork identifies the matching
areas between the video frame and the reference image in the feature space and adjusts the
reference color accordingly. Using the intermediate outcome of the correspondence map and
the previously colorized frame, the colorization subnet estimates the color for the current
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frame. Another research using an exemplar-based method is Temporal Consistent Automatic
Video Colorization via Semantic Correspondence (TCVC) [20], which maintains long-range
consistency by combining semantic correspondence into automatic video colorization. TCVC
proposed a network with two stages: The first stage in the colorization process is the reference
colorization network, which is built to automatically colorize the first frame of every video
to create a reference image for guiding the subsequent colorization stage. The second stage,
which consists of a semantic correspondence network and an image colorization network,
was then built to colorize the remaining frames using the reference.
In summary, this approach could lead to flickering and blending issues if not implemented
carefully.

2.2 Backbones

2.2.1 Overview

In the context of colorization models, the process of embedding input images into feature
maps plays a crucial role in extracting meaningful representations from the visual content.
These feature maps serve as the foundation for subsequent stages of the colorization model,
facilitating the generation of accurate and plausible colorized outputs. Several backbone
models have been widely adopted for this purpose, each offering distinct architectural
characteristics and performance trade-offs. In this section, we provide an overview of some
commonly used backbone models for image feature extraction in colorization.

2.2.2 Transformer architecture

2.2.2.1 Definition

Transformer architecture [21], which is displayed in Figure 2.1b, is a novel neural network
design primarily used for natural language processing (NLP) tasks, first introduced in the
paper "Attention is All You Need". It has become a leading approach in the field, delivering
state-of-the-art results across various NLP tasks. In distinction to traditional recurrent neural
networks (RNNs), Transformer does not use a recurrence mechanism for sequence processing.
Instead, it leverages the concept of Attention, enabling the network to selectively focus on
relevant parts of the input sequence. This mechanism allows Transformer to effectively
capture long-range dependencies and contextual information.
Transformer architecture comprises an encoder and a decoder, consisting of multiple layers
of self-attention, cross-attention, masked self-attention, and feedforward neural networks.
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(a) Attention mechanism architecture (b) Transformer architecture

Fig. 2.1 Attention mechanism architecture and Transformer architecture
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The encoder processes the input sequence while the decoder generates the output sequence.
Self-attention facilitates capturing dependencies and relationships between elements within
the input sequence. Meanwhile, the feedforward networks enable the Transformer to model
complex nonlinear associations between the input and output.
A vital advantage of the Transformer architecture is its parallelizability and efficiency due
to the absence of recurrent computations. This advantage allows for faster training and
inference procedures. The Transformer has significantly improved the performance of NLP
models, particularly in tasks that necessitate comprehending long-range dependencies and
intricate relationships between input and output elements. Its success stems from its ability
to effectively process sequential data, such as text, and exploit Attention mechanism to focus
on the most relevant information within the input sequence.

2.2.2.2 Attention Mechanism:

2.2.2.2.1 General Attention Mechanism The general Attention mechanism, as shown
in Figure 2.1a, is a key component in many deep learning models, particularly in natural
language processing and computer vision. It allows the model to focus on specific parts of
the input data deemed relevant for the task.

One popular form of Attention is the scaled dot-product Attention, which can be repre-
sented by the following formula:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.1)

where
softmax(xi) =

exi

∑
n
j=1 ex j

(2.2)

The Q matrix represents the queries or questions we have about each element in a
sequence. The K matrix contains the keys, representing the elements we want to compare
against the queries. The V matrix holds the values associated with each element. By
computing the relevance scores between the queries and keys through multiplication and
applying softmax, we obtain attention weights.

This general attention mechanism has proven to be effective in various domains, enabling
models to capture meaningful dependencies and improve performance on a wide range of
tasks.

2.2.2.2.2 Self-attention mechanism The self-attention mechanism, also known as intra-
attention or self-attention, is a specific type of attention mechanism that allows a model
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to attend to different positions within its own input sequence. It has gained significant
popularity, especially in natural language processing tasks such as machine translation and
language understanding. One of the commonly used formulations for self-attention is the
scaled dot-product attention, which can be written as:

SelfAttention(X) = softmax
(

XWQ(XWK)
T

√
dk

)
XWV (2.3)

In the above formula, X represents the input sequence, and WQ, WK , and WV are learnable
weight matrices for the query, key, and value projections, respectively.

The self-attention mechanism allows the model to capture dependencies between different
positions in the input sequence, enabling it to attend to relevant information regardless of the
position’s distance.

2.2.2.3 Transformer Components

The Transformer consists of several key components that enable effective modeling of
sequential data:

2.2.2.3.1 Positional Encoding In the Transformer, positional encoding is used to inject
information about the relative or absolute positions of the tokens in the input sequence.
Because the architecture lacks any inherent notion of order, positional encoding ensures that
the model can distinguish between different positions and capture sequential dependencies.
One commonly used method for positional encoding is to add sinusoidal functions of
different frequencies and phases to the input embeddings. This allows the model to learn
representations that encode both the content and the position of each token.

One common formulation for positional encoding is as follows:

PE(pos,2i) = sin
(

pos
100002i/dmodel

)
, (2.4)

PE(pos,2i+1) = cos
(

pos
100002i/dmodel

)
, (2.5)

where pos represents the position of the token, i represents the dimension index, and
dmodel is the dimensionality of the model’s input embeddings. The positional encoding is
added to the input embeddings before being fed into the encoder. By introducing these
sinusoidal functions, the model can encode positional information in a way that allows it to
generalize to sequences of arbitrary lengths.
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2.2.2.3.2 Encoder The encoder component of the Transformer is responsible for process-
ing the input sequence and capturing its contextual information. It consists of multiple layers
of self-attention and feed-forward neural networks. Each layer in the encoder independently
attends to different positions in the input sequence, allowing the model to capture both
local and global dependencies. The self-attention mechanism enables the model to focus
on relevant parts of the input at each position, while the feed-forward networks provide
non-linear transformations to enhance the learned representations. The encoder layers are
connected in a sequential manner, allowing the model to refine its understanding of the input
sequence iteratively.

2.2.2.3.3 Decoder The decoder component of the Transformer is designed to generate an
output sequence based on the encoded representation of the input sequence. It also consists
of multiple layers, each containing masked self-attention and cross-attention mechanisms.
The masked self-attention mechanism in the decoder enables it to attend to various positions
in the output sequence, ensuring that each position has access to the relevant context. During
model training, a mask is applied to prevent the model from observing future tokens, allowing
it to focus solely on previous and current tokens. The cross-attention mechanism enables
the decoder to attend to the encoded representation of the input sequence, helping in the
generation of output tokens based on both the input and the previously generated tokens. The
decoder layers are stacked sequentially, allowing the model to progressively refine its output
sequence.

The combination of positional encoding, encoder, and decoder components forms the
core of the Transformer architecture, enabling it to effectively model complex sequential
dependencies and achieve state-of-the-art performance on a wide range of natural language
processing tasks.

2.2.3 Vision Transformer (ViT)

ViT [5] was a breakthrough invention that revolutionized the field of Computer Vision when
it provided impressive results compared to CNNs [3] in the same domain. Several variants
of ViT were invented after that, such as MobileViT [22], SwinT [16], Data-Efficient Image
Transformers (DEiT) [23], BERT Pre-Training of Image Transformers (BEiT) [24], etc. They
solved the problems that the original model faced and gained remarkable results. These
models quickly became dominants in playing the role of the backbone in many Computer
Vision research. The birth of many transformer-based models was thanks to the original
Vision Transformer model.
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Fig. 2.2 Vision Transformer architecture overview

2.2.3.1 Overall Architecture

The model’s architecture is presented in Figure 2.2, which is characterized by its departure
from the traditional CNNs commonly used in Computer Vision tasks. ViT relies on a self-
attention mechanism that allows it to capture global contextual information. Instead of using
convolutional layers, ViT employs a series of self-attention layers and feed-forward neural
networks. The self-attention layers enable the model to attend to different parts of the input
image, establishing contextual relationships between them. The feed-forward networks,
consisting of multiple layers, transform the learned representations. This combination of
self-attention and feed-forward networks forms the core architecture of Vision Transformer,
enabling them to effectively process and understand visual data.

2.2.3.2 Patch and Position Embedding

One key aspect of ViT is the concept of patch and position embedding. To process images, it
divides the input image into smaller patches, treating each patch as an independent token.
These patches are then linearly projected to create a set of embeddings that represent the
visual content of the image. The position embedding, on the other hand, encodes the
spatial information of the patches by assigning each patch a unique positional encoding.
This positional encoding allows the ViT to understand the relative positions and spatial
relationships between patches. By combining patch and position embedding, ViT can
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effectively process the global contextual information of the image while preserving the
spatial information necessary for image understanding.

2.2.3.3 Transformer Encoder

The transformer encoder is a crucial component of ViT. It consists of multiple stacked
self-attention layers and feed-forward networks. Each self-attention layer allows the model
to attend to different patches in the input image, capturing their dependencies. The self-
attention mechanism computes attention weights for each patch based on its relationship
with other patches, enabling the model to focus on relevant visual information. The feed-
forward networks process the output of the self-attention layer, transforming the learned
representations. The transformer encoder operates iteratively, with each layer refining and
enriching the representations learned in the previous layer. This hierarchical structure enables
Vision Transformer to capture complex visual patterns and dependencies, leading to their
impressive performance in various computer vision tasks.

2.2.4 Swin Transformer (SwinT)

Fig. 2.3 Swin Transformer architecture overview

The SwinT [16] is a state-of-the-art architecture for computer vision tasks that extends
the Transformer model to effectively capture visual information in images. It introduces a
novel approach of using shifted windows and self-attention mechanisms to model both local
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and global dependencies within an image. By leveraging self-attention, the SwinT achieves
remarkable performance in various computer vision tasks, including image classification,
object detection, and semantic segmentation.

2.2.4.1 Overall Architecture

The SwinT architecture is composed of multiple layers of shifted window-based self-attention
blocks. These blocks are stacked hierarchically, allowing the model to capture information at
different scales. Each block operates on a grid of non-overlapping patches or tokens, treating
them as independent entities for self-attention computations. Figure 2.3 gives an overview of
the SwinT architecture.

2.2.4.2 Shifted Window-based Self-Attention

2.2.4.2.1 Self-attention in non-overlapped windows To enable efficient computation
and capture local dependencies, the SwinT performs self-attention within non-overlapping
windows. This approach reduces the computational complexity compared to traditional self-
attention, which operates on every pair of tokens. The self-attention mechanism computes
attention weights between queries and keys within each window, which are then used to
obtain a weighted sum of the corresponding values.

