Mo IARS WFETREE
2012

Mining Correlated High-Utility Itemsets
using the Cosine Measure

Students: Huynh Anh Duy, Huynh Anh Khoa
Supervisor: Assoc. Prof. Phan Duy Hung

* Introduction

 Algorithms

* Methodology

* Experiment and analyze
 Conclusion and perspectives

Basic concepts
Problem definition
Related works and contribution

What Is a transaction database ?

* Let be asetof items {a, b, ¢, d, ¢,...} sold in a store

Transaction ltem

« Atransaction is a set of items bought by a customer. T1 {a,b,c,d,e}
« Example: T2 {a, b, e}
T3 {c, d, e}

T4 {a, b, d, e}

Discovering Frequent Patterns

« The task of frequent patern mining was proposed by Agrawal (1993).

 Input: a transaction database and a parameter minsup > 1.

« Output: the frequent itemsets (all sets of item appearing in at least minsup
transactions).

Transaction database Frequent itemsets
T ltem
T, {a, b,c,d,e} _ 4
B {a b, e} minsup ‘f {d, e} 3
T3 {c, d, e} {b, d, e} 2 \

T, {a b, d, e} i

How to solve this problem?

The naive approach:
 Scan the database to count the frequency of each possible itemset.
eg: {a}, {a,b}, {a,c}, {a,d}, {a, e}, {a,b,c}, {a,b,d}, ...{b}, {b,c}, ... {a,b,c,d,e}
 If nitems, then 2™ — 1 possible itemsets.
e Thus, inefficient. o

Several efficient algorithms:
 Apriori, FPGrowth, H-Mine, LCM, etc.

The “Aprioril” property

Property (anti-monotonicity).
Let be itemsets X and Y. If X c 'Y, then the support of Y is less than or
equal to the support of X.

T, {a, b c d e} The support of {a,b} is 3.

Thus, supersets of {a,b} have support < 3.
T, {a, b, e}

T5 {c, d, e}
T, {a, b,d, e}

Limitations of frequent patterns

 Frequent pattern mining has many applications.
« However, it has important limitations
- many frequent pattern are not interesting
- quantities of items in transactions must be 0 or 1
- all items are considered as equally important (having the same weight)

@

N\

High Utility Itemset Mining

A generalization of frequent pattern mining:

- Items can appear more than once in a transaction (e.g. a customer may buy 3 bottles
of milk)

- Items have a unit profit (e.g. a bottle of mile generates 1$ of profit)

- The goal Is to find patterns that generate a high profit
Example:

- {caviar, wine} Is a pattern that generates a high profit, although it is rare

o [

High Utility Itemset Mining

abcdefg

5212311

Input
A transaction database A unit profit table
TID Transaction ltem
Tl (a,l), (b15)’ (C,l), (d13)’ (6’1)1 (f15) Profit
T, (b,4), (c,3), (d,3), (e,1)
T5 (a,1), (c,1), (d,1)
T4 (3.,2), (016)1 (6,2), (915)
TS (b,Z), (C12)1 (e,l), (9,2)
Output

All high-utility itemsets (itemsets having a uzility > minutil)
For example, if minutil = 33%, the high-utility itemsets are:

{b,d,e} 36% {b,c,d} 34%
2 transactions 2 transactions
{b,c,d,e} 40% {b,c,e} 37%
2 transactions 3 transactions

minutil: a minimum utility threshold
set by the user (a positive integer)

Utility calculation

A transaction database A unit profit table

TID Transaction Item abcdefg
T (a,1), (b,5), (c,1), (d,3), (e,2), (f,5) Profit 5212311
T (b.4), (c.3), (d.3), (e.1)
T; (a,1), (c,1), (d,1)
Ty (a,2), (c,6), (e,2), (9,5)
Ts (b,2), (c,2), (e,1), (9,2)

The utility of itemset {b,d,e} is calculated as follows:

u({b,d,e}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = 36%

Utility in Utility in
transaction T; transaction T,

A difficult task !
Why ?

