

DISCOVERING PREVALENT CO-LOCATION PATTERN IN DIFFERENT

 DENSITY SPATIAL DATA WITHOUT DISTANCE THRESHOLDS

Final Year Project Final Report

Tran Duy Hai

 Le Anh Thang

 Ha Trong Nguyen

A thesis submitted in part fulfilment of the degree of BSc. (Hons.) in

Computer Science with the supervision of M.S.E Le Dinh Huynh

Bachelor of Computer Science

Hoa Lac campus - FPT University

09 September 2023

Acknowledgement
The last four months are a time that every student has to go through. This is also the last time for

students to work together in groups with the dedicated guidance of teachers under this beloved

school. Firstly, we would like to thank our instructor, Mr. Le Dinh Huynh, Mr. Tran Van Ha for

their enthusiastic guidance over the past time, helping us to complete this thesis. Secondly, we also

thank FPT University for giving us a good learning environment for us to study and develop well.

Finally, we always remember the encouragement to us to improve ourselves every day.

Abstract

A prevalent spatial co-location pattern (PSCP) refers to a group of different features that their

instances occur frequently within a spatial neighborhood. The neighbor of instances is typically

evaluated based on the spatial separation between them. If the spatial separation is not greater than

a threshold value set by users, they are considered to be neighboring each other. However,

determining an appropriate distance threshold for each specific spatial dataset is challenging for

users, as it requires careful analysis of the dataset. To address the issue, we propose an algorithm

called Delaunay triangulation k-order clique (DTkC) to discover PSCPs without distance

thresholds. This algorithm integrates three phases: the spatial neighbor hierarchy structure of

instances is created by Delaunay triangulation, employing k-order neighbors allows users to select

an appropriate level from the neighbor structure, a clique-based approach is designed to store

compactly neighboring instances and quickly collect co-location instances of each candidate pattern

to filter PSCPs. We conducted experimental analysis on both synthetic and real-world datasets, to

demonstrate the effectiveness of the DTkC algorithm in terms of generating the number of PSCPs,

execution time, and memory consumption.

Keywords: Prevalent spatial co-location pattern, Delaunay triangulation, k-order neighbos,

Cliques.

Table of Contents

1 Introduction ... 7

1.1 The Problem ... 7

1.2 Related Work ... 8

2 Background ... 9

3 Methodology ... 10

3.1 The DT-based approach ... 10

3.1.1 DT-based neighbors ... 12

3.1.2 DT-based constraints ... 12

3.1.3 DT-based construct algorithm ... 15

3.2 K-order neighbors approach .. 15

3.3 Clique approach: Depth-First Clique Instance drive schema (DFCIS) 18

3.4 Candidate generation ... 23

3.5 Prevalent co-location filtering approach .. 25

4 Experimental results and analysis ... 27

4.1 Experiment Setting .. 27

4.2 Compare the mining performance ... 27

4.3 Evaluate the scalability of DTkC ... 30

5 Conclusion ... 31

List of Tables

Table 1: Big neighborhood lists with K=1 17

Table 2: Big neighborhood lists with K=2 17

Table 3: Big neighborhood lists with K=3 17

Table 4: The datasets used in our experiments 27

List of Figures

Figure1: Table instance 10

Figure 2: Spatial instance 11

Figure 3: Original Delaunay triangulation 11

Figure 4: DT after constraint 1 11

Figure 5: DT after constraint 2 11

Figure 6: DT after constraint 3 11

Figure 7: An example of I-tree 18

Figure 8: The DFCIS approach for head node 22

Figure 9: C-hash example 24

Figure 10: The performance of compared algorithms on different distance thresholds 28

Figure 11: The performance of compared algorithms on different prevalence thresholds 29

Figure 12: Space cost and execution time on different numbers of instances 30

Figure 13: Space cost and execution time on different k values 31

7 | P a g e 9 S e p t e m b e r 2 0 2 3

1 Introduction

1.1 The Problem

Data analysis in the spatial domain is a crucial area in data mining where prevalent spatial co-

location patterns (PSCPs) play a significant role as they exhibit clear associations of features among

the studied objects in geographical space. Particularly, we not only investigate individual features

of objects but also explore the relationships among multiple objects in space, their combinations

and organization, which contain valuable hidden information that needs to be extracted to gain a

deeper understanding of the overall spatial structure. Examining these associations can help us

identify the general rules of these features, aiding in forecasting and making informed decisions

while optimizing resource management and allocation. For example, when investigating the

underlying causes of a specific issue, such as in the healthcare domain where the aim is to establish

specialized healthcare facilities targeting specific diseases, an analysis of PSCPs becomes essential

[18]. By studying PSCPs within residential areas, we can explore the associations between different

diseases and the daily life habits of the population. These patterns provide valuable insights for

decision-making regarding the development or enhancement of healthcare facilities in specific

geographical locations while minimizing resource wastage. PSCPs are highly effective in various

other domains such as criminology [3], public safety [4], business [10], disease control [5],

transportation [14], and so on.

Most of the proposed PSCP mining algorithms use a distance threshold to identify neighbor

relationships between spatial instances. Using a minimum distance threshold requires users to

determine an appropriate threshold value. If this value is not carefully chosen, it can lead to

overlooking important PSCPs or generating meaningless PSCPs. For example, important PSCPs

are missed as a result of setting a small distance threshold, while a large value of that creates

excessive computations, memory consumption, and too many redundant PSCPs.

Additionally, the minimum distance threshold can be influenced by data density. In high-density

areas, a small value of the distance threshold can yield a large number of neighboring instances,

while in low-density areas, it may lead to the omission of neighboring instances (even none

neighbor relationship is formed). If the distance threshold is set to a large value, the neighbor

relationship between instances is suitably constructed in the low-density areas. However, most

instances in the high-density areas form neighbor relationships, many inappropriate neighbor

relationships are constructed. This issue makes the process of complex spatial datasets very

challenging.

Moreover, the traditional PSCP mining algorithms, which follow a generation test candidate

framework [18,19,11,12,15] that is similar to the Apriori algorithm [6], are difficult to deal with

when there are a large number of neighboring instances formed in the dataset. Since these

algorithms first need to generate a set of candidates, then they collect all co-location instances of

each candidate by generating groups of instances and verifying the neighbor relationship of these

instances in these groups. This step is quite time-consuming [18,10].

8 | P a g e 9 S e p t e m b e r 2 0 2 3

To overcome the above problems, the following work has been carried out:

(1) The neighbor relationship between instances is determined automatically by using Delaunay

triangulation (DT).

(2) The concept of k-order neighbors in DT is used to allow users to adjust neighboring instances

for their specific needs in exploring SPCPs.

(3) A modified clique-based PSCP mining algorithm is developed. First, all neighboring instances

are enumerated by cliques. Next, these cliques are arranged into a special hash table structure. Then

all co-location instances of any candidates can be conveniently queried from the structure. Finally,

PSCPs can be filtered efficiently.

1.2 Related Work

PSCP is an important branch of data mining, so there are many algorithms have been proposed.