2.2.4.2.2 Shifted window partitioning in successive blocks In successive blocks, the
SwinT introduces a shifted window partitioning strategy. This strategy shifts the windows
by a certain stride, creating overlapping regions between adjacent blocks. The overlapping
regions help capture contextual information that extends beyond the boundaries of a single
window. This shift-based partitioning enhances the SwinT’s ability to model long-range
dependencies efficiently.

2.2.4.2.3 Hierarchical architecture The SwinT builds hierarchical feature maps by
merging image patches in deeper layers. This process involves aggregating information
from smaller patches to form larger receptive fields, enabling the model to capture context at
different scales. The merging of image patches is depicted by shaded areas in the architecture,
representing the combination of patch-level features into higher-level representations.

2.2.4.3 Relative position bias

To account for the spatial relationship between different tokens, the SwinT [16] employs a
relative position bias. The relative position bias provides additional positional information
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that helps the model attend to relevant locations within the image. It is incorporated into the
attention calculation by adding a learned bias term to the dot product of queries and keys.
The relative position bias term can be included in the attention formula as follows:

Attention(Q,K,V ) = SoftMax(QKT/
√

d +B)V (2.6)

2.2.4.4 Improvement in Swin Transformer v2

SwinT v2 [25] introduces several adaptations, as displayed in Figure 2.4, to enhance its
capacity scaling capabilities and performance:

Fig. 2.4 Adaptions made on the original SwinT architecture

2.2.4.4.1 Res-Post-Norm Configuration for Improved Capacity Scaling To facilitate
easier capacity scaling, SwinT v2 replaces the previous pre-norm configuration with a
res-post-norm configuration. In the res-post-norm configuration, layer normalization and
residual connections are applied in the opposite order. This change simplifies the architecture
and improves training stability, making it easier to scale up the model’s capacity without
encountering optimization difficulties.
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2.2.4.4.2 Scaled Cosine Attention for Enhanced Capacity Scaling In SwinT v2, the
original dot product attention is replaced with scaled cosine attention to improve capacity
scaling. The scaled cosine attention computes the cosine similarity between queries and
keys and scales it by the square root of the dimension. This modification helps alleviate
the vanishing gradient problem, which is critical for scaling up the model’s capacity. By
enhancing gradient flow, the SwinT v2 can more effectively handle larger models with
increased capacity. The detailed formula of Scaled Cosine Attention is shown as follows:

Sim(qi,k j) = cos(qi,k j)/τ +Bi j (2.7)

2.2.4.4.3 Log-Spaced Continuous Relative Position Bias SwinT v2 [25] introduces a
log-spaced continuous relative position bias approach to replace the previous parameterized
approach. While this adaptation is not directly related to capacity scaling, it provides
more flexibility in modeling relative positions and allows the model to capture long-range
dependencies more effectively. By using a log-spaced grid, the model can encode both local
and global positional information in a more precise and adaptable manner, which can be
advantageous when scaling up the model’s capacity.

2.2.4.5 Compare Swin Transformer to Vanilla Vision Transformer

Compared to the vanilla ViT [5], the SwinT offers several advantages. The use of shifted
windows and self-attention in the Swin Transformer allows it to efficiently capture both
local and global dependencies, making it more effective in modeling spatial relationships
within an image. Additionally, the shifted window partitioning strategy enables the Swin
Transformer to capture contextual information across different scales, enhancing its ability to
model long-range dependencies.
Furthermore, SwinT v2 introduces improvements such as the res-post-norm configuration,
scaled cosine attention, and log-spaced continuous relative position bias. These enhance-
ments enhance training stability, improve information propagation, alleviate the vanishing
gradient problem, and provide better modeling of positional information.
In contrast, the vanilla ViT operates on fixed-size patches without considering local depen-
dencies explicitly. It relies solely on the self-attention mechanism to capture relationships
between patches. While effective, this approach may be computationally expensive and less
efficient in modeling local information compared to the SwinT.
Overall, the SwinT demonstrates superior performance in various computer vision tasks and
offers enhancements that address specific limitations of the vanilla ViT architecture.



2.3 Optical flow 15

2.3 Optical flow

2.3.1 Overview

Video colorization models aim to generate realistic and coherent colorized frames for a given
grayscale video sequence. One challenge in video colorization is maintaining consistency in
color predictions across frames to ensure natural and visually pleasing results. To address
this challenge, optical flow has been widely utilized as a constraint mechanism in video
colorization models. In this section, we provide an overview of optical flow and its application
in maintaining color consistency throughout an entire video.
Optical flow refers to the pattern of apparent motion of objects in an image or video sequence.
It represents the displacement vectors of points between consecutive frames, capturing the
pixel-level correspondence between frames. Optical flow estimation allows us to understand
the motion information in a video and can be used as a valuable tool for various computer
vision tasks.
In the context of video colorization, optical flow is employed as a consistency constraint
to ensure that the color predictions remain consistent across frames. The basic idea is to
propagate the color information from one frame to the next based on the estimated optical
flow, thereby maintaining the coherence of colors throughout the video sequence.
By aligning the colorized frames with the estimated optical flow, the color information
is propagated smoothly from one frame to the next, resulting in temporally consistent
colorization. This constraint mechanism helps to alleviate flickering or abrupt changes
in color that might otherwise occur between consecutive frames when colorizing them
independently. Figure 2.5 gives a visual demonstration for optical flow.

Fig. 2.5 An example of optical flow image on the right, corresponding to two consecutive
images on the left.
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2.3.2 Recurrent All-Pairs Field Transforms (RAFT)

Fig. 2.6 RAFT architecture overview

Recurrent All-Pairs Field Transforms (RAFT) [26] is a novel optical flow estimation
method. RAFT tackles the challenge of accurately estimating dense optical flow by leveraging
a recurrent neural network architecture that explicitly models the interactions between all pairs
of pixels in the image. This approach enables RAFT to achieve state-of-the-art performance
on benchmark datasets, surpassing existing optical flow methods.

2.3.2.1 Architecture of RAFT

The RAFT’s architecture consists of a recurrent neural network that iteratively refines the
optical flow estimation. The network takes two consecutive frames as input and generates
an initial flow estimate, which is then refined through multiple iterations. Each iteration
of the network consists of a series of recurrent computations, where the network processes
information from all pairs of pixels in the image to refine the flow estimation.
The recurrent computations in RAFT are based on the concept of all-pairs field transforms,
which capture the interactions between pixel pairs. By considering the interactions of all
pairs of pixels, RAFT can effectively model complex motion patterns, handle occlusions,
and estimate accurate flow vectors even in the presence of large displacements.



Chapter 3

PROJECT MANAGEMENT PLAN

3.1 Overview

The Project Management Plan chapter provides an overview of the project management
approach utilized in this thesis. The focus is on employing the Scrum model and completing
the project within 14 weeks, divided into 14 sprints. The chapter covers project organization,
sprint planning, execution, review, and retrospective processes. It also addresses communi-
cation, reporting, and risk management strategies. The plan aims to ensure efficient project
execution, stakeholder engagement, and timely delivery of project objectives within the
allocated time frame.

3.2 Planning

3.2.1 Sprints

Table 3.1 Sprints plan

Sprint Tasks
Sprint 1

• Identify the research topic
• Plan for the research topic
• Investigate relevant papers
• Experiment with related models
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Sprint Tasks
Sprint 2

• Conduct research on baseline models.
• Evaluate the foundational models.
• Implement training code using PyTorch.
• Initialize the training environment.

Sprint 3
• Investigate the dataset, data preparation techniques, and data preprocessing

methods
• Proceed with the implementation and training of the model
• Conduct model experimentation
• Design a data flow diagram

Sprint 4
• Proceed with the training of the AI model
• Examine and draw conclusions regarding the results of the new model
• Propose improvements for the next training iteration
• Initiate report writing

Sprint 5
• Proceed with the implementation, enhancement, and training of the model
• Improve data preprocessing techniques
• Evaluate the model on the test set
• Write a report for the research topic
• Address encountered errors
• Consider recommendations and feedback from reviewers
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Sprint Tasks
Sprint 6

• Introduce a new approach with changes in the model architecture
• Train the model using the new approach
• Modify data processing modules (change optical flow module, change data

preprocessing module)
• Illustrate the new architecture diagram of the model
• Refine and optimize the training source code
• Continue writing the report

Sprint 7
• Test and evaluate the model in Approach 1
• Test and evaluate the model in Approach 2
• Propose the next steps to improve the approaches
• Rent additional training servers
• Write code for automated deployment of training on the training servers
• Continue writing the report

Sprint 8
• Continue training the model in different approaches with additional data

and experiment with varying model hyperparameters
• Augment the training data
• Test the newly concluded model versions
• Enhance the quality of the training dataset by filtering out noisy images
• Continue writing the report

Sprint 9
• Continue experimenting with training using different hyperparameters
• Optimize the training time of the model by employing distributed data-

parallel training
• Conduct a survey on the model’s results
• Send out survey invitations via email
• Continue writing the report
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Sprint Tasks
Sprint 10

• Train the AI model
• Continue experimenting and improving the data transfer speed on the server
• Prepare presentation slides
• Continue writing the report

Sprint 11
• Deploy the model
• Create a user interface for the model and deploy it on HuggingFace
• Write the report
• Summarize the survey results

Sprint 12
• Prepare a presentation
• Conduct a trial presentation
• Demonstrate the product
• Edit the report

Sprint 13
• Edit the presentation
• Conduct a trial presentation
• Demo the product
• Edit the report

Sprint 14
• Revise the presentation
• Perform a trial presentation
• Demonstrate the product
• Edit the report

3.2.2 Detailed tasks
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Table 3.2 Detailed tasks by members

Ta
sk

M
em

be
r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Ta
sk

1

System construction
(main)

Do research (main) Document writing (main)

Ta
sk

2

Do research (secondary) Document writing (sec-
ondary)

Do research (secondary)

Ta
sk

3

Comprehensive inspec-
tion and document
writing (secondary)

System construction (sec-
ondary)

System construction (sec-
ondary)

Sp
ri

nt
1

• Formulate the research
idea and conduct the
study

• Identify the difficulties
and challenges

• Develop a plan for the
research topic

• Assign tasks to team
members

• Finalize the applied
methodology

• Establish an environ-
ment for testing the
baseline model

• Choose a topic for the
project.

• Read and summarize
relevant research pa-
pers.

• Read and condense the
source code of the base
model.

• Propose solutions for
the project.

• Build the development
environment for the
model.

• Gather relevant re-
search papers.