 Because utility 1s not anti-monotonic (i.e. does not respect the Apriori property)
« Example:

u{a})=20%
u{ae})=24%
u{ab,c}) =16 $
* Thus, frequent iemset mining algorithms cannot applied to this problem

Problem Definition
Correlation problem

High-utility itemset mining

- Is useful for discovering profitable itemsets.

- But may discover many itemsets that are weakly correlated.
- E.g. bread with caviar has a high profit

We need a new type of patterns:
Correlated patterns High-utility patterns

Solve high utility itemset mining problems

 Algorithms
- Two-Phase (PAKDD 2005),
- IHUP (TKDE 2010),
- UP-Growth (KDD 2011),
- HUI-Miner (CIKM 2012),
- FHM (ISMIS 2014),
- EFIM (MICAI 2015),
- mHUIMiner (PAKDD 2017)
« Key idea: calculate an upper-bound on the utility of itemsets (e.g. the TWU) that respects
the Apriori property to be able to prune the search space.

Solve correlated high utility itemset mining problems

 Algorithms
- FCHM (HAIS 2016)
- CoHUIM (Knowledge-Based Systems 2018)
- CoUPM (Information Sciences 2019)
- CoHUI-Miner (IEEE Access 2020)
» Key idea: The correlation measure must satisfy some properties that support the process
of pruning candidates.

‘ Propose a new version of FCHM algorithm which uses cosine measure to evaluate
correlation between itemsets

The FHM algorithm
The FCHM algorithm

The TWU upper bound

TWU of an itemset: the sum of the transaction utility for transactions containing the itemset

TID Transaction
T, (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
T, (b,4), (c,3), (d,3), (e,1)
T (a,1), (c,1), (d,1)
Ty (8,2), (c,6), (e,2), (9,9)
T5 (b,2), (C12)1 (e,l), (9!2)
Example:

TWU{a,e}) = TU(T,) + TU(T,) = 30$ + 27$ = 57%

ltem

abcdefg

Profit

5212311

TWU({a,e}) =57% > u({a,e}) = 24% and the utility of any superset of {a,e}

Utility-list structure

Create a vertical structure named Utility-List for each item

Trans. Items
T; (a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
T, (b,4), (c,3), (d,3), (e,1)
T3 (a,1), (c,1), (d,1)
Ty (a,2), (c,6), (e,2), (9.9)
Ts (b,2), (c,2), (e,1), (9,2)

Example: The utility-list of {d}:

Trans. util rutil
T, 6 8
T, 6 3
Ts 2 0

ltem

abcdefg

Profit

5212311

The first column is the list of transactions

containing the itemset

The FHM algorithm

Utility-list structure

Create a vertical structure named Utility-List for each item

Trans. Items
Ty (a.1), (b.5), (e,1), (£5)
1, (b,4), (c,3), (e,1)
T, (1), (c,1),)(d,1)]
Ty (a,2), (¢,6), (e,2), (9,5)
Ts (b,2), (c,2), (e,1), (9,2)

Example: The utility-list of {d}:

Trans. util rutil
T, 8
T, 3
T; 0

Item a b cme f g

Profit 52 11213 11

The second column is the utility of the
Itemset in these transactions

The FHM algorithm

Utility-list structure

Create a vertical structure named Utility-List for each item

Trans. Items
Ty (a.1), (b.5), (e,1), (£5)
1, (b,4), (c,3), (e,1)
T, (1), (c,1),)(d,1)]
Ty (a,2), (¢,6), (e,2), (9,5)
Ts (b,2), (c,2), (e,1), (9,2)

Example: The utility-list of {d}:

Trans. util rutil
T, 8
T, 3
T; 0

Item a b cme f g

Profit 52 11213 11

Property 1. The sum of the second column
gives the utility of the itemset.
u{d}) =6+6+2=149%

The FHM algorithm

Utility-list structure

Create a vertical structure named Utility-List for each item

Trans. Items ltem 1 b o W
i (a,1), (b,5), (c,1))(d,3)} (e,1), (.5 :
n lemealealen] PO s 2 42[3r
T, @) Cjdn|
T, (a.2), (c.,6), (e.2), (9.5)
Ts (b,2), (c.2), (e,1), (9.2)
Example: The utility-list of {d}:
Trans. util rutil The third column is the remaining utility,
T, that is utility of items appearing after the
i Itemset in the transactions.