Partial join [19] and joinless [18] search for PSCPs by identifying co-location instances of

candidates using separate cliques and star neighborhoods, respectively. However, both the two

approaches face challenges in terms of computational complexity. To improve mining

performance, co-location pattern instance-tree [11], improved co-location pattern instance-tree

[12], CP tree-based [17], clique-based instances driven schema (IDS) [2], and so on were developed

to enhance the ability to search for SPCPs. This helps reduce the number of required joins and

optimize the search process. Beside The proposed framework [17] utilizes CP-trees to construct

trees for each spatial feature and generate co-location candidates from the trees. This allows for

more efficient searching of co-location candidates compared to the join-less method.

The above algorithms offer improving efficiency, but they may still face scalability challenges

when dealing with large and dense datasets. The computational complexity can increase

significantly as the dataset size grows, leading to longer processing times or even infeasibility.

Thus, parallel PSCP mining algorithms have been proposed such as MapReduce [15], Hadoop [16],

and GPU [1]. It divides the data into smaller blocks and processes them in parallel on computing

nodes, thus improving performance and speeding up the mining process.

In the mentioned algorithms, a distance threshold is used as a parameter for the process of searching

PSCPs. However, the inconvenience of using this parameter has been discussed above. Some

studies have proposed to solve that problem, e.g., k nearest neighbor graph [7] and Delaunay

triangulation (DT)-based [13,8]. A newly improved algorithm based on DT, that employs three

filters (i.e., feature constraint, global edge constraint, and local constraint) to eliminate redundant

edges on the original DT, has also been proposed [9]. Nevertheless, these algorithms suffer from

challenges when dealing with large datasets or long patterns, as the number of neighboring

instances expands exponentially, demanding significant storage space and posing difficulties in

computational efficiency.

9 | P a g e 9 S e p t e m b e r 2 0 2 3

2 Background

Feature (F): A feature refers to a characteristic or attribute of an object or entity in a dataset.

F = {f1,…fn}

Instance (S): An instance, also known as an observation or data point, represents a single occurrence

or example in a dataset. A set of instances S ={S1 ∪ S2 ∪ ... ∪ Sn}, where Si (1 ≤ i ≤ n) is a set of

instances of feature fi.
Neighbor relationship (R): Neighbor relationship refers to the proximity or spatial closeness

between objects or instances in a dataset. It describes the spatial relationship or adjacency between

data points based on their locations.
Clique (clq): refers to a set of objects or instances that are mutually connected or related (each pair

of instances are neighbors).

Maximal Clique (max-clq): A maximal clique is a clique that cannot be extended further by adding

additional objects or instances while preserving the property of being a clique.

Colocation pattern (c): A colocation pattern refers to a spatial pattern where a set of objects or

instances frequently co-occur or co-locate together within a specified spatial area.

c (c⊆F)

Row instance (I): refers to a single record or entry in a dataset.

I (I⊆S)

Table instance of c (T(c)): A collection of row instances

Participation ratio: It represents the relative level of participation of an instance in a colocation

pattern compared to the total number of patterns.

 PR(c, fi) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 fi in T(c)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑐𝑒 fi in S
 (1)

Participation index (PI): The participation index is a measure that quantifies the level of

participation or involvement of an instance in a colocation pattern.

PI(c) = 𝑚𝑖𝑛𝑓𝑖∈𝑐{PR(c, fi)}

Prevalence threshold (min_prev): The prevalence threshold is a predetermined value or threshold

that is used to determine the minimum level of occurrence or frequency required for a colocation

pattern.

Prevalent colocation: A prevalent colocation refers to a colocation pattern that occurs frequently or

exceeds a predefined prevalence threshold in a dataset (if PI(c) ≥ min_prev).

For example, in Figure.1 show table instance of the graph from Figure 5. In Figure 5, a spatial

dataset is shown consisting of four features: A, B, C, and D, along with 12 instances. The neighbors

in Figure 5 are connected by edges, indicating their proximity relationship. Examples of cliques

include some cliques like {A.2, B.3, C.2}, {A.3, C.1}, and {A.2, C.2}. Among them, {A.2, B.3,

C.2} represents a maximal clique of the colocation pattern {A, B, C}. Figure 1 displays the instance

table of colocation patterns. The colocation pattern {A, D} includes row-instances such as {A.3,

D.1}, {A.1, D.2}, and {A.1, D.3}.

10 | P a g e 9 S e p t e m b e r 2 0 2 3

By calculating the PR({A, D}, A) = =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐴 𝑖𝑛 𝑇({A,D})

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐴 in S
=

|𝐴1,𝐴3|

|𝐴1,𝐴2,𝐴3|
=

2

3
 and PR({A,

D}, D) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐷 𝑖𝑛 𝑇({A,D})

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐷 in S
=

|𝐷1,𝐷2,𝐷3|

|𝐷1,𝐷2,𝐷3|
=1, we obtain the PI({A, D}) =

2

3
 (the

minimum of the two PR values of features A and D in the colocation {A, D}).
Assuming a prevalent threshold of 0.6, {A, D} qualifies as a prevalent colocation pattern because

PI({A, D}) > 0.6.

Figure 1: Table instance

3 Methodology

We propose a combined algorithm called Delaunay Triangulation K-order Clique (DTKC), which

integrates the DT-based approach (presented in section 3.1), K-order neighbors (presented in

section 3.2), and Clique approach (presented in section 3.3). After that, we generate candidate (3.4)

and use prevalent co-location filtering (3.5).

3.1 The DT-based approach

Below are the figures illustrating the results of the steps in the DT-based approach. Figure 2

presents the input as spatial instances. Figure 3 create triangle structures by Delaunay triangulation

method. Figures 4, 5, and 6 depict the construction of the neighborhoods of instances for mining

colocation patterns using the constrained Delaunay triangulation.

11 | P a g e 9 S e p t e m b e r 2 0 2 3

 Figure 2: Spatial instance

 Figure 3: Original Delaunay triangulation Figure 4: DT after constraint 1

 Figure 5: DT after constraint 2 Figure 6: DT after constraint 3

12 | P a g e 9 S e p t e m b e r 2 0 2 3

3.1.1 DT-based neighbors

Definition 1: Delaunay Triangle of S (DT(S)) [9]: Let S be a collection of points or instances. The

Delaunay Triangulation (DT) of S is a geometric structure that consists of a set of non-overlapping

triangles, forming a connected graph. The DT is constructed in such a way that no point in S lies

within the circumcircle of any triangle in the triangulation. This results in a unique and explicit

representation of the spatial data's topology. The Delaunay Triangulation provides a comprehensive

understanding of the relationships between the points, revealing the underlying connectivity and

proximity within the dataset.

In this context, the term "circumcircle" can be understood as follows:

Consider a triangle Δ = {vi} (1≤i≤3), where each vi represents a vertex. The circumcircle of Δ refers

to the one and only circle that intersects all three vertices of the triangle and doesn’t contain any

other point inside. This circle is specifically constructed to pass through the three vertices of the

triangle.

For example, Figure 3 show the result of spatial data in Figure 2: all triangles constructed

Definition 2: Neighborhood [9]: Neighborhood is classified based on the minimum number of edges

required to form a path connecting a point under consideration with other points in DT(S).