• Evaluate the base
model on common
metrics.
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Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
2

• Write PyTorch training
code

• Research methods to
enhance the model

• Write source code for
additional metrics

• Run experiments and
evaluate existing mod-
els.

• Inspect and analyze the
training data.

• Set up the machine and
deploy the model train-
ing.

• Run experiments and
evaluate existing mod-
els.

• Inspect and analyze the
training data.

• Set up the machine and
deploy the model train-
ing.

• Draw the pipeline flow
for the base model.

• Write code to prepro-
cess the input data for
the model.

• Fine-tune the training
parameters of the
model.

Sp
ri

nt
3

• Collect and search for
relevant training data

• Filter out inappropriate
videos from the dataset

• Preprocess the data
• Train the model

• Create a diagram repre-
senting the model archi-
tecture.

• Read additional
research papers.

• Set up WandB to log
the metrics.

• Prepare the test dataset.
• Evaluate the trained

model.
• Compare the results

with other models.



3.2 Planning 23
Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
4

• Set up parallel training
to accelerate the pro-
cess

• Apply additional data
augmentation methods

• Modify the model ar-
chitecture diagram.

• Add dropout to the
model.

• Adjust the hyperparam-
eters.

• Change the sampling
ratio.

• Check the colorization
results of the model to
make assumptions and
propose improvement
strategies.

• Conduct A/B testing to
decide on the padding
and scaling methods
used to adjust image
sizes.

• Create a storage repos-
itory on Google Cloud
to enable faster data re-
trieval from the training
server.

• Evaluate the developed
model in this sprint on
the DAVIS dataset.

• Compare this model
with other models us-
ing the same metrics.
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Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
5

• Augment the dataset
• Resolve padding issues

in optical flow
• Compare this model

with other models
based on the same
metrics

• Continue refining the
report

• Integrate training
graphs into WandB for
monitoring

• Reduce the complexity
of the model

• Select a platform or
framework for deploy-
ing the model in future
sprints

• Find ways to address
the limitations of
PyTorch data parallel
when encountering
out-of-memory (OOM)
errors.

• Evaluate the developed
model in this sprint on
the Davis dataset.

• Continue refining the
report.

• Modify the parameters.
• Find ways to provide a

more detailed explana-
tion of the project name
during presentations.

• Check the colorization
results of the model to
make assumptions and
propose improvement
strategies.

• Consider upgrading
the Google Cloud
data repository to a
multi-region setup to
ensure stability in data
download and training
deployment.

• Modify the model ar-
chitecture diagram.

• Continue refining the
report.

• Provide a more practi-
cal application scenario
for the project.
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Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
6

• Propose a new ap-
proach with changes in
the model architecture

• Modify the optical flow
module and regenerate
relevant files associated
with this module

• Compile a report sum-
marizing the improve-
ments in applying the
new optical flow mod-
ule

• Refine and optimize the
new training code

• Continue writing the re-
port

• Write training code for
the new approach.

• Test and debug the
training code for any is-
sues.

• Train the model using
the new approach.

• Modify the architecture
diagram for the new
model.

• Modify and optimize
the training code for the
previous approach.

• Apply FP16 data type
to the output files of the
optical flow module.

• Train the model using
the previous approach.

• Create a diagram repre-
senting the new model
architecture.

• Continue writing the re-
port.
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Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
7

• Test and evaluate the
model results using the
second approach

• Acquire additional
training servers

• Develop automated de-
ployment code for train-
ing on the new server

• Upload the training
data to a cloud platform
to facilitate the training
process on the new
server

• Propose solutions
based on the testing
results of model 2.

• Test the automatic train-
ing deployment code
on the server.

• Modify the training
code based on the pro-
posed solutions.

• Set up a cloud-based
platform to serve as
the storage for training
data.

• Test and evaluate the
model in approach 1.

• Propose solutions
based on the testing
results of model 1.

• Modify the training
code based on the pro-
posed solutions.

• Write and revise the re-
port to reflect the latest
updates.

Sp
ri

nt
8

• Search and gather ad-
ditional training data
sources

• Experiment with train-
ing the model using ap-
proach 1 with different
sets of hyperparameters

• Filter and enhance the
quality of the supple-
mented dataset

• Upload and append the
new data to the cloud
platform

• Set up the training
source code with the
new approach on the
server.

• Troubleshoot any errors
during the training pro-
cess of the new source
code.

• Train the model using
approach 2 with differ-
ent sets of hyperparam-
eters.

• Filter out noisy images
in the new dataset.

• Evaluate the testing re-
sults of the model ver-
sions and propose the
next optimal solution.

• Write a supplementary
report on the new
dataset.
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Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
9

• Continue experiment-
ing with training using
different sets of hyper-
parameters

• Modify the source code
to optimize training
time through parallel
data distribution meth-
ods

• Set up the training
source code with the
new approach on the
server.

• Troubleshoot any errors
during the training pro-
cess of the new source
code.

• Continue writing and
editing the report, ad-
dressing any errors or
inconsistencies.

• Evaluate the models on
the test set, analyzing
their performance and
comparing the results.

Sp
ri

nt
10

• Run the models to gen-
erate results for the
group’s survey submis-
sion

• Send the survey to rele-
vant participants

• Prepare presentation
slides

• Create a survey regard-
ing the model’s results.

• Send the survey to ap-
propriate recipients.

• Prepare the presenta-
tion slides.

• Run the old models
from other research pa-
pers to generate results
for the survey.

• Edit the report to
include information
about the survey.

• Prepare the presenta-
tion slides.
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Ta

sk
M

em
be

r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
11

• Develop a user inter-
face using Gradio

• Compose an email re-
questing the use of
Huggingface’s GPU re-
sources

• Send an email invit-
ing participants to com-
plete the survey

• Send an email inviting
participants to fill out
the survey form.

• Write a program to ag-
gregate the survey re-
sults.

• Include the survey re-
sults in the report.

• Send an email inviting
participants to fill out
the survey form.

• Edit the report as
needed.

Sp
ri

nt
12

• Find a design template
for the presentation.

• Assign different sec-
tions to team members
for the presentation.

• Work on the presenta-
tion based on the as-
signed sections.

• Prepare the presenta-
tion.

• Edit the report as
needed.

• Redesign the diagram.

• Prepare the presenta-
tion.

• Edit the report as
needed.

• Redesign the diagram.
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M

em
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r

D.T.Tran
SE160185

N.D.H.Nguyen
SE161261

T.T.Pham
SE160030

Sp
ri

nt
13

• Modify the Hugging
Face interface

• Conduct a test presenta-
tion

• Edit the presentation
based on feedback and
improvements

• Adjust the layout of the
report.

• Add an appendix sec-
tion to the report.

• Conduct a trial presen-
tation.

• Edit the presentation
based on the trial.

• Adjust the layout of the
report.

• Add an appendix sec-
tion to the report.

• Conduct a trial presen-
tation.

• Edit the presentation
based on the trial.

Sp
ri

nt
14

• Summarize the report
• Conduct a trial presen-

tation

• Summarize the report
• Conduct a trial presen-

tation

• Summarize the report
• Conduct a trial presen-

tation





Chapter 4

MATERIALS AND METHODS

4.1 Materials

4.1.1 Project Management Tool

The utilization of Google Sheets as a versatile project management tool for organizing and
tracking project progress, particularly within the framework of the Scrum model mentioned in
Chapter 3. This platform provides us with a collaborative and customizable system, enabling
effective planning, monitoring, and resource allocation for each sprint. By leveraging the
features of Google Sheets, such as spreadsheets and real-time collaboration, we significantly
enhance our project management efficiency, ultimately ensuring the successful execution of
our Scrum-based project.

4.1.2 Hardware

4.1.2.1 Google Colab

Google Colab is a cloud-based integrated development environment (IDE) that provides
researchers and developers with a convenient platform for running and executing machine
learning tasks. One of the notable features of Google Colab is the provision of free GPUs,
specifically the NVIDIA Tesla T4 GPUs, which can significantly accelerate deep learning
model training. These free GPUs are made available to users for a limited duration of time,
allowing them to harness the computational power required for training complex models
without the need for expensive hardware. In the initial research phase, we leveraged the
cost-saving benefits and testing capabilities of Google Colab, utilizing a free T4 GPU. This
allowed us to explore the training process and conduct preliminary experiments. However,
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due to the limitations in GPU quota and computational power, we encountered challenges in
performing complete training runs. As a result, we have to find other other alternatives.

4.1.2.2 Kaggle Notebook

Kaggle is another platform that provides researchers and data scientists with access to
powerful computational resources for machine learning and data science tasks. These GPUs
(1 NVIDIA Tesla P100 GPU and 2 NVIDIA Tesla T4 GPUs), available through Kaggle’s
kernels, enable accelerating experiments and tackling complex problems by leveraging the
platform’s robust infrastructure. However, GPU availability and usage time on Kaggle may
be limited due to high demand (30 hours per week). Therefore, we use Kaggle for the
inference stage, where we get the colorization results for the evaluation.

4.1.2.3 Personal Computer

During the later training phase, we encountered limitations with the computational power and
usage quotas provided by platforms such as Colab and Kaggle. As our model’s architecture
grew, we needed a more powerful hardware setup to accelerate the training process. Conse-
quently, we made the decision to leverage a personal computer equipped with an NVIDIA
GeForce RTX 3090 GPU. This hardware choice allowed us to enhance the training speed
and efficiency, enabling us to handle the increasing complexity of our models effectively.
By utilizing this upgraded hardware, we were able to overcome the previous limitations and
continue training our models with improved performance and scalability.

4.1.2.4 Vast.ai

Vast.ai is a leading platform for low-cost cloud GPU rental, making powerful GPU computing
accessible to all. It saves 5-6 times on GPU costs with our intuitive platforms.

During training model, we realized the limitations of using a personal computer not
optimized for AI training. To overcome this, we rented dedicated training servers from
Vast.ai. We utilized instances with powerful GPUs such as NVIDIA GeForce RTX 4090,
RTX A6000, and RTX 3090, among others. This transition to dedicated servers accelerated
our training and experimentation, allowing us to handle the increased complexity and scale
of our models more effectively.
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4.1.3 Data Management Platforms

4.1.3.1 Kaggle

Kaggle is a platform offering a robust data storage feature that provides a reliable and
convenient solution for storing and sharing large-scale datasets. With the integration of the
Kaggle API, we leverage this feature to access a generous allocation of 100GB of free storage
space for our datasets. This capability simplifies our data management process and enables
us to securely store and share datasets with ease. By utilizing Kaggle’s data storage feature,
we ensure the availability, accessibility, and scalability of our data, enhancing the efficiency
and effectiveness of our data-driven projects.

