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~ 40%

of the population 

globally affected by 

gastrointestinal 

diseases [1]

4th

stomach cancer ranked 

as leading cause of 

death related to cancer

in 2020 [2]

5th

most diagnosed 

cancer worldwide

[2]

Worldwide
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70%

of Vietnamese 

population is at risk 

of gastrointestinal 

diseases [3]

3th

ranked of gastric 

cancer in the country 

statistic of most 

common cancer [3]

7000/14000

deaths from 

colorectal cancer 

in Vietnam [3]

Diagnosis is very important in early detection and treatment !

Vietnam
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Narrow-Banding-Imaging (NBI)

Traditional Endoscopy: White light Endoscopy

● WLE uses light source similarly ordinary 

daylight

● White light does not penetrate the mucosal 

layer

● Only detect lesions that have form in 

surface

Bad result in early detection

Accuracy depends on doctor [4]
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Narrow-Banding-Imaging (NBI)

NBI Endoscopy

● Improves the contrast between 

capillaries and submucosal vessels 

by manipulating the light source 

through specialized filters

● Specific wavelengths (415 nm - 

blue and 540 nm – green) [5,6]
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(A) White light endoscopy image       (B) NBI endoscopy image

Compare NBI and WLE

8



AI in Medical Image Processing

Difficulties

StorageImage quality Time

AI plays crucial role in image quality in Medical field
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Our module

❖ A module belongs to AI smart endoscopic 

system from NBI camera of Viettel 

Cyberspace (VTCC) with 3 main modules:

➢ Automated image quality assessment

➢ Automated detect stomach damage

➢ Super resolution
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RELATED WORK
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● FR-IQA methods require two types of input: distorted and reference images to 

estimate their perceptual similarity. [7,8]

● Non-reference Image Quality Assessment more useful. [9]

Example of FR-IQA

Full-Reference Image Quality 

Assessment (FR-IQA)
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● Providing a solution when a reference image is not available. [10,11]

● In endoscopic domain, the quality in different image regions are very different. [12]

Example of NR-IQA

Inputting the whole image into IQA model may not be optimal.

Non-Reference Image Quality 

Assessment (NR-IQA)
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Non-Reference Image Quality 

Assessment (NR-IQA)
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Describing uneven image quality across an endoscopic image.



● Dividing the image randomly or consecutively into small patches [13,14]

● Aggregate the features of those patches.

Example of NR-IQA

Example of patch-based classification

Patch-based classification
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❖ Two-stage NR-IQA framework for quality image from NBI endoscopy cameras:

➢ First stage: Patch-based classification model extract from multi-layer 

features of Convolutional Neural Network (CNN).

➢ Second stage: Aggregation process based on statistical method.

❖ Using Feature magnitude loss [15] in endoscopy IQA to clearly classification 

patch quality.

❖ Inference speed improvement method.

Contribution
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METHODOLOGY
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Quality assessment

The diagram of the Endoscope Image Quality Assessment 

model

● Size of image: 512x640

● Size of patch: 128x128

20 consecutive image patches

Patch-based classification

● Aggregation process

● Statistical method

General idea
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● Image classification, object detection, 

segmentation

● Hierarchical representations

Using Resnet 18 with several changes 

in architecture

Resnet
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Patch-based classification model

● Brightness: The light reflection of gastric juice

● Darkness: The light cannot be evenly distributed

● Motion blur: The relative motion of camera 

(Accounts for a very large proportion)

● High-quality: Sharp areas, relative camera 

motion and stomach surface is low

Brightness Darkness

Motion blur High-quality
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The improved AI model architecture for endoscope image patch quality classification

Patch-based classification model
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High-quality patch

Darkness patch
The histogram of high-quality patch The histogram of darkness patch

Patch-based classification model
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The proposed network 𝑟𝜃,∅ = 𝑓∅(𝑠𝜃(𝑃𝑖)) 

The end-to-end model is training with the total loss:

Where:

Feature magnitude loss function

Given the entire image 𝐼 = {(𝑃𝑖 , 𝑦𝑖)}𝑖=1
𝑁

𝑁-dimensional feature [0,1]𝑇

𝑙 = 𝑚𝑖𝑛𝜃,∅ ෍

𝑖,𝑗=1

𝑁

1 − 𝛼 𝑙𝑠 𝑠𝜃 𝑃𝑖 , 𝑠𝜃 𝑃𝑗 , 𝑦𝑖 , 𝑦𝑗 + 𝛼𝑙𝑓 𝑓∅ 𝑠𝜃 𝑃𝑖 , 𝑦𝑖

𝑠𝜃: 𝑃 → 𝑋 is the patch feature extractor
𝑓∅: 𝑋 → [0,1]𝑇 is the patch classifier
𝛼: weight for each term

𝑙𝑠(. ): loss function that maximizes the separability between darkness and high-quality

𝑙𝑓: loss function to train the patch classifier
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The feature magnitude loss function can be further defined as:

Where:

Feature magnitude loss function

𝑙𝑠 𝑠𝜃 𝑃𝑖 , 𝑠𝜃 𝑃𝑗 , 𝑦𝑖 , 𝑦𝑗 = max 0, 𝑚 − 𝑑 𝑔𝜃 𝑋𝑖 , 𝑔𝜃 𝑋𝑗

𝑖𝑓 𝑦𝑖 , 𝑦𝑗 ∈ 𝐷𝑎𝑟𝑘𝑛𝑒𝑠𝑠, 𝐻𝑖𝑔ℎ − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

m is pre-defined margin

𝑋𝑖 = 𝑠𝜃 𝑃𝑖  is the patch feature

𝑔𝜃 calculates the feature magnitude of the patch feature

𝑑 represents separability function that computes the difference between two feature magnitudes
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n: the percentage of adjacent high-quality patches

N: total number of adjacent high-quality patches

Quality assessment

The high-quality patches are located adjacent horizontally or vertically

Apply Breadth-first search (BFS) algorithm

𝑛 =
𝑁

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒
,
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Brightness Darkness Motion blur

High-quality 

(adjacent patches)

a% b% c% n%

The percentage of each patch type in an image

Quality assessment
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Bad Poor Fair Good Excellent

c > 45% 35% ≤ c ≤  45%

c < 35%

n < 35%

35% ≤  n ≤  55%

c < 35%

n > 55% 

c < 35%

Quality assessment for the entire frame



The original way of implementing the inference pipeline. The proposed way of executing the inference process.

Inference process
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IMPLEMENTATION DETAIL
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Dataset

● Private dataset from the medical image 

database of Viettel Cyberspace Center. 

● Endoscopic images extracted from specialized 

NBI cameras in real-world endoscopy cases

● Original size of 720 x 576 (width x height)

Example of image with black border 

surrounded
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Data Preparation

● Cut off most of the surrounding black border

● Size of images for training or testing process 

became 640x512.

Endoscopic image after cut off most of the black 

border.
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Data Preparation

The original number of 4 categories:

Dataset used for training patches-based classification model

Brightness Darkness High-quality Motion blur

Train 205 592 3278 918

Val 107 212 699 639

Dataset after using the data augmentation techniques

Brightness(x12) Darkness(x5) High-quality Motion blur(x3)

Train 2460 2960 3278 2754

Val 107 212 699 639

The number of 4 categories after applied data augmentation techniques:
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Data Preparation

Quantity of training dataset before and after utilizing augmentation 

techniques

Datasetset is much more balanced 

compared to the original
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EXPERIMENTAL RESULT
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Results

Class Precision Recall F1-score Accuracy

Brightness 97.25 99.07 98.15

97.7

Darkness 92.96 93.40 93.18

Motion blur 99.06 99.06 99.06

High-quality 97.84 97.42 97.63

Class Precision Recall F1-score Accuracy

Brightness 88.23 98.13 92.92

95.65

Darkness 87.61 93.40 90.41

Motion blur 97.53 98.75 98.13

High-quality 97.89 93.13 95.45

Experimental results of improved patch-based classification model

Experimental results of baseline patch-based classification baseline model
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Comparison F1-score between baseline and improved model

Results

By using:

● Data augmentation techniques

● Multi-feature fusion strategy 

● Feature magnitude learning

Results can be improved significantly 
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t-SNE of baseline patch-based classification baseline 

model 

t-SNE of improved patch-based classification improved 

model

Results
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Confusion matrix of baseline patch-based classification 

model

Confusion matrix of improved patch-based classification 

model

Results
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Results in practical environment

Bad and Poor: 

● Most of the patches are motion blur

Fair: 

● Majority are brightness and darkness patches

● Small number of adjacent high-quality patches  
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Results in practical environment

Good and Excellent:

● Motion blur patches is almost zero

● High-quality patches is the majority
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Inference process result

Results measurement of two ways implementing inference process on GPU NVIDIA 

QUADRO RTX 4000: 

Version Time processing (mean ± std) Frames per second (FPS)

Original 0.0848 ± 0.00149 12 FPS

Proposed 0.0212 ± 0.00138 48 FPS

Time measurement of the original and the proposed way
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Storage efficiency

Video Length Size (mb)
Total number 

of frames

Quality 

threshold

Number of 

extracted frames

Amount of storage 

saved (%)

14-2-

2018Sequence_15-14-

3-228 original.avi

1m29s 123.6 mb 2244

F, G, E 950 57.66%

G, E 625 72.15%

E 451 79.90%

Azoulay 

28032018.mp4
1m04s 40.8 mb 1623

F, G, E 298 81.64%

G, E 237 85.40%

E 164 89.90%

Effectiveness of the IQA module

Storage efficiency of the IQA module with F, G, E are the abbreviated image quality levels 

for Fair, Good and Excellent respectively:
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CONCLUSION AND FUTURE WORKS
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Conclusion

Based on multi-layer features of CNN, patch-based classification and feature magnitude loss,

we achieve: 

● Nearly 98% overall accuracy

● 48 FPS, faster 4 times

● Highly appreciated by medical professionals from Viet Duc and K Tan Trieu hospitals

● Storage saved nearly 90%

Future works

● Finding a more effective dividing patches strategy

● Consult with more experts
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