For example, consider the following:

Let S be a set of spatial instances. DT(S) refers to the Delaunay Triangulation of S. When

considering two points 𝑓𝑎𝑏
 and 𝑓𝑥𝑦

 in DT(S), 𝑓𝑎𝑏
is considered a first-order neighbor of 𝑓𝑥𝑦

 if and

only if there exists a direct edge connecting both 𝑓𝑎𝑏
 and 𝑓𝑥𝑦

. Additionally, 𝑓𝑥𝑦
 is considered a k-

order neighbor of 𝑓𝑎𝑏
 if the shortest path based on the edges formed by DT(S) from 𝑓𝑎𝑏

 to 𝑓𝑥𝑦

includes k edges.

As depicted in Figure 3, the neighborhood relationship among the instances in Figure 2 are naturally

and clearly represented by a cohesive and interconnected graph. Nevertheless, when applying the

Delaunay Triangulation (DT) method to mine spatial colocation patterns directly, certain issues

arise that require resolution: instance with same feature still can be connected like B.2B.3 and

D.1D.2 in Figure 3, some edges are too long compared to the whole locality B.3D.3 in Figure 3, so

the neighbor relationship may not be correct. Therefore, we will use three constraints [9] in DT-

based constraints in the Section 3.2.2.

3.1.2 DT-based constraints

The DTC (DT-based colocation pattern mining) algorithm [9] have proposed three constraints:

First, the feature constraint confirmed that when examining the neighborhoods of instances for a

pattern, a condition is that two neighboring instances must belong to distinct feature types.

Second, the global edge constraint insisted that there are some edges in the global triangulation

whose lengths are excessively long. Since the original Delaunay Triangulation (DT) does not take

these conditions into account, it cannot be directly utilized for mining colocation patterns:

Definition 3: Redundant Feature Edge: A redundant feature edge is an edge that links two vertices

having identical feature types within the Delaunay Triangulation (DT). All redundant feature edges

are eliminated from the DT to ensure the validity of the resulting structure.

13 | P a g e 9 S e p t e m b e r 2 0 2 3

For example, in Figure 4, we have removed all redundant feature edge B.2B.3 and D.1D.2 in Figure

3.

Definition 4: Degree [9]: The Degree of a vertex 𝑓𝑖𝑗
 in the DT is the number of Delaunay edges

connected to 𝑓𝑖𝑗
,, denoted as deg(𝑓𝑖𝑗

).

For example, in Figure 3, the degree of B.2 is 5 because there are 5 edges connect to B.2: B.2C.3,

B.2B.3, B.2D.3, B.2A.1, B.2D.2.

Definition 5: Local mean (𝜇𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
)): refers to the average length of all the edges that are directly

connected to 𝑓𝑖𝑗
 in the Delaunay Triangulation (DT). It represents the average distance between 𝑓𝑖𝑗

and its neighboring instances in the graph, calculated:

 𝜇𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
)=

1

deg(𝑓𝑖𝑗
)

∑ |ⅆ𝑡|
deg(𝑓𝑖𝑗

)

𝑘=1 (2)

where |d(t)| is the Euclidean length of the Delaunay edge d(t)

Definition 6: Local Standard Deviation (𝜎𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
)): refers to the measure of variability or

dispersion in the lengths of all the edges that are directly connected to the instance 𝑓𝑖𝑗
 in the

Delaunay Triangulation (DT), calculated:

 𝜎𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
) = √

1

deg(𝑓𝑖𝑗
)−1

∑ (|ⅆ𝑡| − 𝜇𝑙𝑜𝑐𝑎𝑙)2
deg(𝑓𝑖𝑗

)

𝑡=1 (3)

Definition 7: Global mean (𝜇𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇)) : It represents the overall average distance between

connected vertices in the triangulation. By calculating the sum of all edge lengths and dividing it

by the total number of edges, we can obtain the global mean value:

 𝜇𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇) =
1

𝑁(d(t))
 ∑ | ⅆt

𝑁(𝑑(𝑡))

𝑡=1 | (4)

Where N(d(t)) is the numbers of all edges in the DT

Definition 8: Global Standard Deviation (𝜎𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇)): represents the variability or spread of edge

lengths across all edges in the Delaunay Triangulation (DT). It measures how much the lengths of

the edges deviate from the average length, providing insights into the overall distribution of edge

lengths, calculated:

. 𝜇𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇) =
1

𝑁(d(t))
 ∑ | ⅆt

𝑁(𝑑(𝑡))

𝑡=1 | (5)

Definition 9: Global positive edge: an edge is classified as a global positive edge if its length does

not exceed the global distance constraint associated with the corresponding instance 𝑓𝑖𝑗
. In other

words, if the length of an edge connecting to 𝑓𝑖𝑗
is less than or equal to the specified global distance

constraint, it is considered a global positive edge, global distance constraint 𝑓𝑖𝑗
 (𝑐𝑜𝑛𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙(𝑓𝑖𝑗

))

can be calculated:

14 | P a g e 9 S e p t e m b e r 2 0 2 3

 𝑐𝑜𝑛𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙(𝑓𝑖𝑗
) = 𝜇𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇) + 𝜎𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇)

𝜇𝑔𝑙𝑜𝑏𝑎𝑙(𝐷𝑇)

𝜇𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
)
 (6)

The global distance constraint of a vertex is a measure that considers statistical information about

the average length and standard deviation of all edges in the Delaunay Triangulation (DT), as well

as the local mean of the vertex itself. This constraint provides statistical insights into the spatial

positioning of the vertex within the dataset and its neighboring instances.

Each instance in the dataset has its own defined proximity region. If the length of an edge directly

connected to an instance 𝑓𝑖𝑗
 is greater than the global distance constraint of 𝑓𝑖𝑗

 , that edge is

considered invalid and is subsequently removed from the DT. This ensures that only edges within

the defined proximity range are retained, preserving the validity and accuracy of the DT.

For example, in Figure 5, we have removed all redundant edges on a global level: A.3C.3, C.2D.2,

C.3D.3, B.2C.3, B.3C.3, C.2D.1, B.3D.2.

Third, after satisfying the second constraint, we obtain distinct clusters and the local edge

constraint will remove some edges that are excessively long in each subgraph:

Definition 10: Mean Local Standard Deviation (𝜇𝜎𝑙𝑜𝑐𝑎𝑙
): The local standard deviation value of a

vertex represents the variability or dispersion of edges incident to that vertex. By averaging the

local standard deviation values of all vertices, we can obtain a measure of the overall variability

within the graph G (G is subgraph):

 𝜇𝜎𝑙𝑜𝑐𝑎𝑙
 =

𝛴𝜎𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
)

𝑁𝑣𝑒𝑟𝑡𝑒𝑥(𝐺)
 for 𝑓𝑖𝑗

 ∈ G (7)

Where 𝑁𝑣𝑒𝑟𝑡𝑒𝑥(𝐺) is the number of vertices of G and 𝑓𝑖𝑗
 is a vertex of G

Definition 11: Local positive edge: refers to an edge that is connected to an instance in 𝑓𝑖𝑗
 a graph.

It is considered a local positive edge if its length does not exceed the local distance constraint of

𝑓𝑖𝑗
. The local distance constraint of 𝑓𝑖𝑗

 represents a limit or threshold on the maximum length of

edges that are considered valid or acceptable for 𝑓𝑖𝑗
.