4.1.3.2 Google Cloud Platform

Google Cloud Platform (GCP) Storage is a secure and scalable cloud storage solution
that provides various storage classes to meet different performance, availability, and cost
requirements. We chose GCP Storage over Kaggle due to faster download speeds and the
ability to overcome download quotas. With a dedicated storage server in Western Europe,
we ensure efficient data transfer to Vast.ai’s training servers, which reduces wasted time and
saves money. GCP Storage offers scalability, reliability, and performance for storing and
accessing datasets in our machine-learning projects.

4.1.4 Framework and Libraries

4.1.4.1 PyTorch

PyTorch is a popular open-source machine learning framework known for its flexibility and
dynamic computational graph. It offers efficient model development, GPU acceleration, and
a rich ecosystem of tools and libraries. It is widely used by researchers and practitioners for
building and training neural networks.

In this research, PyTorch was selected as the preferred framework for several reasons.
Firstly, PyTorch demonstrates superior flexibility in terms of customization capabilities,
allowing for more extensive model adaptations. Secondly, the utilization of PyTorch aligns
with the use of a baseline model implemented in the same framework, facilitating seamless
integration and comparison. Lastly, the decision to opt for PyTorch was influenced by
the limited ongoing development efforts observed in TensorFlow, thereby emphasizing the
relevance and continued advancements within the PyTorch ecosystem.
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4.1.4.2 Transformers

The transformers package in Python, developed by Hugging Face, is a versatile and user-
friendly tool for natural language processing and computer vision tasks. This package
offers a wide range of functionalities, including easy-to-use pretrained models and seamless
integration into various applications. With the transformers package, researchers and
practitioners can leverage state-of-the-art pretrained models such as BERT [27], GPT [28],
and ViT [5] for their NLP and computer vision projects. Installing pretrained models from the
transformers package is straightforward, requiring minimal effort and ensuring quick access
to powerful pretrained models. This ease of installation allows users to rapidly incorporate
and fine-tune pretrained models in their workflows, enabling efficient experimentation and
advancing the state-of-the-art in NLP and computer vision domains.

4.1.5 Visualization and Tracking tools

Weights and Biases (WandB) is an advanced platform that simplifies the training and mon-
itoring of machine learning models. It offers comprehensive logging, visualization, and
collaboration features, seamlessly integrating with popular frameworks. Users gain insights
through interactive dashboards and can ensure reproducibility with robust experiment track-
ing. WandB accelerates model development, fosters collaboration, and promotes informed
decision-making in machine learning projects. In this research, WandB is used for tracking
the performance of the currently trained model by plotting the graph and sending messages
to the Slack group. See more in Appendix B

4.2 Method

4.2.1 Overview

Based on the end-to-end network proposed by Zhang et al. [19], this research proposes two
novel methods for video colorization. Instead of utilizing VGG19 [29] as employed in the
aforementioned model, alternative backbones such as ViT [5] and its variants are explored.
The field of Computer Vision is currently witnessing the emergence and prevalence of ViT
techniques, which have demonstrated remarkable performance. Consequently, employing
ViT and its variants holds promise as a potential approach. This research introduces two
novel end-to-end models, each employing a distinct backbone as the feature extractor for
subsequent processing. The first model, referred to as ViTExCo, employs the pretrained ViT
with 12 attention-based blocks [21]. The second model, known as SwinTExCo, employs the
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Fig. 4.1 The overall architecture of ViTExCo and SwinTExCo
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pretrained SwinT [25], which incorporates improvements in processing speed and scalability
by utilizing the Hierarchical and Shifted Windows techniques. This section provides an
overview of the ViTExCo and SwinTExCo architectures, as depicted in Figure 4.1.

4.2.2 Proposed methods

4.2.2.1 Overall network

In this research, we proposed two end-to-end video colorization models, namely ViTExCo
and SwinTExCo. They have the same overall architecture and both use the exemplar-
based colorization approach. Each model comprises two main components: the Generator
module and the Discriminator module. The Generator module consists of three distinct
submodules, each serving a specific purpose. The first submodule, namely the Feature
Extractor submodule, is responsible for extracting features from both the video frame and
the reference image. Leveraging the ViT architecture in ViTExCo and the SwinT architecture
in SwinTExCo, this submodule effectively captures relevant visual information. The second
submodule, referred to as the Warp submodule, generates a Correlation Matrix M and a
Similarity Map S based on the extracted features from the Feature Extractor submodule. This
component is crucial for establishing meaningful relationships between the video frame and
the reference image. Finally, the Colorization submodule, which constitutes the core of the
colorization process, utilizes the Correlation Matrix M and Similarity Map S to effectively
colorize the video frames. On the other hand, the Discriminator module plays a pivotal
role in evaluating the quality of the colorization process performed by the Generator module.
Through an adversarial training scheme, the Discriminator module provides feedback to
guide and refine the colorization process, ensuring the generation of visually pleasing and
realistic colorized videos.

Our approach employs the LAB color space instead of RGB or alternative color spaces.
This choice is motivated by the fact that the colorization process only needs to adjust
two channels, namely a and b. In LAB color space, the l channel represents perceptual
lightness, exhibiting values within the [−100,100] range. The a channel corresponds to the
red/green value, ranging from [−128,128]. Similarly, the b channel represents the blue/yellow
value, spanning the [−128,128] range. By utilizing the LAB color space, ViTExCo and
SwinTExCo can simplify the colorization process while simultaneously preserving the
contextual information of the video frames.

Figure 4.1 provides a comprehensive overview of the architectural design employed in
this research. The input video, denoted as X l = {xl

t}, represents a grayscale video consisting
of T frames, where t = 1,T , denotes the tth video frame. Each frame, xl

t ∈ RH×W×1, is
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represented by a three-dimensional tensor, where H and W correspond to the height and
width of the frame, respectively. These dimensions reflect the spatial resolution of the video,
providing information about the size and aspect ratio of the frames.

The main objective of this research is to generate a colorized video, denoted as X̂ lab =

{x̂lab
t }, where t = 1,T . Each frame, x̂lab

t ∈ RH×W×3, represents the colorized version of the
tth video frame within the LAB color space.

The colorization process relies on two crucial components: a reference color image,
denoted as ylab ∈ RH×W×3, and the previous colorized frame, xlab

t−1. The reference color
image provides guidance and serves as a consultation for the desired colorization outcome.
By incorporating the previous colorized frame, the model can leverage temporal dependencies
and ensure consistency in colorization throughout the video.

Through the utilization of the architectural design outlined in Figure 4.1, this research
aims to achieve accurate and visually appealing colorization of grayscale videos. Integrating
the reference image and the previous colorized frame as guiding references enhances the
model’s ability to capture temporal dependencies and produce coherent colorization results.

4.2.2.2 Generator module

4.2.2.2.1 Feature Extractor submodules (FES) This aforementioned submodule ex-
tracts features from both the video frame and the reference image, which are subsequently
reserved for future utilization. Two distinct variants of Feature Extractor submodules are
implemented, namely the ViT Extractor submodule and the SwinT Extractor submodule.
These variants are specifically designed for integration within the ViTExCo and SwinTExCo
frameworks, respectively. Each variant operates by accepting either a video frame or a
reference image as input and conducts a process of feature extraction. As a result of this
extraction process, four tensors are generated, effectively representing the extracted features
corresponding to the specific video frame or image.

ViT Extractor submodule (VTES): The ViT Extractor submodule represents a pre-
trained ViT model [5] that has been designed to extract features from video frames or
reference images. Specifically, it focuses on extracting features from the ViT blocks po-
sitioned at indices 5, 7, 9, and 11, as illustrated in Figure 4.2. Consequently, it produces
four distinct feature tensors, each capturing pertinent information at different hierarchical
levels. These feature tensors serve as valuable representations of the input data, facilitating
the effective transfer of colors from the reference image to the corresponding video frame by
subsequent submodules.
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Fig. 4.2 The architecture of the ViT Extractor submodule (VTES)

Fig. 4.3 The architecture of the SwinT Extractor submodule (STES)
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SwinT Extractor submodule (STES): The SwinT Extractor submodule, presented
in Figure 4.3, is of a pretrained SwinT model [25]. Similar to the functional capability
of the ViT Extractor submodule, it is employed to extract features from video frames or
reference images. The architecture of the SwinT comprises four stages, each with a distinct
configuration. This arrangement enables the extraction of features at various levels, ranging
from local to global, from the input image or video frame. Exploiting this characteristic,
we obtain four outputs from the four stages and convert them into four feature tensors for
utilization by subsequent submodules.

Fig. 4.4 The architecture of the Warp submodule (WS)

4.2.2.2.2 Warp submodule (WS) The Warp submodule, depicted in Figure 4.4, assumes
a critical role in the colorization process. It is a trainable CNN model [3] responsible for
determining the similarity between the reference image and the currently colorized video
frame. This similarity information is utilized by subsequent modules to accurately transfer
color from the reference image to the video frame.
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To commence, the Warp submodule receives 2 inputs of 4 feature tensors extracted from
the Feature Extractor submodule (ViT Extractor or SwinT Extractor). These tensors are
obtained from the reference image and the presently colorized video frame, respectively. The
feature tensors undergo a Feature Transform block to be reshaped into a suitable format for
concatenation. The Feature Transform block is a CNN block of multiple layers, consisting of
Reflection Padding, Convolutional, Instance Normalization, Upsampling, etc. Subsequently,
the transformed features pass through several Residual blocks to undergo deeper transfor-
mations, resulting in the generation of two tensors: Θ for the reference image and Φ for
the grayscale video frame. These tensors are then employed to compute the Correlation
Matrix M ∈ RHW×HW through a matrix multiplication operation. The Correlation Matrix
captures the relationships between the features of the video frame and the reference image,
providing insights into their similarity and dissimilarity. Furthermore, the Warp submodule
computes the Similarity Map S ∈ RH×W from the Correlation Matrix M . This is achieved
by applying the Maximum operator to the Correlation Matrix, resulting in a map where each
element represents the maximum correlation between corresponding spatial locations in the
video frame and the reference image. The Similarity Map serves as a representation of the
spatial correspondence and similarity between the two input sources.

In summary, the Warp submodule utilizes the feature tensors extracted from the reference
image and the video frame as input to generate the Correlation Matrix M and the Similarity
Map S . These outputs play a critical role in facilitating the accurate transfer of color between
the two sources.

