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1. Problem and Motivation



Profit

Need a way to support operations 
team to increase profits

● Profit is the ultimate goal in business.
● The way sales campaigns, advertising, and 

product displays are operated greatly 
impact revenue.



2. Related Works



High Utility
Several itemset can yield a high profit but not 

frequently could be overlooked.

Pattern Mining

….. Frequent itemsets mining High utility itemset miningAssociation rule mining



Author Year of 
publication

Algorithm 
abbreviation

Algorithm name Type

Tseng et al. 2010 UP-Growth Utility Pattern-Growth Mining High utility itemsets

Liu & Qu 2012 HUI-Miner High Utility Itemset Miner Mining High utility itemsets

Fournier-Viger 
et al.

2014 FHM Frequent High Utility Itemset Mining Mining High utility itemsets

Zida et al. 2016 EFIM Efficient high-utility Itemset Mining Mining High utility itemsets

Luca Cagliero 
et al.

2017 ML-HUI Miner Multiple-Level High-Utility Itemset Miner Mining Multiple-Level High utility 
itemsets

N.T. Tung et al. 2021 MLHMiner Multiple-Level HMiner Mining Multiple-Level High utility 
itemsets

Fournier-Viger 
et al.

2020 CLH-Miner Cross-level high utility itemset mining Mining Cross-Level High utility 
itemsets

N.T. Tung et al. 2021 FEACP Fast and Efficient Algorithm for 
Cross-level high-utility Pattern mining

Mining Cross-Level High utility 
itemsets

Cheng-Wei Wu 
et al.

2012/2016 TKU Top-K High Utility Itemset Miner Mining Top-k HUIs

Vincent S. 
Tseng et al.

2016 TKO Top-K High Utility Itemset Miner in One 
Phase

Mining Top-k HUIs

Mourad 
Nouioua et al.

2020 TKC Top-K Cross-level high utility itemset 
miner

Mining Cross-level Top-k HUIs

Summary table of algorithms



3. Objective



TKC-E

Efficient Top-K Cross-level 

high utility itemset miner
FEACP

Local utility and 
sub-tree utility

Projection database

Pruning and 
optimization 

technique

Projection 
database

TKC

Local utility and 
sub-tree utility



4. Methods



4.1. Problem definition



4.1. Problem definition

Utility of an item/itemsets:

Example 1: The utility of a in  is u(a, )= 1 × 5 = 5. The utility of {a, c} in  is 

u({a, c}, T2) = u(a, T2) + u(c, T2)= 2 × 5 + 6 × 1 = 16. The utility of {b, c} in 

the database D is u({b, c})= u({b, c}, T3) + u({b, c}, T4) + u({b, c}, T5)= 5 + 

11 + 6= 22.

 

 

 



4.1. Problem definition

Utility of a generalized item/itemsets:

Example 2: In the taxonomy of Fig. 1, Z is a generalized item and u(Z,T4 ) = 

u(d, T4) + u(e, T4) =3 × 2 + 1 × 3 = 9. The utility of the generalized itemset {Z, 

b} in T4 is u({Z, b}, T4) = u(Z, T4) + u(b, T4) = (6 + 3) + 8 = 17. The utility of 

the generalized itemset {Z, b} in the database is u({Z, b}) = u({Z, b}, T3) + 

u({Z, b}, T4) + u({Z, b}, T5) = 17 + 19 + 7 = 43.

 

 

 



4.1. Problem definition

Transaction Weighted Utilization – TWU:

Example 3: the TU values of transactions T1 to T7 for Table 2 are: 8, 27, 30, 20, 

11, 22 and 8, respectively. TWU ({a}) = TU(T1) + TU(T2) + TU(T3) + TU(T6)  

= 8 + 27 + 30 + 22 = 87, TWU ({Y}) = TU(T1) + TU(T2) + TU(T3) + TU(T4)  

+ TU(T5)  + TU(T6)  = 8 + 27 + 30 + 20 + 11 + 22 = 118.

 

 

 



4.1. Problem definition

Extension:

Total order (≻): Two distinct items a, b ∈ AI are ordered as a ≻ b if 

level(a) < level(b), or if level(a) = level(b) ∧ TWU(a) > TWU(b). 

Example 4: If the total order is X ≻ Z ≻ c ≻ Y ≻ e ≻ d ≻ a ≻ b ≻ g ≻ f, 

E(X) = {Z, c, Y, e, d, a, b, g, f}, E{c,e}= {d, a, b, g, f}.

E(P) = {i | i ∈ AI ∧i ≻ w  and ∀ w∈ P, i ∉ Desc(w, τ 
)}



4.1. Problem definition

Local utility:

Example 6: Consider the running example and P = {c}. We have that lu(P, a) 

= 8 + 27 + 30+22 = 87, lu(P, d) =8 + 30 + 20 + 8= 66 and lu(P, e) =115.

Remaining utility:

Example 5: Consider the running example, if the total order is X ≻ Z ≻ c ≻ Y ≻ 

e ≻ d ≻ a ≻ b ≻ g ≻ f, re(X, T2)= 6 +5 = 11, re({c, e}, T4) = 8+6 = 14.