 𝑐𝑜𝑛𝑠𝑡𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
) = 𝜇𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗

)
2 + 𝛽𝜇𝜎𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗

)
 (8)

Where 𝜇𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
)

2 represents the average length of edges connecting the first-order and second-order

neighbors of 𝑓𝑖𝑗
. This metric captures the typical distance between 𝑓𝑖𝑗

 and its nearby points,

providing a local understanding of the spatial relationships.

15 | P a g e 9 S e p t e m b e r 2 0 2 3

The parameter β controls the sensitivity of the local positive edges. A local positive edge refers to

an edge whose length does not exceed the local distance constraint of 𝑓𝑖𝑗
. When β is set to a smaller

value, the local distance constraint becomes more strictly, resulting in a reduced number of retained

local positive edges in the DT. In this study, a default value of 1 is used for β [20].

And in the Figure 6, the local edge constraint helps us redundant edge on a local level: A.3D.3

Considering the instances within the second-order neighbors of 𝑓𝑖𝑗
 can be likened to observing a

microscope's field of view. By examining subgraphs with varying densities, finer details can be

taken into account. The 𝑐𝑜𝑛𝑠𝑡𝑙𝑜𝑐𝑎𝑙(𝑓𝑖𝑗
) is designed to identify long edges within each density

subgraph specifically. From a statistical perspective, these edges, formed by the points within the

second-order neighbors of 𝑓𝑖𝑗
 in a subgraph, can be viewed as a small sample.

3.1.3 DT-based construct algorithm

Algorithm 1 describes the implementation of the DT-based approach. With a set of spatial instances

as input as shown in Figure 1. Firstly, the algorithm will create triangular structures using the

Delaunay Triangulation (DT) method like Figure 2 (step 1). Next, the algorithm continues to use

three filters: filter the edges connecting instances with the same feature like Figure 3 (step 2), filter

global positive edges like Figure 4 (step 3), filter local positive edges like Figure 5 (step 4). Finally,

the algorithm will return a set of all edges representing the neighbor structure of the spatial

instances.

3.2 K-order neighbors approach

Definition 12: Big neighborhood [2]: Big neighborhood of instance s is the instances s' that satisfy

both the relationship R(s', s) with s and belong to sets with higher indices of feature than the set

containing instance s.

According to Definition 2 about Neighborhood in DT-based, K-order neighbors algorithm will

obtain all big neighborhoods from the first – order neighbors to the k-order neighbors of the instance

that you are considering.

Algorithm 1:

Input: S: a set of spatial instances.

Output: DTlocal: a set of all edges after implementing 3 filtering

strategies

Steps

1) DT= Delaunay_triangulates(S)

2) DTfeature = filter_feature(DT)

3) DTglobal = filter_global_edge(DTfeature)

4) DTlocal = filter_local_edge(DTglobal)

16 | P a g e 9 S e p t e m b e r 2 0 2 3

The Algorithm 2 describes the way we find K-order neighbors. Steps 11 to 21 involve searching

for the first-order neighbors of each point in the queue QV (which includes the instance itself and

its neighbors for retrieval). By iterating the process of finding the first-order neighbors of instances

in QV (from step 8 to step 22), we generate the first-order neighbors, second-order neighbors, and

so on until we create the K-order neighbors. However, if the instance itself does not have K-order

neighbors, the search process stops when the queue QV is empty, ensuring that we find all possible

neighbors for each instance (as stated in the condition in step 8). And in the step 23 we remove the

instance itself to get all neighbors from first-order neighbors to k-order neighbors. We add all

instances to a list BNs of p (step 24) and then consider other instances in S.

For example, the result of Algorithm 2 (All Big neighborhoods of each instance in spatial data S)

for Figure 6 is 3 Figure as follow with different K:

Algorithm 2: K-order neighbors algorithm

Input:

S: a set of spatial instances

DE: a set of all Delaunay edges after DT-based construct algorithm

K: order neighbors that user specifies

Output:

BNs(p): All big neighborhood of each instance in S

Steps:

1) For instance p in S:

2) k =0

3) count=0

4) QV.add(p)

5) DU.add(p)

6) SetPointK.add(p)

7) K_order.add(SetPointK)

8) While(NotEmpty(QV) and k<K)

9) Count++

10) Curr_instance=QV.Out

11) For Instance first_order in First_order(Curr_instance):

12) Curr_Edge= Edge(Curr_instance, first_order)

13) If DE.contains(Curr_Edge) && SE.not_contains(Curr_Edge)

14) SE.add(Curr_Edge)

15) If !DU.contains(first_order) && first_order € BNs(Curr_instance)

16) DU.add(first_order)

17) QV.add(first_order)

18) SetPointK.add(first_order)

19) End if

20) End if

21) End for

22) End while

23) DU.remove(p)

24)BNs(p).addAll(DU)

25)End for

17 | P a g e 9 S e p t e m b e r 2 0 2 3

Table 1: Big neighbourhood lists with K=1

Instance BNs Instance BNs Instance BNs Instance BNs

A.1 B.1, B.2, D.2,

D.3

B.1 C.1, D.2,

D.3

C.1 D.1, D.2,

D.3

D.1 -

A.2 B.3, C.2 B.2 D.2, D.3 C.2 - D.2 -

A.3 C.1, D.1 B.3 C.2 C.3 - D.3 -

Table 2: Big neighbourhood lists with K=2

Instance BNs Instance BNs Instance BNs Instance BNs

A.1 B.1, B.2, C.1,

D.2, D.3

B.1 C.1, D.1,

D.2, D.3

C.1 D.1, D.2,

D.3

D.1 -

A.2 B.3, C.2 B.2 C.1, D.2,

D.3

C.2 - D.2 -

A.3 B.1, B.2, C.1,

D.2, D.3

B.3 C.2 C.3 - D.3 -

Table 3: Big neighbourhood lists with K=3

Instance BNs Instance BNs Instance BNs Instance BNs

A.1 B.1, B.2, C.1,

D.2, D.3

B.1 C.1, D.1,

D.2, D.3

C.1 D.1, D.2,

D.3

D.1 -

A.2 B.3, C.2 B.2 C.1, D.1,

D.2, D.3

C.2 - D.2 -

A.3 C.1, D.1 B.3 C.2 C.3 - D.3 -

18 | P a g e 9 S e p t e m b e r 2 0 2 3

3.3 Clique approach: Depth-First Clique Instance drive schema (DFCIS)

Considering a spatial dataset's neighborhood list, we construct a tree structure for identifying

cliques. Then, we will introduce a new efficient schema based on Instance driven schema (IDS) [2]

to find clique.

Definition 13: Hs-Clique [2]: A clique cl is specifically termed an Hs-Clique if its head corresponds

to the instance s. All clique starting with instance s is referred to as an Hs-Cliques.

Definition 14: An Instances-Driven-Schema-Based clique tree [2] (referred to as I-tree) is a

hierarchical structure defined as follows:

1) It comprises a single root node labeled as "root".

2) Each node, except for the root, contains two properties: instance-name and node-link. The

instance-name stores the identifier of the represented instance, while the node-link points to

the next sibling node that represents a larger instance. If there is no larger instance, the node-

link is set to null.

3) The nodes that have the root as their parent are referred to as head-nodes. A head-node,

representing an instance "s", is symbolized as hns. Any descendant node of a head-node that

represents an instance "s" is denoted as ns.