Fig. 4.5 The architecture of the Colorization submodule (CS)

4.2.2.2.3 Colorization submodule (CS) The Colorization submodule, depicted in Fig-
ure 4.5, serves as a pivotal component within the overall model, responsible for executing the
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colorization process. It is a trainable CNN model [3], consisting of multiple layers, including
Convolutional layers, Normalization layers, and activation functions. In this research, this
submodule is employed to colorize the current video frame based on its colorized previous
frame. This mechanism aims to adjust the colors in the predicted current frame, ensuring
consistency in coloration across consecutive frames.

The colorization process within this submodule encounters two distinct scenarios as
presented in Figure 4.5. These scenarios are distinguished between the colorization of the
first frame in a pair of adjacent frames and the colorization of the latter. Both situations will
be described in more detail in Section 4.2.2.4. However, in any scenario, the flow of a data
sample in each iteration will be the same. The Colorization will get 4 inputs, consisting
of the grayscale video frame (previous or current), ab channels of Correlation Matrix M ,
Similarity Map S , and the Placeholder P or the colorized previous frame x̂lab

t−1. These inputs
will be transformed to a suitable shape for concatenation before being passed through several
Convolutional layers to predict the ab channel of the presently colorized frame. This result
will be concatenated with the grayscale input to produce the final result (colorized previous
frame x̂lab

t−1 or colorized current frame x̂lab
t )

To summarize, the Colorization submodule receives the grayscale video frame xl , the
Correlation Matrix M , the Similarity Map S , and another input based on the situation. It
then generates the colorized video frame x̂lab

t−1 or x̂lab
t as its output.

4.2.2.3 Discriminator module

The input tensors provided to the Discriminator module are formed by concatenating a pair
of consecutive video frames. Specifically, the predicted previous video frame x̂lab

t−1 and the
predicted current video frame x̂lab

t are concatenated, as well as the ground truth previous
video frame xlab

t−1 and the ground truth current video frame xlab
t . These concatenated tensors

capture the temporal relationship between consecutive frames and serve as input to the
Discriminator module.

Differentiating between colorized video frames and ground truth video frames is a critical
step in assessing the effectiveness of the colorization process. To perform this assessment,
the Discriminator module, depicted in Figure 4.1, is utilized. The Discriminator module is
a model designed for distinguishing two consecutive video frames as input, whether they
are colorized consecutive frames or ground truth consecutive frames. The output of the
Discriminator module is used to calculate the Discriminator Loss and the Adversarial Loss,
which are described in detail in Section 4.2.3. These loss functions quantify the similarity
or dissimilarity between the predicted video frames and the ground truth video frames as
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well as the reference image. By comparing the colorized frames to them, the Discriminator
module assesses the realism and fidelity of the colorization process.

In essence, the Discriminator module plays a pivotal role in judging the quality of the
colorized video frames. It serves as a discriminator between the predicted frames and the
ground truth frames, distinguishing between realistic and unrealistic colorizations. This
assessment is crucial in guiding the optimization of the colorization model and ensuring that
the generated video frames closely resemble the ground truth data while transforming the
information from reference images into the generated video frames.

4.2.2.4 Training process

4.2.2.4.1 Reference image selection The procedure for selecting the reference image
is intricate. Firstly, the current grayscale video frame is compared with the images in the
ImageNet-1K dataset [30] using the Cosine similarity measure, which leverages features
extracted from a pretrained SwinT model [25]. The top 5 images with the highest similarity
scores are selected as real-reference images. From this set, one image is randomly chosen
with uniform probability. The selection of 5 images, rather than just 1, aims to diversify the
reference and mitigate overfitting, aligning with the approach employed by Zhang et al. [19]
for fair comparison purposes. Empirical evidence suggests that utilizing 5 real-reference
images yields superior performance compared to alternative choices. Furthermore, 2 adjacent
ground truth frames, consisting of the ground truth of the presently colorized frame and
its ground truth previous frame will be selected as ground-truth-reference images. One
image is randomly selected with uniform probability from these two images. The final
reference image is determined by randomly selecting either the real-reference image or the
ground-truth-reference image, with different probabilities assigned to each.

This entire process ensures consistency in the colorization process across frames, while
the designated ratio prevents overfitting and discourages the model from simply learning the
exact colors of the ground truth.

4.2.2.4.2 An iteration of training In every iteration of the training procedure, as il-
lustrated in Figure 4.1, the colorization task is partitioned into two stages. Each stage is
responsible for colorizing a frame within a pair of adjacent video frames (denoted as xl

t−1 and
xl

t ), where the input of the model for colorizing the later video frame is the colorized result of
the sooner frame. This approach is employed to ensure that these frames possess coherent and
continuous colors, thereby mitigating potential flickering artifacts. To initiate the colorization
process, a reference image is selected for each video frame. Considering that the training
dataset encapsulates a single coherent scene throughout an entire video, the same reference



4.2 Method 43

image is consistently chosen for all frames within a video during each training iteration.
In an iteration, there are 2 situations as mentioned in Section 4.5, namely the colorization
of the first frame in a pair of adjacent frames and the colorization of the latter. These 2
situations lead to the differences in 2 stages of an iteration because there is no previous frame
for the first frame of the pair. In that situation, a black image called Placeholder P will be
used as an alternative input. This selection serves two primary purposes. Firstly, it provides
a simplified approach that requires minimal additional programming or processing steps,
thereby enhancing efficiency, particularly when dealing with extensive datasets. Secondly,
using a black image as the preceding frame ensures the model’s equilibrium during the
normalization of all video frames. In most cases, adopting a black image proves to be a
sensible and pragmatic approach.

The training iteration begins with the first stage after the reference image selection
process. The Placeholder P , as defined previously, is combined with the grayscale previous
frame xl

t−1 and the reference image ylab as the inputs. These inputs are fed into the Generator
module, resulting in the colorized previous frame x̂lab

t−1. In this stage of this situation, the
Colorization submodule uses the grayscale previous frame xl

t−1 and the Placeholder P

as inputs. Subsequently, in the second stage, the output from the first stage (x̂labt−1) is
supplied to the Generator module along with the grayscale current frame represented as xl

t

and the reference image ylab. This configuration enables the generation of the colorized
current frame x̂lab

t . The outcomes obtained from the two stages of the generation process are
evaluated by the Discriminator module. The input to the Discriminator module is formed
by concatenating the previous and current frames, as illustrated in Figure 4.1 and described
in 4.2.2.3. Backward propagation then occurs, facilitating the advancement of the training
process to the subsequent iteration.

4.2.3 Loss functions

The training process of our model incorporates two distinct losses, namely the Generator
Loss and the Discriminator Loss, as illustrated in Figure 4.1. The Generator Loss is utilized
to optimize the parameters of the Generator module (Section 4.2.2.2) through backpropa-
gation. Conversely, the Discriminator Loss is employed during the backpropagation of the
Discriminator (Section 4.2.2.3) to refine its ability to distinguish. It is worth noting that when
backpropagating the Discriminator, the parameters of the Generator are frozen to ensure a
focused learning process. In the following sections, we will delve deeper into the intricate
workings of these two losses, providing a comprehensive understanding of their individual
roles in enhancing the overall performance of our model.
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4.2.3.1 Generator Loss

4.2.3.1.1 L1 Loss The L1 Loss function measures the color discrepancies between a
colorized video frame x̂t and its corresponding ground truth frame xt . By optimizing the
Generator module on this loss function, the video colorize model can generate more accurate
predictions that closely approximate the appearance of the ground truth video frames. The
detailed mathematical expression for LL1 is provided below:

LL1 = ||x̂lab
t − xlab

t ||1 (4.1)

4.2.3.1.2 Adversarial Loss In order to enhance the realism of the colorized videos,
Adversarial Loss is integrated as a constraint for the training process. Diverging from the
conventional use of an image discriminator, a video discriminator is employed, following the
approach adopted in Deep Exemplar-based Video Colorization [19]. This strategic decision
stems from the video discriminator’s capability to identify potential flickering in the colorized
videos, distinguishing them from ground truth footage. By leveraging the video discriminator,
the model can acquire the ability to colorize videos while minimizing flickering concerns and
ensuring the verisimilitude of the colorized video frames. This approach effectively elevates
the quality and visual realism of the colorized videos. The mathematical expression for Ladv

is provided below:

Ladv =E(x̂t−1,x̂t)

[(
D(x̂t−1, x̂t)−E(xt−1,xt)D(xt−1,xt)−1

)2
]

+E(xt−1,xt)

[(
D(xt−1,xt)−E(x̂t−1,x̂t)D(x̂t−1, x̂t)+1

)2
] (4.2)

The expression D(xt−1,xt) refers to feeding two consecutive frame xt−1 and xt into the
Discriminator module 4.2.2.3. The output of D(xt−1,xt) is a floating-point value that falls
within the range of [0,1]. This scalar signifies the probability that the input frames are ground
truth frames.

4.2.3.1.3 Perceptual Loss The Perceptual Loss, originally introduced in [31], is leveraged
to train a neural network in a semantic manner, enabling the transfer of image style from one to
another. It quantifies the dissimilarity between the high-level pattern of two images, including
edges, textures, and shapes. By incorporating this loss, we ensure the perceptual plausibility
of the output. This loss penalizes the semantic discrepancies between the colorized frame x̂t

and the corresponding ground truth frame xt . The mathematical expression for Lperc can be
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expressed as follows:
Lperc = ||φ s

x̂ −φ
s
x ||22 (4.3)

where φ s
x̂ represents the sth output features map of the Feature Extrator submodule 4.2.2.2.1

when forwarding the input x̂.

4.2.3.1.4 Contextual Loss The Contextual Loss expresses the disparity between the
higher-level characteristics of two images, taking into account the overall image context, as
well as edges, textures, and shapes. In the work presented in [32], the Contextual Loss was
employed to train a neural network in style transfer while preserving the underlying structure.
This enables the network to learn how to transform an input image into an output image with
the desired features. Given its capability to compare contextual meaning between a video
frame and a reference image, the Contextual Loss is well-suited for promoting similarity in
colors between the predicted frame x̂t and the corresponding reference image. Initially, we
compute the cosine similarity ds(i, j) between each pair of feature points φ s

x̂(i) and φ s
y( j),

where d̂s(i, j) = ds(i, j)/(minkds(i,k)+ ε) and ε = 10−5. The pairwise affinities As(i, j)
across features are then computed using the following formula:

As(i, j) = softmax
j

(
1− d̂s(i, j)/h

)
(4.4)

The bandwidth parameter h= 0.1 was mentioned in [19] determines the range of influence
for calculating As(i, j). The values of As(i, j) range between [0,1], indicating the similarity
between x̂t(i) and y( j) in the features of the sth stage output of FES module 4.2.2.2.1.
Building upon the forward matching approach described in [19], we identify the most
relevant feature φ s

y, j in y for each feature φ s
x̂,i. In essence, the Contextual Loss aims to

maximize the contextual similarity between the predicted frame and the reference frame,
leveraging the values of As(i, j):

Lctx = ∑
s

ws

[
− log

(
1
Ns

∑
i

max
j

As(i, j)

)]
(4.5)

We use 4 feature maps: s = 1 to 4. Ns indicates the feature number of the sth stage from the
FES module 4.2.2.2.1. ws is the suitable weight for sth stage.