The FHM algorithm

Utility-list structure

Create a vertical structure named Utility-List for each item

Trans. Items
PN e oo m T ool
n o lesealeslen o [23]2 ¢
T, @))l
T4- (&,2), (0’6)’ (6’2)1 (g,5)
T5 (b,2), (C’Z)’ (e,l), (9’2)
Example: The utility-list of {d}: Property 2: The sum of all numbers is an
_ _ upper bound on the utility of the itemset and
Trans. util rutil its extensions.
I
T, 6+6+2+8+3+0=259%
I3

Utility-list structure

Utility-list can be joined to calculate utility-list of large itemsets

Utility list of {a} Utility list of {d} Utility list of {a,d}

Trans. Util rutil Trans. util rutil Trans. util rutil
T, 5 25 I T; 6 8 T; 11 8
T; 5 3 N T, 6 3 T; 7 0
join
T, 10 17 T, 2 0
u({a}) =20 $ u({d}) =14 $ u({a,d}) =18 $

Utility-list structure

Utility-list can be joined to calculate utility-list of large itemsets

Utility list of {a} Utility list of {d} Utility list of {a,d}

Trans. Util rutil Trans. util rutil Trans. util rutil
T; 5 25 I T; 6 8 T; 11 8
T; 5 3 N T, 6 3 T; 7 0
join
T, 10 17 T; 2 0
u({a}) =20 $ u({d}) =14 $ u({a,d}) =18 $

The FHM algorithm

Utility-list structure

Utility-list can be joined to calculate utility-list of large itemsets

Utility list of {a} Utility list of {d} Utility list of {a,d}
Trans. util rutil
Ty

I3

u{a}) =20 $ u{d}) =14 $ u{a,d}) = 18 $

The FHM algorithm

Utility-list structure

Construct utility-list of k-itemsets (k > 3)

Utility list of {a,b}

Trans. Util rutil

Iy

u{a,b})=15%

o

join

Utility list of {a,c}

util rutil
——

Utility list of {a,b,c}

Trans.

Iy

util rutil

Trans.
Iy
Ts 6 2
T, |16 11

u{ac})=28%

Observation: Join operations are very costly in terms of execution time

mmm) \NVe need to reduce the number of join operations

u{ab,c}) =16 $

The FHM algorithm

Estimated Utility Co-occurrence pruning (EUCS)

* \We pre-calculate the TWU of all pairs of items and store it in a structure
named EUCS

 During the search, consider that we need to calculate the utility list of an
itemset X.

 |f X contains a pair of items i and j such that TWU({1,j}) < minutil, then X is
low utility as well as all its extensions.

* In this case, we can avoid performing the join.

EUCS can be implemented as

b 25 (1) a triangular matrix or
c 55 (2) a hashmap of hashmaps
d 33

The FHM algorithm

General 1dea

 An algorithm for mining high utility itemsets
It performs a depth-first search

i
| -I' -HH‘H
Algorithm 1: The FHM algorithm ‘ l “‘“amH —
input: D: a transaction database, minutil: a user-specified threshold {a} (b} {c} {d}
output: the set of high-utility itemsets . | \ \ MH‘M
o + Ny »

1 Scan D to calculate the TWU of single items; {ali} afc adl {b.c} {b.d} {c.d}
2 [* € each item i such that TWU(i) = minutil; S T
3 Let > be the total order of TWU ascending values on /*; / l II
4 Scan D to built the utility-list of each item i € /* and build the EUCS; " l '
5 Output each item i € I* such that SUM({i}.utilitylist.iutils) = minutil; {fabc} {abd} {acd} {b.c.d}

6 FHMSearch(@, I'*, minutil, EUCS);

|

{a.b.c.d}
* It prune the search space using the utility measures

The FCHM algorithm

How to detect If items are correlated?