4) An I-clique encompasses a collection of instances that is denoted by a leaf node and all its

ancestor nodes. Within an I-clique, every pair of instances satisfies the condition of being

neighbors.

Figure 7: An example of I-tree

19 | P a g e 9 S e p t e m b e r 2 0 2 3

To establish an I-tree, several lemmas and definitions are provided as follows.

Lemma 1 [2]: In the case of an instance s, all Hs-Cliques can be generated from BNs(s).

Proof: Since BNs(s) encompasses instances that satisfy the conditions for Hs-Cliques: satisfies the

relationship R(s', s) and contains instances with higher-level features.

Lemma 2 [2]: Given an n-size candidate clique clq = {s1, s2, …, sn}, for every si ∈ clq (1 ≤ i < n)

and ∀sj(j > i), if R(si, sj) = true, then clq is a clique.

Proof: For every si ∈ clq (1 ≤ i < n) always exist at least one instance sj have higher-level feature

and satisfies the relationship R(si, sj).

For example, in Figure 7, with a candidate clique: A.1B.1D.2, A.1 have relationship with B.1 and

D.2, B.1 have relationship with A.1 and D.2, D.2 have relationship with B.1 and A.1. So the

candidate clique A.1B.1D.2 is a clique.

Definition 15: Right Sibling Instances [2]: Regarding a node ns within an I-tree, its set of right

sibling instances comprises instances represented by its right siblings possessing distinct features,

denoted as RS(ns).

Lemma 3 [2]: When considering a head-node hns within an I-tree, the children of hns correspond to

BNs(hns). In the case of a non-root node ns, the children of ns are obtained by intersecting BNs(ns)

with RS(ns).

Proof: The children of ns need to satisfy both the relationship R with ns (BNs(ns)) and parent of ns

(it is BNs(parent of ns) that doesn’t include ns, so it is RS(ns)). So the children of ns are obtained

by intersecting BNs(ns) with RS(ns).

For example, in the example for Lemma 2, A.1B.1D.2 is a clique, D.2 is the child of B.1 because it

is the intersectant instance of BNs(B.1) with RS(B.1).

Definition 16: Clear Node: A node is called a Clear Node if all its children are determined to be

big neighborhood of that node - the set of k-neighboring instances of ns.

Lemma 4: For a head node hns, for one of the other non-root nodes ns, if Childrens(ns) = BNs(ns)

then mark ns as Clear Node. For a Head-node hns, check if hns is Clear Node or not, if hns is Clear

Node then we skip finding cliques of this node.

Proof: Since Childrens(ns) = BNs(ns), when ns becomes a new head node, we have already

traversed these cliques within ns because it does not miss any of the instances in BNs(ns). In other

words, there is already an existing clique that contains any clique created when ns is not a new head

node, as it has a length longer than at least one instance (the parent of ns in the old clique).

Definition 17: Can Clique: represents the status or condition that determines whether a clique can

be generated or not during the execution of the algorithm.

Definition 18: Old Instances list: is the list contains all old instance that have been traversed

through.

20 | P a g e 9 S e p t e m b e r 2 0 2 3

Lemma 5: For a Head-node hns, with each non-root nodes ns not in Old Instances list or the rank of

that node is not greater than K (order neighbors that user specifies), mark Can Clique = true and

push ns in oi. At leaf node check if Can Clique = true then generate clique and mark Can Clique =

false, else if Can Clique = false then don't generate this clique from this leaf node.

Proof: The process marks Can Clique as True when encountering a new node (Old Instances list

doesn’t contain it) that have the rank more than K (the node with rank K will link to new clique

avoid missing important cliques). We check Can Clique at the leaf node to ensure that the final

clique has been created. If Can Clique is True, it indicates that there is a new node within that

clique, allowing us to generate that clique. Conversely, if no new node is encountered, it implies

that we have already generated the clique containing this particular clique.

Lemma 6: For a Head-node hns when we meet a new node while traversing, The Old Instance list

will remove all instance which is the children of that node to make sure collect all cliques correctly.

Proof: When we meet a new node, the node can have more than one child. According to Lemma 5,

at the leaf node of first clique of first children, we will mark Can Clique = false, and when we

traverse the second, third clique, … we will miss the clique if we don’t meet a new node, but the

clique can get because we have already met the new node in that clique (their parent node).

Algorithm 3: Depth-First Clique Instance Schema(DFCIS)

Input:

nbs: neighborhood list(including BNs of each instance)

S: set of instances

Output:

Clqs: list of I-cliques

Steps:

1) iTree = Initialize_Itree(); //To create a root node on the tree

2) For Each instance p in S Do // To get Hs-Cliques for each p

3) stack = Initialize_stack(); //depth-first manner

4) headNode = iTree.AddHeadNode(p); //Get Hs-Cliques

5) stack.push(headNode); //Add headNode to the top of stack

6) OldInstance = Initialize_Set();

7) While NotEmpty(stack) Do

8) CurNode = stack.pop(); //Get a node from top of stack

9) If OldInstance.NotContain(CurNode) or RankOf(currNode) <=K Then

10) CanClique = True //Mark can generate new clique

11) OldInstance.Add(CurNode); //Add CurNode to OldInstance

12) End If

13) ChildNode = GetChildren(CurNode); // Lemma 3, Lemma 4 and Lemma 6

14) If IsEmpty(ChildNode) Then

15) If CanClique is True Then

16) CanClique = False; //Mark can’t generate new clique

17) Clqs.Add(GetClique(CurNode)); //Add clique to the result set

18) End If

19) iTree.RemoveAncestors(CurNode);

20) Else

21) iTree.AddNode(CurNode, ChildNode); //Add ChildNode to CurNode

22) stack.push(ChildNode.Reverse())

23) End If

24) End While

25)End For

21 | P a g e 9 S e p t e m b e r 2 0 2 3

The algorithm 3 follows a depth-first traversal approach to generate Hs-Cliques for each instance

in S (step 2 – 25). It maintains a stack for node traversal and keeps track of visited instances (step

8 and step 22). The algorithm traverses and utilizes Lemma 5 to ensure the collection of all cliques

when encountering a new node in the clique branch and avoids collecting sub-cliques within the

already collected cliques corresponding to each head node hns (step 9 -18). The algorithm get the

children node according to Lemma 3, Lemma 4 and Lemma 6 (we will present in Algorithm 4)

(step13). After generating an I-clique, a pruning operation is performed to optimize memory usage.

When a node ns is identified as a leaf node, it can be safely pruned. Moreover, if the parent node

of ns becomes a leaf node after ns is pruned, the parent node can also be safely pruned. This pruning

process continues recursively until one of ns's ancestor nodes retains one or more children after one

of its children has been pruned (step 19). The algorithm continues until all instances have been

processed.

Algorithm 4: Get Children follow a depth-first traversal

Input: currNode - the current node

Output: childrenNodes - a list of child nodes

Steps:

1) If the currNode.parent.IsRoot:

2) If the currNode.IsClearNode:

3) return the childrenNodes list.