4.2.3.1.5 Temporal Consistency Loss To ensure temporal coherence in video coloriza-
tion, a Temporal Consistency Loss [33] is integrated into the colorization process. This loss
function penalizes color changes that occur along the flow trajectory, explicitly considering
the consistency of colors over time. By incorporating this constraint, the model strives to
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maintain consistent color transitions in video frames, leading to improved visual quality
and coherency of the colorized video. This approach effectively addresses issues such as
flickering, promoting smoother and more natural-looking color changes. To reinforce tem-
poral consistency in our model, we leverage the RAFT algorithm [26] to generate optical
flow information for each frame pair. Additionally, we utilize a method [34] to generate an
occlusion mask, which helps identify regions where the flow estimation might be less reliable.
By combining these flow and mask components, we calculate the temporal consistency loss,
which contributes to enhancing the overall visual quality of the colorized output. The formula
for Ltemp is expressed as follows:

Ltemp = ||mt−1 ⊙Wt−1,t(x̂lab
t−1)−mt−1 ⊙ x̂lab

t || (4.6)

where Wt−1,t refer to the forward optical flow from the previous frame xt−1 to xt and mt−1 is
the binary mask and ⊙ denotes Hadamard product operation.

4.2.3.1.6 Smoothness Loss Smoothness loss was also introduced in [19] to encourage
spatial smoothness. In video colorization tasks, it is often assumed that neighboring pixels
of the predicted frame x̂t should have similar chrominance values if they have similar
chrominance in the corresponding ground truth frame xt . A smoothness loss is incorporated
into the colorization process to enforce this constraint. This loss function calculates the
difference between the current pixel’s color and the weighted color of its 8-connected
neighborhood. By minimizing this loss, the model can ensure that the color transitions in the
video frames are smooth and consistent, thereby improving the overall visual quality of the
colorized video. This approach is particularly effective in producing natural-looking color
transitions and reducing the occurrence of color artifacts in the colorized video. The formula
for Lsmooth can be expressed as follow:

Lsmooth =
1
N ∑

c∈{a,b}
∑

i

(
x̂c

t (i)− ∑
j∈N(i)

wi, jx̂c
t ( j)

)
(4.7)

where N is the number of samples in a training step, a and b are 2 channels in LAB color
space. N(i) represents the adjacent pixels of a pixel i. wi, j is weighted least squares (WLS)
weight indicating correlations between nearby pixels.
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4.2.3.1.7 Overall Loss We add all the losses above to create the total loss that we want to
optimize

L = λL1LL1 + λadvLadv + λpercLperc + λctxLctx + λtempLtemp + λsmoothLsmooth (4.8)

where λ is the weight of each loss function contribution to the total loss formula.

4.2.3.2 Discriminator Loss

The Discriminator Loss is used for the backpropagation process of the Discriminator Module.
Its primary purpose is to enhance the Discriminator’s ability to differentiate between a ground
truth frame and a colorized frame. The Discriminator Loss LD can be calculated as follow:

LD =

[
E(x̂t−1,x̂t)

((
D(x̂t−1, x̂t)

−E(xt−1,xt)D(xt−1,xt)+1
)2
)

+E(xt−1,xt)

((
D(xt−1,xt)

−E(x̂t−1,x̂t)D(x̂t−1, x̂t)−1
)2
)]

/2

(4.9)

The Discriminator Loss exhibits a comparable characteristic to the Adversarial Loss
(Section 4.2.3.1.2) implemented for the Generator (Section 4.2.2.2), but differs slightly in
its operator. This discrepancy in the operator choice leads to the gradient tensor being in
the opposite direction compared to the Generator’s loss. By optimizing the Discriminator
Loss, we aim to train the Discriminator (Section 4.2.2.3) to become more proficient in
discerning between ground truth frames and colorized frames, ultimately improving the
overall performance of the colorization process. See more about the log of training losses in
Appendix B

4.2.4 Implementation detail

4.2.4.1 Dataset

4.2.4.1.1 Training dataset We curate an extensive collection of video datasets specifically
designed for training purposes. Our dataset comprises a wide range of sources, including
the Hollywood2 dataset [35], videos obtained from Pixabay [36], the DAVIS dataset [1],
the REDS dataset [37], and the training dataset from the NTIRE 2023 Video Colorization
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Previous frame Current frame Optical flow Reference image

Fig. 4.6 Example from training dataset

Previous frame Current frame Reference frame

Fig. 4.7 Example from augmented ImageNet-1K.

Challenge [38]. The combined dataset consists of 269 videos from the Hollywood2 dataset,
783 videos downloaded from Pixabay using the Pixabay API, and 90 videos from the DAVIS
dataset, which provides densely annotated video object segmentation data. Moreover, we
leverage the REDS dataset as a valuable resource for video restoration and enhancement
tasks. Furthermore, we incorporate the NTIRE 2023 Video Colorization Dataset, which
includes video sequences specifically created for the video colorization domain.

In the context of our methodology described in Section 4.2.2.4, for each pair, we carefully
curate the five most similar images from the ImageNet-1K dataset [30]. These images serve
as example guides for the model in the colorization process. For extracting optical flow
information, this research uses the RAFT algorithm [26]. Figure 4.6 provides a sample of
our training dataset.

To enhance the diversity of the dataset, we randomly select 70,000 images from the
ImageNet-1K dataset [30], ensuring that each image had a corresponding reference image.
We apply random geometric distortion and luminance noise techniques to introduce greater
variety and realism into the dataset. This augmentation process can be observed in Fig-
ure 4.7, where the resulting video frames display enhanced diversity and increased realism.
Augmented Current frame (middle) created by applying random geometric distortion and
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luminance noise to the image. Previous frame (left) represents the original unaltered image.
Reference image (right) also obtained from ImageNet-1K.

We ensure the quality of our dataset through a filtering process, eliminating low-quality
and black-and-white videos from the aforementioned sources. Additionally, we conduct a rig-
orous manual verification process to ensure adherence to our quality standards. Consequently,
we accumulate 172,032 samples for the training dataset, summarized in Table 4.1.

Table 4.1 Summary of training datasets

Dataset Name No. videos No. samples

Hollywood2 [35] 269 12,560
Pixabay [36] 783 38,416
DAVIS [1] 90 6,118
REDS [37] 300 23,760
NTIRE 2023 [38] 170 21,178
Augmented dataset from ImageNet-1K [30] - 70,000

Total 1,612 172,032

4.2.4.1.2 Evaluation dataset We evaluate models on the DAVIS dataset [39] and Videvo [2].
DAVIS consists of 30 diverse videos while Videvo is a collection of 35 clips collected from
the Videvo platform. Those evaluation datasets are widely recognized benchmarks in the field
of video object segmentation and have played a crucial role in video colorization research by
providing standardized evaluations.

4.2.4.2 Hyper-parameters

We utilized a modified version of SwinV2-T [25], the tiny pretrained version of the SwinT
v2 model from Huggingface [40] and ViT-T [5], the tiny pretrained version of the ViT model
from Hugginface [40] as the backbones of two approaches’ architecture. Each approach has
6 loss weights (λL1, λadv, λperc, λctx, λtemp and λsmooth) corresponding to 6 loss functions
mentioned in 4.2.3. For optimization, we employed the AdamW optimizer [41] for both the
Generator module and the Discriminator module with the hyper-parameters: learning rate α ,
momentum estimates β1 and β2. Specific values for the six loss weights, α , β1, and β2 are
shown for each approach in Table 4.2. We also adopt the "poly" learning rate decay which is
inspired by the work of DeepLab [42]. The formula is given below:

γ = γ0(1−
Niter

Ntotal
)0.9 (4.10)
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Table 4.2 Summary of hyper-parameters

Hyper-parameter ViTExCo SwinTExCo
α 1×10−5 3×10−5

β1 0.500 0.500
β2 0.999 0.999
λL1 2.000 2.000
λadv 0.200 0.500
λperc 0.005 0.100
λctx 0.500 1.000
λtemp 0.020 0.300
λsmooth 5.000 5.000

where Niter and Ntotal represent the current iteration number and the total iteration number.
The model is trained for 20 epochs using a batch size of 4.

We implemented the distributed data-parallel technique to increase the training speed and
trained the models on 2 NVIDIA RTX A6000 GPUs.



Chapter 5

RESULTS

5.1 Evaluation metrics

5.1.1 Quantitative

The quantitative metric presents a systematic approach for objectively evaluating and ana-
lyzing the performance of trained models. For comparison with our two models, We select
other five models: FAVC [11], Color2Embed [43], VCGAN [17], DeepExemplar [19] and
TCVC [20]. DeepExemplar and TCVC are state-of-the-art in exemplar-based colorization,
while the others are commonly used models. By including these models in the evaluation, we
aim to establish a comprehensive and meaningful benchmark for assessing the performance
of our proposed approach.

• Peak signal-to-noise ratio (PSNR): This metric quantifies the disparity between the
original signal and a compressed or transmitted version of that signal, accounting for
the amount of noise introduced during compression or transmission. In this research,
PSNR was employed to assess the fidelity of the colorized video frames by measuring
the signal (i.e., colors) present in them.

• Structural Similarity Index Measure (SSIM) [44]: SSIM gauges the similarity
between two images. It is grounded on the principle that the perceived quality of
an image by humans is closely related to its structural information. SSIM takes into
consideration the luminance, contrast, and structural resemblance between a reference
image and a distorted image. In this research, SSIM was utilized to compare each
colorized video frame with its corresponding ground truth.

• Learned Perceptual Image Patch Similarity (LPIPS) [45]: Unlike conventional
metrics like PSNR and SSIM, which rely on handcrafted features and assumptions
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about the human visual system, LPIPS is predicated on a deep neural network trained
on a large dataset of images to learn features that are pertinent to human perception.
LPIPS was employed to evaluate the similarity between each colorized video frame
and its ground truth.

• Fréchet inception distance (FID) [46]: This metric is commonly employed to assess
the quality and diversity of images generated by Generative Adversarial Networks
(GANs). It employs a pre-trained Inception network to extract feature vectors from
the ground truth and colorized frames and then computes the mean and covariance of
these vectors. The FID is calculated as the Fréchet distance between the distributions
defined by these statistics.