 

 

 



4.1. Problem definition

Sub-tree utility:

Example 7: Consider the running example and P = {c}. We have that 

su(P, a) = 8 + 21 + 27 + 16 = 72, su(P, d) = 6 + 22 + 17 + 5 = 50 and 

su(P, e) = 115.

 

 



4.1. Problem definition
Primary and secondary items:

Projected database:

 

Primary(P) = {z | z ∈ E(P) ∧ su(P, z) ≥  
µ}. 
Secondary(P) = {z | z ∈ E(P) ∧  lu(p, z) ≥  
µ}

 

 



4.2. TKC-E Algorithm
Algorithm 1: The TKC-E algorithm

input: D: a transaction database, τ: a taxonomy, k: the number of patterns to be found.
output: the top-k cross-level HUIs.

1.      Initializes µ = 0, P = {Ø} a priority queue Q with the top-k cross-level HUIs from AI;
2.      Read τ and D and use a utility-bin array to calculate to compute lu (P, z) of each (generalized) 
item z ∈ AI;
3.      Secondary(P) = {z | z ∈ AI ∧ lu(P, z) ≥  µ};
4.      Compute ≺, the total order on items from Level and TWU values on Secondary(P);
5.      Scan D to store each generalized item g ∈ Secondary(P) in each transaction, discard every item   
i ∉ Secondary(P) from transactions,sort items in each transaction, delete empty transactions, and then 
build and store the utility-list of each generalized item;
6.      Compute the sub-tree utility su(P, z) of each item z ∈ Secondary(P);
7.      Primary(P) = {z | z ∈ AI ∧ su(P, z) ≥  µ};
8.      SEARCH (P, D, Primary(P) , Secondary(P) , k , µ ,Q);



4.2. TKC-E Algorithm
Algorithm 2: The SEARCH procedure

input: P: itemset, DP: P-projected database, Primary(P): primary items of P, Secondary(P): secondary 
items of P, k: the number of patterns to find, µ: the
internal threshold, Q: the top-k patterns until now.
output: Q is updated with top-k CLHUIs that are transitive extensions of P.
FOR EACH item z ∈ Primary(P) DO:

1.      N = P ∪{z} , Secondary(P)’ = {x ∈ Secondary(P) | x ∉ Desc(z, τ)};
2.      Scan DP to determine u(N), construct DN, remove every item ∈  Desc(z, τ) and remove empty 
transactions;
3.      IF u(N) > µ THEN Insert z into Q;
4.      IF Size of Q > k THEN: 
                 Raises  to the k-th largest utility value in Q;
                 Remove from Q all patterns with utility less than µ;
5.      Scan DN to compute su(N,w), lu(N,w) for every item w ∈ Secondary(P)’; 
6.      Primary(N) = {x ∈ Secondary(P)’ ∧ su(N, z) ≥ µ};
7.      Secondary(N) = {x ∈ Secondary(P)’∧ lu(N, z) ≥ µ}; 
8.      SEARCH (N, DN, Primary(N) , Secondary(N) , k, µ , Q);   

END



5. Experiment and 

Results



5.1. Experiments

• Configuration: Intel Core-i7 processor clocked at 4.5GHz, 16 GB of RAM 
and  running on the Windows 11 operating system.

• Java programming language with version JDK 11.

• Evaluation parameter:  Runtime and Memory usage.

• The Algorithm execute 5 times to get the average value.



• Source:  https://www.philippe-fournier 
viger.com/spmf/index.php?link=datasets.php.

• Description: Real-life customer transaction datasets with actual 
       utility values.

• Suitability: It has been used in many scientific papers.

5.2. Data

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php


• Dataset file:

    Format: Item1 item2 item3… : TU : Util(item1) Util(item2) Util(item3)

• Example: Fruithut database

2010 2021 2032 : 897 : 199 399 299

2038 : 180 : 180

1031 2022 : 449 : 150 299

Raw data



• Taxonomy file:

    Format: Item, category item belongs to

• Example: Fruithut database

Raw data

1001,110

1002,150

1003,150

1004,150

1005,130

1007,120

159,150

110,100

120,100

130,100

140,100

150,100



Analyze data

● |D|: transaction count of D

● |I|: number of distinct items

● |GI|:generalized item count

● MaxLevel: maximum level in each database

● |T max|: maximum transaction length

● |T avg|: average transaction length

● Density: density of the databases

Database |D| |I| |GI| MaxLevel |TMAX| |TAVG| Density

Fruithut 181.970 1.265 43 4 36 3.58 Sparse



Database characteristics

Database |D| |I| |GI| MaxLevel |TMAX| |TAVG| Density

Liquor 9284 4026 78 7 11  7.87 Sparse

Fruithut 181.970 1.265 43 4 36 3.58 Sparse

Chess 3.196 75 30 3 37 37.00 Dense

Accident 10.000 468 216 6 51 33.80 Dense

Analyze data



Sparse 
Database



Dense 
Database



6.Future work



● Improve the memory usage of TKC-E 

for both sparse and dense datasets.

● Apply efficient pruning strategies

● Study parallel computing frameworks to 

reduce mining time, as well as enable 

computation with larger databases.



THANK YOU!