4) End if

5) For each point p in the currNode.BNs:

6) p.parent=currNode

7) childrenNodes.add(p)

8) End for

9) For each node in childrenNodes do:

10) node.R_sibling=getR_Sibling(node)

11) End for

12)Else:

13) For each point p in currNode.BNs:

14) If CheckSiblingContain(currNode.R_sibling, p):

15) p.parent=currNode

16) childrenNodes.add(p)

17) If(CanClique)

18) OldInstance.remove(p)

19) End if

20) End if

21) End for

22) For each node in childrenNodes do:

23) node.R_sibling=getR_Sibling(node)

24) End for

25) If childrenNodes.size()=currNode.BNs.size()

26) currNode.IsClearNode=true

27) End if

28)End if

29)Return childrenNodes

22 | P a g e 9 S e p t e m b e r 2 0 2 3

The algorithm 4 first checks if the current node is a head node or not (step 1). If it is a head node,

first it checks whether head node is clear Node (step 2) according to Lemma 4 (Lemma 4 is used to

determine whether each head node ns is a clear node or not. This helps us avoid traversing clear

nodes (when it is head node) and reduces computational time), if true return the children Nodes list

(step 3), if it is not Clear Node then it processes each point in its big neighborhood (step 5), sets the

head node is the parent of each point (step 6), and adds them to the children Nodes list (step 7).

Then, it sets the Right sibling instances for each node in the list (step 9-11). Else If the current node

is not a head node (step 12), it processes each point p in its big neighborhood (step 13), check if p

belongs to the set of right sibling instances of the current node or not (step 14). If True, then sets

current node is the parent for each eligible point (step 15), and adds them to the children Nodes list

(step 16). Then, if Can Clique is true (meet a new node while traversing), remove all children of

current node in Old Instance according to Lemma 6(step 17-19). Again, it sets the Right Sibling

Instances for each node in the list (step 22-24). Finally, if the size of children Nodes list is equal to

the size of the big neighborhood of the current node, it sets current Node is the Clear Node (step

25 -27). The algorithm returns the children Nodes list (step 29).

For example, we will describe how the Algorithm 3 execute in data at Table 2 follow all Figure 8

A, B, C, D, E. At step 1 (we assign the step of collecting the first clique as Step 1), we get all

children of each node in the stack and when meet the leaf node D.2, we collect the first clique

A.1B.1C.1D.2 and each instance in that clique will be added to Old Instances List then remove the

leaf node D.2. At step 2, we collect the clique A.1B.1C.1D.3 because D.3 is the new node and it

will be added to Old Instances List then remove the leaf node D.3 and C.1 because C.1 have no

children else. At step 3, we remove the leaf node D.2 and it is in Old Instances List so we don’t add

clique A.1B.1D.2 to Cliques list (Can Clique is still false). Then step 4 we remove D.3 and B.1 and

don’t add the clique A.1B.1D.3 (Can Clique is still false). Finally, after traversing all node in I-tree

with head node A.1, we collect Cliques list as Figure 8E, the reason why A.1C.1D.2, A.1C.1D.3,

A.1D.2, A.1D.3 still in the Cliques list because C.1, D.2, D.2 have the rank 2 (not greater than k)

so it is also added to Cliques list.

 A B

23 | P a g e 9 S e p t e m b e r 2 0 2 3

 C D

 E

Figure 8: The DFCIS approach for head node A.1. A, the first step when collect the first clique. B,

The second step. C, The third step. D, The fourth step. E, the n-th step when finish collect cliques

from head node A.1.

3.4 Candidate generation

Definition 17: A Compressed clique hash (C-hash) [2]: is a data structure consisting of key-value

pairs that efficiently stores and organizes information by grouping features and associating them

with their corresponding instances, where:

(1) The key represents a set of features, denoted as Fc.

(2) The value is a collection of hash structures, each containing a key-value pair. Here, the key

represents a specific feature f that belongs to Fc, and the value' represents a set of instances

associated with feature f. The union of all key' values forms the complete key.

Figure 9 illustrates an example of a C-hash according to Definition 17. For a clique clq = {A.3, B.1,

C.1, D.1}, the key set is {A, B, C, D}, and the values associated with this key set are [<A, {A.1}>,

<B, {B.1}>, <C, {C.1}>, <D, {D.1}>]. Other cliques clqs are {A.3, B.1, C.1, D.2}, {A.3, B.1, C.1,

D.3}, {A.1, B.1, C.1, D.2}, {A.1, B.1, C.1, D.3}, {A.1, B.1, C.1, D.2}, {A.1, B.2, C.1, D.2}, {A.1,

B.2, C.1, D.3} shares the same key set {A, B, C, D}. Consequently, the value of the key set {A, B,

C, D} is updated to [<A, {A.1, A.3}>, <B, {B.1, B.2}>, <C, {C.1}>, <D, {D.1, D.2, D.3}>]. The

candidates can be derived from the keys of the C-hash.

24 | P a g e 9 S e p t e m b e r 2 0 2 3

Figure 9: C-hash example

The algorithm 5 create the structure of C-hash. For each clique in the input list of cliques, the

algorithm generates a new key called "newkey," which is a set of features extracted from that

particular clique (step 2). It only adds the newkey to the C-hash if it does not already exist in the

hash structure (steps 3-5). This ensures that the C-hash contains a unique set of features, reducing

memory storage and improving data retrieval efficiency. Subsequently, the value is a key-value

pair, where the value is the instance itself and the key corresponds to the feature associated with

that instance (steps 6-8). The process continues until all cliques have been processed.

Algorithm 5: Candidate generation [2]

Input:

clqs: Cliques generated by DFCIS

Output:

C-Hash: c-hash structure

Steps:

1)For Clique clq in clqs do

2) newKey=GetFeatures(clq) //Get the features of instances in clq

3) If Not chash.ContainsKey(newKey) Then

4) chash.AddKeyAndInitialize(newKey): //Do initialize operations

5) End if

6) For Feature f in newKey do

7) chash[newKey][f].AddInstances(clq);

8) EndFor

9)End For

25 | P a g e 9 S e p t e m b e r 2 0 2 3

3.5 Prevalent co-location filtering approach

Definition 18: Direct subset: Direct subset of a co-location size k is the set of all co-location size

k-1 created by removed 1 element from co-location size k.

Definition 19: Subsets: is set of all colocation patterns generated from a candidate colocation have

size from 2 to candidate.length – 1.

Lemma 7: If candidate is a prevalent colocation pattern, all subsets also are prevalent colocation

pattern, and conversely.

Proof: Since candidate colocations have a length longer than all their subsets, we can apply the PI

formula. As a result, the PI of each colocation pattern in the subsets will always be higher or equal

to the PI of the candidate colocation.