• Color Distribution Consistency (CDC) [47]: CDC is frequently employed to evaluate
the similarity of color distributions between two images or video frames. It takes into
account the distribution of colors within an image or frame, rather than solely focusing
on individual pixel values or overall image quality. CDC assesses the consistency of
the color distribution in a video by comparing the frequencies of different color values
across consecutive frames of that video.

The metrics described above are computed on a per-frame basis for the predicted video,
and their average values are used for the overall evaluation. This process is repeated for the
entire evaluation dataset, and the mean value is calculated to obtain the final evaluation score.

5.1.2 Qualitative

Although quantitative metrics have inherent limitations in fully capturing the breadth of
human sensory perception, we have surveyed to evaluate human perception using the Mean
Opinion Score (MOS) metric. To ensure a fair and meaningful comparison, we have selected
two models, specifically DeepExemplar [19] and TCVC [20], because they have also utilized
an exemplar. This selection ensures that our evaluation is conducted in a manner that is
relevant and comparable to the existing literature in the field.

5.2 Comparison

5.2.1 Quantitative

Quantitative evaluations were conducted as outlined in Section 5.1.1, providing a comprehen-
sive analysis of each model’s performance. The results obtained from these evaluations, as
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Table 5.1 Comparison with state-of-the-art video colorization models on DAVIS [1] and
Videvo [2] datasets about quantitative metrics. The blue data represents the model with the
best performance, while the red data represents the model with the second-best performance.

DAVIS dataset [1]

Models PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CDC ↓

FAVC [11] 16.80765 0.49951 0.36293 181.54643 0.00339
Color2Embed [43] 27.09984 0.92238 0.12797 97.70031 0.00381
VCGAN [17] 23.74646 0.89443 0.17274 146.69747 0.00828
DeepExemplar [19] 29.63041 0.94850 0.08847 73.30805 0.00451
TCVC [20] 31.81122 0.96309 0.06695 58.48240 0.00393

ViTExCo (Ours) 31.95127 0.96329 0.07682 63.85472 0.00407
SwinTExCo (Ours) 32.24419 0.96586 0.06328 56.66980 0.00398

Videvo dataset [2]

Models PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CDC ↓

FAVC [11] 17.47619 0.54666 0.36249 153.20350 0.00163
Color2Embed [43] 27.25240 0.93831 0.14053 97.58350 0.00177
VCGAN [17] 25.02977 0.92525 0.18520 119.60610 0.00300
DeepExemplar [19] 29.75574 0.96154 0.10054 77.69207 0.00192
TCVC [20] 31.19570 0.97091 0.07714 65.11399 0.00168

ViTExCo (Ours) 31.28165 0.93971 0.11872 68.94613 0.00188
SwinTExCo (Ours) 31.96999 0.94402 0.10871 43.36435 0.00172

presented in Table 5.1, offer valuable insights into the capabilities of each model. Table 5.1
demonstrates that SwinTExCo outperforms the other models across multiple evaluation
metrics while ViTExCo also achieves remarkable results. In the DAVIS dataset [1], the
SwinTExCo outperformed the other models in PSNR, SSIM, LPIPS and FID. In the Videvo
dataset [2], SwinTExCo demonstrates slightly lower scores on SSIM and LPIPS. This could
be attributed to the fact that DeepExemplar [19] and TCVC [20] were trained on videos that
are similar to those in the Videvo dataset. The ViTExCo displays slightly lower performance
compared to the SwinTExCo on both datasets due to the deep embedding of spatial infor-
mation in the feature maps’ values, which poses challenges during the decoding process.
However, the predicted outputs of the ViTExCo demonstrate that it is a competitive approach.
The CDC metric assesses the consistency across predicted frames in a video. Therefore,
if the model produces pale-colorized videos, the CDC still recognizes them as consistent
colorized videos. That’s why both the ViTExCo and SwinTExCo only show acceptable
results on the CDC metric. In summary, these results indicate that SwinTExCo and ViTExCo
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produce colorized videos that exhibit greater structural similarity and perceptual image patch
similarity while maintaining consistency in color distribution.

T = 1 T = 20 T = 50

FAVC [11]

Color2Embed [43]

VCGAN [17]

DeepExemplar [19]

TCVC [20]

ViTExCo (Ours)

SwinTExCo (Ours)

Fig. 5.1 Comparison of colorization consistency between other models and ours at the 1st,
20th, and 50th frames in the video "gym" of the DAVIS dataset.

Figures 5.1 and 5.2 showcase the output generated by the other models compared to
SwinTExCo, specifically at the 1st, 20th, and 50th frame of two videos: gym and horsejump-
stick, extracted from the DAVIS dataset. It is apparent from these figures that SwinTExCo
excels in generating visually compelling and vibrant results while ensuring color consistency
throughout the entire duration of the videos.
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T = 1 T = 20 T = 50

FAVC [11]

Color2Embed [43]

VCGAN [17]

DeepExemplar [19]

TCVC [20]

ViTExCo (Ours)

SwinTExCo (Ours)

Fig. 5.2 Comparison of colorization consistency between other models and ours at the 1st,
20th, and 50th frames in the video "horsejump-stick" of the DAVIS dataset.
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5.2.2 Qualitative

Fig. 5.3 Evaluation results obtained from users’ opinions

To conduct a comprehensive evaluation of the colorized output, we randomly selected
10 videos from the DAVIS dataset and administered a survey to a total of 500 individuals.
Each participant was tasked with rating the quality of the colorized output generated by each
model on a visual appearance scale, which ranged from 1 (indicating poor colorized output)
to 5 (indicating excellent colorized output).

Figure 5.3 illustrates the survey results, presenting users’ opinions regarding the colorized
videos produced by the three models under evaluation. The results clearly demonstrate
that SwinTExCo surpasses both DeepExemplar [19] and TCVC [20] in terms of vibrant
and realistic colorization, as perceived by the users. This finding highlights the superior
performance of SwinTExCo in terms of meeting users’ expectations and preferences for
visually appealing and natural-looking colorized videos.

5.2.2.1 Exemplar-based colorization ability

To assess the exemplar-based colorization capability of our model, we conducted experiments
where we generated images using multiple reference images. The results of these experiments
are depicted in Figure 5.4 and Figure 5.5. The outcomes clearly demonstrate that SwinTExCo
and ViTExCo both exhibit a remarkable capacity to adapt colors in a highly flexible manner.
It effectively and accurately colors areas and objects that exist in both the input and reference
images, showcasing its ability to leverage the information provided by the reference images
to generate visually coherent and realistic colorized outputs. This finding further underscores
the efficacy and versatility of SwinTExCo and ViTExCo in the context of exemplar-based
colorization tasks.
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Input
image

Reference
image

Input
image

Reference
image

Fig. 5.4 Different reference images for colorizing the same image with SwinTExCo
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Input
image

Reference
image

Input
image

Reference
image

Fig. 5.5 Different reference images for colorizing the same image with ViTExCo
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Table 5.2 Comparison of the computational complexity for single frame colorization

Model #params FLOPs ↓ FPS ↑

DeepExemplar [19] 59.74M 172.12G 2.4
TCVC [20] 124.32M 600.87G 2.3
SwinTExCo (ours) 78.66M 84.99G 23.7

5.2.2.2 Computational complexity

We conducted a thorough analysis to compare the computational complexity of SwinTExCo
with two exemplar-based models, namely DeepExemplar [19] and TCVC [20]. The analysis
involved inferring the models on the same set of videos and using the same reference image,
with the NVIDIA Tesla T4 GPU employed in an identical computational environment.

Table 5.2 presents the results of our analysis, including the number of parameters, the
number of floating-point operations (FLOPs) required for single-frame calculation, and
the FPS of each model. The findings reveal that SwinTExCo exhibits the lowest FLOPs
requirement, totaling 84.99 GFLOPs, while achieving an impressive FPS of 23.7 frames
per second. In comparison, DeepExemplar necessitates 2.03 times more calculations than
SwinTExCo, while TCVC requires 7.07 times more calculations. Additionally, SwinTExCo
achieves a FPS that is 9.88 times higher than DeepExemplar and 10.30 times higher than
TCVC.

These results unequivocally demonstrate that SwinTExCo possesses a significant com-
putational efficiency advantage. It demands fewer computations than its counterparts while
delivering comparable performance. This efficiency renders SwinTExCo an attractive choice,
as it offers a more scalable and resource-efficient solution for exemplar-based colorization
tasks.





Chapter 6

DISCUSSIONS

6.1 Problem solving

SwinTExCo and ViTExCo address the aforementioned challenges in Section 2. These models
effectively overcome the limitations associated with the Interactive approach, which often
demands significant time and expertise from users to provide colorization hints. By offering
flexible customization capabilities, SwinTExCo and ViTExCo empower users with more
control over the colorization process. Moreover, these models achieve remarkable outcomes
by leveraging state-of-the-art architectures in Computer Vision, distinguishing themselves
from other techniques within the Exemplar-based approach.

6.2 Application

As outlined in Section 1.2, this research project is driven by both technical motivations
and the preservation of historical value. The objective is to enhance the visual appeal of
monochromatic old films and documentaries by effectively colorizing them. The proposed
models, ViTExCo and SwinTExCo, offer realistic colorization capabilities and customizable
features, thereby demonstrating the potential to generate high-quality colorized videos. By
captivating the attention of not only teenagers but also adults, these models contribute to
raising awareness about the importance of preserving historical value.

The implications of this research are far-reaching, with numerous potential applications.
The model we have developed can serve as a pre-trained model, possessing robust knowledge
of various color patterns, for tasks such as color enhancement or color profile inference.
Additionally, it can be employed as a colorization module for night vision Closed-Circuit
Television (CCTV) systems or monochrome cameras used in Auto Exploration Rovers
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Fig. 6.1 The image on the left was captured on Sol 3912 by the Navigation Camera, which is
installed on NASA’s Mars rover Curiosity. The image on the right is the colorized version
produced by our SwinTExCo model.
Source: The image on the left was adapted from [48]

(shown in Figure 6.1). Note that to conserve signal bandwidth and storage memory during
the extended exploration missions of rovers, video data is commonly transmitted and stored
in grayscale format.

6.3 Publication

The two proposed models, ViTExCo and SwinTExCo, have been independently submitted to
two different publication organizations. ViTExCo has been submitted to The 14th Interna-
tional Conference on ICT Convergence (ICTC2023) and has undergone a rigorous review
process. It gives us great pleasure to announce that ViTExCo was accepted and presented at
the Conference on October 12th, 2023. Further details about the acceptance can be found in
Appendix E. On the other hand, SwinTExCo has been submitted to the Expert Systems with
Applications Journal and is currently undergoing the evaluation process.