 Algorithm 6: Prevalent co-location filtering [2]

Input:

A C-Hash

min_prev

Output:

cs: list of all prevalent colocation with PIs

Steps:

1) for each key in C-Hash:

2) candidates.add(key)

3) C-hash_key.add(key)

4) End for

5) candidate.sort()

6) while candidates is not empty:

7) currCandidate = candidates.First

8) pi = CalculatePI(currCandidate, C-Hash, C-hash_key)

9) if pi >= min_prev:

10) candidates.remove(currCandidate)

11) cs.put(currCandidate, pi)

12) subsets = GetAllSubsets(currCandidate)

13) PIs = CalculatePIs(subsets)

14) cs.putAll(subsets,PIs)

15) candidates.remove(subset)

16) Else:

17) candidates.remove(currCandidate)

18) GetDirectSub(currCandidate, cs, candidates)

19) candidates.Sort

20) End if

21)End while

22)Return cs

26 | P a g e 9 S e p t e m b e r 2 0 2 3

The algorithm 6 iterates over the keys in C Hash and adds them to the candidates list and C-

hash_key list (step1-4). It then sorts the candidates list in descending order (step 5). The algorithm

enters a loop where it retrieves the first candidate from the list and calculates its PI value (step 7-

8). Based on Lemma 7, if the PI value is greater than or equal to min_prev (step 9), it means the

candidate is a prevalent colocation pattern, it adds the candidate and its PI to the cs map then remove

it from candidates list and find the subset then calculates the PI values for all its subsets (step 10-

13). Then the subsets and their PI values are added to the cs map (step 14) and remove subset from

candidates list (step 15). If the PI value is below min_prev (step 16), the algorithm removes the

candidate from the candidates list and based on Lemma 7, algorithm adds the direct subset of the

candidate to the candidates list (for checking prevalent colocation pattern) and sorts the candidates

list in descending order again (step 17-19). The loop continues until the candidates list is empty

(step 6-21), and finally, the cs map is returned (step 21). The way we calculate the PI will be present

in algorithm 7.

Algorithm 7: Calculate PI

Input:

currCandidate: the current candidate

CHash

C-hash_key: a list of keys from CHash

Output:

PI: Participation index of current candidate

Steps:

1) minPRs = 1

2) Inst =newMap()

3) For i = 0 to currCandidate.length:

4) F = currCandidate[i]

5) Inst.putkey(F).newSet()

6) End for

7) supersets = GetSuperSets(CHash, currCandidate, Chash_key)

8) For each CDs in supersets:

9) CD = CHash.getkey(CDs)

10) For i = 0 to currCandidate.length:

11) F = currCandidate.get(i)

12) Inst.getkey(F).addvalue(CD.getkey(F))

13) End for

14)End for

15)For i = 0 to currCandidate.length:

16) F = currCandidate[i]

17) count_f = size of Inst[F]

18) prs = count_f / Features[F]

19) If minPRs >= prs:

20) minPRs = prs

21) End if

22)End for

23)Return PI=minPRs

27 | P a g e 9 S e p t e m b e r 2 0 2 3

The algorithm "Calculate PI" calculates the Participation Index (PI) for a given current candidate.

The algorithm iterates over the features in the current candidate, retrieves the instances

corresponding to each feature from the supersets, calculates the participation ratio for each feature,

and updates the minimum PI value accordingly. The result is the minimum PI value among all

features in the current candidate, representing the overall participation level of instances in those

features.

4 Experimental results and analysis

4.1 Experiment Setting

In this section, a set of experiments are conducted to examine the performance of the DTkC

algorithm. We choose joinless [18], CP-tree-based (named Condense) [17], and Delaunay

triangulation-based co-location mining (DTC) [9] to com pare. All programs in our experiments

were coded using the Java programming language, available on GitHub1, and were performed on

a Laptop with Intel(R) Core (TM) i7-8550u CPU@1.8- 4.0 GHz and 16 GB main memory.

Datasets: Four real datasets that are collected from points of interest in Beijing, China [2], Las

Vegas, Toronto, USA2, and United Kingdom (UK)3, were used in our experiments. Moreover, two

synthetic datasets, that were produced by a generator [18], were also used in our experiments. Table

4 lists some basic characteristics of the datasets used in this experiment.

Table 4: The datasets used in our experiments

Name Area #feature #instances Distribution

Beijing 135km x 224km 17 90,257 Centralized + dense

Las Vegas 38km x 63km 19 31,592 Sparse + dense

Toronto 23km x 56km 19 20,309 Sparse + dense

UK 12,84km x 13,867km 26 143,621 Sparse + dense

Synthetic 5000km x 5000km 15 * Dense

4.2 Compare the mining performance

The first experiment compares the mining performance of the five algorithms including running

time and memory consumption based on the variations of two parameters: the minimum distance

threshold (only for Joinless and Condense) and the minimum prevalence threshold.

28 | P a g e 9 S e p t e m b e r 2 0 2 3

(a) Beijing (b) Las Vegas

 (c) Toronto

Figure 10: The performance of compared algorithms on different distance thresholds (minprev = 0.2

for all)

On different distance thresholds: Figure 10 shows the result on both running time and memory

consumption of the compared algorithms when modifying the minimum distance at values of 100m,

150m, 200m, 250m, and 300m, and in our algorithm, DTkC sets k=2, i.e., 2-order neighbors. We

can observe that DTC and DTkC do not change their running time because they are not dependent

on the minimum distance threshold parameter. Since the DTC algorithm only simply uses DT to

obtain the neighbor relationship between instances, then it uses a merging strategy, that is, merging

from triangles to quadrilaterals, merging from quadrilaterals to pentagons, etc., to find row

instances of high size co-location patterns. However, the strategy generates only few high size

patterns, so its execution time will be less than our algorithm.

For the joinless and condensed algorithms, their running time will increase multiplicatively as

distance thresholds increase. At lower values of distance thresh olds, the running time of all

algorithms is approximately equivalent. However, when increasing this parameter by a small

amount, it leads to a significant increase in running time for the joinless and condensed algorithms,

especially for dense data types like the ones we are using.

For Joinless and Condensed, when the minimum distance threshold is increased, the number of

neighboring instances also increases, leading to a higher number of candidate pattern evaluations

and a larger volume of row instances. Consequently, a significant increase in memory consumption.

29 | P a g e 9 S e p t e m b e r 2 0 2 3

For DTC and DTkC algorithms, since they are not dependent on the minimum distance threshold,

the memory consumption is always stable and lower compared to the aforementioned algorithms.

However, DTkC exhibits significantly lower memory consumption than the DTC algorithm. This

is attributed to the utilization of the depth-first clique search strategy instead of the merging

operation used in DTC to generate row instances.

 (a) Beijing d = 250m (b) Las Vegas d = 125m

 (c) Toronto d = 125m

Figure 11: The performance of compared algorithms on different prevalence thresh olds.

On different prevalence thresholds: Figure 11 describes the performance of the five algorithms on

different prevalence thresholds. We observe that with a smaller prevalence threshold (e.g., 0.1), the

computation times of Joinless and Condense are significantly large. Although the computation

times decrease when the prevalence threshold is increased, they still remain considerably high

compared to DTC and DTkC.

The memory consumption of Joinless and Condense decreases to some extent when the prevalence

threshold increases. This is because these algorithms start the computation from small candidate

co-locations and gradually expand to larger ones. As a result, when the prevalence threshold

increases, the number of high size patterns decreases, leading to a decrease in the number of

candidate co-locations that need to be computed.

DTC and DTkC utilize obtaining table instances first and C-Hash structures for candidate co-

locations, respectively. Therefore, changing the prevalence threshold does not significantly impact

memory consumption during the computation of PIs for candidate co-locations and the filtering of

prevalent patterns. However, DTkC still exhibits significantly lower memory consumption.

30 | P a g e 9 S e p t e m b e r 2 0 2 3

4.3 Evaluate the scalability of DTkC

On different numbers of instances: Figure 12 shows the computation time of the DTC and DTkC

algorithms with an increasing number of instances (minprev = 0.2, k = 2). We can see that in Figure

12(a), the dataset is dense and the number of instances is large, the computation time for both the

merging step and the depth-first clique search increases significantly. However, in Figure 12(b),

only the computation time for DTkC increases rapidly, while the computation time for DTC

increases at a slower pace. This occurs because in the less dense dataset, DTC generates fewer new

polygons through the merging method, whereas DTkC has an increasing number of new cliques

along with the some of sub-cliques that were not eliminated all by the depth-first clique search. As

a result, it takes more time to traverse the larger I-tree structure.

(a) Synthetic dataset (b) UK dataset

Figure 12: Space cost and execution time on different numbers of instances.

However, in both datasets in Figure 12, the space cost of DTkC is always smaller than that of DTC.

This is because the depth-first clique search generates fewer candidate co-locations compared to

the merging method in DTC. In addition, another reason is that dataset in Figure 12(b) has more

features compared to Figure 12(a), resulting in a larger average number of neighbors generated in

DTkC compared to DTC. This also leads to a significantly larger number of cliques to traverse in

the I-tree due to the higher average number of neighbors in DTkC, while the average number of

neighbors in DTC is around 4-5.

Based on the above analysis, it can be seen that the DTkC algorithm is more suitable for dense

datasets compared to DTC and datasets have fewer features. This is because it effectively reduces

space cost while keeping the increase in execution time relatively low compared to the DTC

algorithm.

On different values of k: Finally, we compare the scalability of DTkC based on the parameter k

and the number of instances. It can be observed that both the execution time and space cost of

DTkC show an increasing trend. However, the increase in space cost is not significant compared to

the rate of increase in execution time. It is evident that the rapid increase in execution time of DTkC

is an inherent characteristic of this dense dataset. However, it is uncommon to choose a large value

for k, as the average number of neighbors can reach tens or more. The advantage lies in the fact

that the space cost does not increase significantly, which is beneficial when dealing with dense

data.

31 | P a g e 9 S e p t e m b e r 2 0 2 3

Figure 13: Space cost and execution time on different k values (minprev = 0.2).

5 Conclusion

Mining PSCPs based on a distance threshold is challenging for users as it often leads to either

missing or excessive patterns that may not align with their research objectives because it is difficult

to find a suitable value of the thresh old. This work proposes a combined algorithm called DTkC,

which leverages a Delaunay triangulation-based approach to address the issue of determining

neighbor relationships. The algorithm also incorporates the concept of k-order neighbors, allowing

users to choose neighbor hierarchies based on their specific research needs rather than being limited

to a fixed number of neighbors. Furthermore, DTkC uses a depth-first clique search strategy,

resulting in enhanced computational efficiency and reduced memory consumption. The efficiency

of DTkC is proved on both real and synthetic datasets and in multiple respects.

In the future, we aim to improve the performance of the DTkC algorithm for datasets with moderate

distribution density or datasets with a large number of features. As the parameter k increases by

only one unit, the number of collected co-location patterns significantly increases. To address this

issue and obtain a more accurate count of co-location patterns while avoiding data redundancy, we

intend to explore and integrate suitable methods or techniques into the algorithm.

32 | P a g e 9 S e p t e m b e r 2 0 2 3

References

[1] Andrzejewski, W., Boinski, P.: Efficient spatial co-location pattern mining on multiple gpus.

Expert Systems with Applications 93, 465–483 (2018).

[2] Bao, X., Wang, L.: A clique-based approach for co-location pattern mining. Information

Sciences 490, 244–264 (2019).

[3] Lee, I., Phillips, P.: Urban crime analysis through areal categorized multivariate associations

mining. Applied Artificial Intelligence 22(5), 483–499 (2008).

[4] Leibovici, D.G., Claramunt, C., Le Guyader, D., Brosset, D.: Local and global spatio-temporal

entropy indices based on distance-ratios and co-occurrences dis tributions. International Journal of

Geographical Information Science 28(5), 1061 1084 (2014).

[5] Li, J., Adilmagambetov, A., Mohomed Jabbar, M.S., Zaïane, O.R., Osornio-Vargas, A., Wine,

O.: On discovering co-location patterns in datasets: a case study of pollutants and child cancers.

GeoInformatica 20(4), 651–692 (2016).

[6] Luna, J.M., Fournier-Viger, P., Ventura, S.: Frequent itemset mining: A 25 years review. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9(6), e1329 (2019).

[7] Qian, F., Chiew, K., He, Q., Huang, H.: Mining regional co-location patterns with k nng. Journal

of Intelligent Information Systems 42, 485–505 (2014).

[8] Sundaram, V.M., Paneer, P., et al.: Discovering co-location patterns from spatial domain using

a delaunay approach. Procedia engineering 38, 2832–2845 (2012).

[9] Tran, V., Wang, L.: Delaunay triangulation-based spatial colocation pattern mining without

distance thresholds. Statistical Analysis and Data Mining: The ASA Data Science Journal 13(3),

282–304 (2020).

[10] Tran, V., Wang, L., Chen, H., Xiao, Q.: Mcht: A maximal clique and hash table based maximal

prevalent co-location pattern mining algorithm. Expert Systems with Applications 175, 114830

(2021).

[11] Wang, L., Bao, Y., Lu, J., Yip, J.: A new join-less approach for co-location pattern mining. In:

2008 8th IEEE International Conference on Computer and Information Technology. pp. 197–202.

IEEE (2008).

[12] Wang, L., Bao, Y., Lu, Z.: Efficient discovery of spatial co-location patterns using the icpi-

tree. The Open Information Systems Journal 3(1) (2009).

[13] Yang, X., Cui, W.: A novel spatial clustering algorithm based on delaunay triangulation. In:

International Conference on Earth Observation Data Processing and Analysis (ICEODPA). vol.

7285, pp. 916–924. SPIE (2008).

[14] Yao, X., Jiang, X., Wang, D., Yang, L., Peng, L., Chi, T.: Efficiently mining max imal co-

locations in a spatial continuous field under directed road networks. Infor mation Sciences 542,

357–379 (2021).

33 | P a g e 9 S e p t e m b e r 2 0 2 3

[15] Yoo, J.S., Boulware, D., Kimmey, D.: A parallel spatial co-location mining algo rithm based

on mapreduce. In: 2014 IEEE international congress on big data. pp. 25–31. IEEE (2014).

[16] Yoo, J.S., Boulware, D., Kimmey, D.: Parallel co-location mining with mapreduce and nosql

systems. Knowledge and Information Systems 62, 1433–1463 (2020).

[17] Yoo, J.S., Bow, M.: A framework for generating condensed co-location sets from spatial

databases. Intelligent Data Analysis 23(2), 333–355 (2019).

[18] Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns. IEEE

Transactions on Knowledge and Data Engineering 18(10), 1323–1337 (2006).

[19] Yoo, J.S., Shekhar, S., Smith, J., Kumquat, J.P.: A partial join approach for mining co-location

patterns. In: Proceedings of the 12th annual ACM international workshop on Geographic

information systems. pp. 241–249 (2004).

[20] Deng, Min, et al. "An adaptive spatial clustering algorithm based on Delaunay

triangulation." Computers, Environment and Urban Systems 35.4, 320-332 (2011)