Chapter 7

CONCLUSIONS

Through a comprehensive series of training and evaluation experiments, our research team has
made significant advancements in the field of "Exemplar-based Video Colorization." These
experiments encompassed various aspects such as model backbones, overall architecture,
datasets, data processing techniques, model optimization, and hyperparameters. The results
obtained from our research have been remarkable, surpassing both quantitative metrics and
qualitative metrics (such as surveys) when compared to numerous state-of-the-art models
available until 2023. This achievement has not only provided valuable insights into potential
solutions and challenges in the field of Machine Learning/Artificial Intelligence but has
also shed light on the feasibility of conducting research within limited time constraints and
computing resources while maintaining the integrity and quality of the research outcomes.

Moving forward, our team is committed to further advancing this project. We intend to
enhance the project by incorporating larger and more diverse training datasets, leveraging
advanced model backbones, refining optimization algorithms, and designing a robust archi-
tecture. Moreover, we aspire to develop a specialized video colorization framework catering
to researchers from various domains who seek to explore and utilize this technology.
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Appendix A

Hugging Face

A.1 Overview

Hugging Face is a leading platform for hosting machine learning models. It provides a
centralized hub for researchers and developers to store, access, and share pre-trained models
across different domains and tasks. With a user-friendly interface, versatile API, and support
for multiple programming languages, Hugging Face allows seamless integration into applica-
tions. The platform encourages collaboration and knowledge sharing through its community
contributions feature, enabling users to upload and share their own models, datasets, and
training pipelines. It also excels in model versioning and management, facilitating iterative
development and experimentation. With its extensive model repository and efficient serving
capabilities, Hugging Face is a valuable resource for the machine-learning community. The
SwinTExCo inference model used in this research is publicly available on the Hugging Face
model Space at: https://huggingface.co/Spaces/chronopt-research/SwinTExCo

A.2 Gradio

Gradio is a platform that facilitates the deployment of machine learning models within the
Hugging Face ecosystem. It offers researchers and developers the ability to create interactive
and customizable interfaces for their models, enabling users to input data and receive real-
time predictions. Gradio supports a variety of input and output interfaces, such as text boxes,
image uploaders, sliders, and dropdown menus, to cater to different model requirements.
Integration with Hugging Face allows for seamless deployment of models using minimal code.
The platform also supports multi-model deployments, enabling the side-by-side comparison

https://huggingface.co/Spaces/chronopt-research/SwinTExCo


70 Hugging Face

of different models. The deployment of SwinTExCo on Huggingface Space is implemented
with the Gradio framework for both the front-end and back-end.

A.3 Technical specifications

Upon submitting a request for a complimentary GPU allocation to deploy the SwinTExCo
model, we were granted access to an Nvidia T4 small GPU along with 4 vCPUs, 15 GB of
RAM, and 16 GB of VRAM. The deployment of SwinTExCo is facilitated within a dedicated
Space provided by the Huggingface platform, wherein the model is set to enter sleep mode
after one hour of inactivity. It is worth noting that the primary objective of this research does
not revolve around deploying the model on a web hosting platform for unrestricted public
usage, thereby eliminating the need to upgrade to higher-tier plans.



Appendix B

WandB

Fig. B.1 The training losses of SwinTExCo generated by WandB using 2 GPUs A6000 with
batch size of 2





Appendix C

Automatic Video Colorization
Deployment

C.1 FAISS

C.1.1 Overview

FAISS (Facebook AI Similarity Search) [49] is a powerful open-source library developed by
Facebook AI Research for efficient similarity search and clustering of large-scale datasets. It
is widely used in various applications, including recommendation systems, image and video
retrieval, natural language processing, and more.

C.1.2 Indexing Techniques

FAISS offers several indexing techniques optimized for different types of data and search
requirements. These include:

• Flat Index: The most straightforward index, suitable for small datasets.

• IVF (Inverted File) Index: A partitioning-based index that divides the dataset into
clusters for faster search.

• HNSW (Hierarchical Navigable Small World) Index: A graph-based index that
builds a navigable graph for efficient approximate nearest neighbor search.

• PQ (Product Quantization) Index: An index that compresses the data using quanti-
zation techniques for memory-efficient search.
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• IVFFlat Index: By combining the Inverted File and Flat indexes, the IVFFlat index
takes advantage of the strengths of both approaches. It benefits from the fast pruning
capabilities of the Inverted File index, which reduces the number of vectors to consider
during the search. At the same time, it leverages the simplicity and efficiency of the
Flat index for the final refinement step within the selected cells.

C.1.3 Similarity search

FAISS provides highly optimized algorithms for similarity search, allowing you to find the
nearest neighbors of a given query efficiently. It supports both exact and approximate search
methods, with approximate search offering significant speed-ups for large-scale datasets.

C.2 PySceneDetect

C.2.1 Overview

PySceneDetect [50] is an open-source software library designed to identify shot changes
within videos and automatically partition the video into distinct clips. It offers a range of
detection methods, varying from straightforward threshold-based detection of fade in/out
transitions to sophisticated content-aware fast-cut detection for each shot. PySceneDetect
is freely available and provides researchers and users with a versatile tool for effectively
analyzing video content.

C.2.2 Scenes spliting methods

C.2.2.1 Content detector

The input video undergoes a content detection algorithm for analysis. For each frame, a score
ranging from 0 to 255.0 is computed, indicating the dissimilarity between the current frame
and the preceding one (a higher score denotes greater dissimilarity). A cut is generated when
a frame score surpasses the specified threshold.
The scores are derived from distinct components:

• delta_hue: Represents the disparity in pixel hue values between adjacent frames.

• delta_sat: Measures the variation in pixel saturation values between adjacent frames.

• delta_lum: Quantifies the distinction in pixel luma (brightness) values between adja-
cent frames.
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• delta_edges: Reflects the dissimilarity in calculated edges between adjacent frames.
This component typically yields larger values compared to others, necessitating a
potential threshold adjustment for compensation.

C.2.2.2 Adaptive detector

Apply an adaptive detection algorithm to the input video using a two-pass approach. The
algorithm calculates frame scores using detect-content in the first pass and applies a rolling
average for result processing. This helps mitigate false detections, particularly in cases
involving camera movement.

C.2.2.3 Threshold detector

Apply a threshold detection algorithm to analyze the input video. The algorithm identifies
fade-in and fade-out events by examining the average pixel values. Cuts are then positioned
between consecutive fade-out and fade-in events, indicating significant transitions in the
video content.

C.3 Deployment

Initially, we aimed to train the exemplar-based video colorization scene-by-scene, which
means all of the frames in each scene are consecutive and relevant. Due to this, it is necessary
to detect scenes in the video and separate them to input them into the model. We describe the
detailed pipeline of the Automatic Video Colorization Deployment in Figure C.1.

To handle a long video with multiple scenes, we first divide it into distinct scenes by
using PySceneDetect [50]. Next, a reference image is identified for each scene to facilitate
the colorization process. Subsequently, the colorization procedure is applied to all scenes
using the corresponding reference images. To enhance the efficiency of the reference image
search, we have incorporated a high-performance vector database. This database leverages
the FAISS [49] library for expedited searching based on cosine similarity. By utilizing the
advanced searching mechanism, we can retrieve the most relevant reference images for
colorization rapidly. Lastly, we combine the output colorized scenes into a single, colorized
video.
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Fig. C.1 Visualization of Automatic Video Colorization Deployment pipeline
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Half-precision FP16

D.1 Introduction to Half-precision FP16

Half-precision floating-point (FP16) format is a compact representation of floating-point
numbers that utilizes 16 bits. It consists of 1 bit for the sign, 5 bits for the exponent, and 10
bits for the significand. FP16 has gained attention for its potential advantages in terms of
reduced storage requirements and increased computational efficiency.

D.2 Advantages of Half-Precision FP16

Reduced Storage Requirements: By utilizing only 16 bits, FP16 consumes half the
storage space compared to single-precision FP32 and one-fourth the space of double-
precision FP64. This reduction in storage requirements is particularly advantageous in
scenarios where memory is limited, such as in embedded systems or high-performance
computing environments.

Increased Computational Efficiency: The compact representation of FP16 allows for
higher data throughput and improved parallelism. In applications involving large-scale
computations, such as deep learning or scientific simulations, the use of FP16 can lead
to faster processing times and improved overall performance.

D.3 Challenges and Considerations

Precision Loss: The main drawback of FP16 is the reduced precision compared to
higher precision formats. With a smaller range of representable numbers and a limited



78 Half-precision FP16

number of significant bits, FP16 is susceptible to precision loss and rounding errors.
This may impact the accuracy of computations, especially in scenarios that require
high precision, such as numerical simulations or certain scientific calculations.

Numerical Stability: Due to the decreased precision, certain numerical operations,
such as subtraction or division, can be more prone to producing inaccurate results
or introducing significant errors. Careful consideration and appropriate techniques,
such as scaling or error analysis, are necessary to mitigate these stability issues when
working with FP16 data.

D.4 Application in this research

In this project, the implementation of FP16 was employed to reduce the storage memory
of optical flow files in the training dataset. The training dataset comprised hundreds of
thousands of optical flow files, with an average size of 1.153 MB (megabytes). By converting
the optical flow files to FP16 format, the average size was reduced to 0.566 MB, resulting in
a reduction of approximately 50.91%. After converting to FP16, the average precision loss is
less than 1% compared to the original values, resulting in negligible changes in precision. On
the other hand, This reduction translates to saving between 70 and 80 gigabytes in training
dataset storage and loading.
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The 14th International Conference on
ICT Convergence (ICTC 2023)

E.1 Overview

ICTC is a Scopus indexed (link) and globally recognized conference focusing on the emerging
industrial convergence surrounding information and communication technologies (ICTs). It
is a platform for researchers, industry professionals, and academics to explore the challenges
and advancements in machine learning, wireless communication, smart devices, mobile cloud
computing, green communication, healthcare, and intelligent transportation. The conference
features technical sessions, tutorials, and invited industrial sessions, providing knowledge
dissemination and collaboration opportunities.

E.2 Related Information

The novel methodology for colorization - ViTExCo - was accepted at ICTC 2023 and will be
published in late 2023. The online proceeding version of ViTExCo paper can be accessed at
section number B1-4 on ICTC 2023 website (link).

https://www.scopus.com/sources.uri
https://ictc.org/program_proceeding#:~:text=Vitexco%3A%20Exemplar%2Dbased%20Video%20Colorization%20using%20Vision%20Transformer
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