Several approachs:

 Using statistical tests to find productive itemsets
(Webb et al., 2010)

* The affinity measure (Ahmed et al.2011)

* The bond measure (Bouasker et al.2015)

« The all-confidence measure (Omiecinski et

al.2003)

The bond of an itemset

« The conjunctive support of an itemset X in a database is the number of
transactions that contains X.
* The disjunctive support of an itemset X in a database is the number of
transactions that contains any item from X.
* The bond of an item X is defined as:
bond(x) = 2-S1P ()
disj_sup(X)

Property (Anti-monotonicity of the bond measure). Let X and Y be two
item-sets such that X €Y. It followes that bond(X) > bond(Y)

The all-confidence of an itemset

The all-confidence of an item X iIs defined as:

:)
all — confidence(X) = maxj:;(zupp(x))

Where max,cx(supp(x)) is the support of the item with the highest support in
X

Property (Anti-monotonicity of the all-confidence measure). Let X and Y be two
Item-sets such that X €Y. It followes that all-confidence(X) > all-confidence(Y)

Problem definition of FCHM

 Discovering all correlated high utility itemsets, that is itemsets:

- Having a utility no less than a threshold min_util

- Having a bond no less than a threshold min_bond or having an all-confidence no less
than a threshold min_all-confidence

A transaction database

TID Transaction Item abcdefg
T, (a,1), (b,5), (c,1), (d,3), (e,1), (f,5) | | Profit 5212311
T, (b,4), (c,3), (d,3), (e,1)
T3 (a,1), (c,1), (d,1)
Ty (a,2), (c,6), (e,2), (9,5)
Ts (b,2), (c.2), (e,1), (9,2)

For example, if minutil = 30 and minbond = 0.5, correlated high utility itemsets are:
{b,d} util=30 bond=2/4=0.5

{b,e} util=31 bond=3/4=0.75

{b,c,e} util=37 bond=3/5=0.6

General 1dea
&

 An algorithm for mining correlated high utility itemsets

It performs a depth-first search / \ \\
{a} {b} {c} {d}

SN NN

{ab} {acy {ad} {bc} {bd} {c.d}

/] |

{a,b,c} {ab,d} {ac,d} {b,c,d}

|

{a,b,c,d}
* It prune the search space using the correlation measures (bond or all-confidence) and
utility measures
» Key challenge: how to calculate the bond and all-confidence of an itemset

Calculation of Bond measure

Each itemset X Is annotated with a disjunctive bit vector that stores the union of all
items In X, denoted as bv(X)
e.g. the disj. bitvector of {a} i1sT;, T3, T, = bv(a) = 10110
the disj. bitvector of {b} i1s T; ,T,, Ts = bv(b) = 11001
the disj. bitvector of {a,b} is bv(a) OR bv(b) = 10110 OR 11001-> 11111

The bond of X can be calculated as ul @O
|bv (X))

* |ul(X)] is the number of elements in the utility list of X
* |bv(X)] is the number of elements in the disjunctive bit vector

Calculation of All-confidence measure

« The support of X can be obtained by the size of its utility-list
* The support of single items can be obtained from their respective utility-list

where:

Additional optimization for FCHM gy;_confidence
 Directly Outputting Single items (DOS)

* Pruning supersets of Non correlated itemsets (PSN)
 Pruning with Upper-Bound (PUB) version 1.

Additional optimization for FCHM p,,,4

 Directly Outputting Single items (DOS)

* Pruning supersets of Non correlated itemsets (PSN)
* Pruning with Upper-Bound (PUB) version 2

« Abandoning Utility-list construction early (AUL)

* LA-Prune

* Pruning Utility-list by upper-bound (PUL)

Methodology

The Cosine measure
Proposes approach

e Cosine measure for two items:

P(Al U Az) Sup(A1 U Az)

JP(A4) X P(4;) +[sup(A;) X sup(4y)
e Cosine measure for more than two items:

cosine(A{,A,) =

P(AfUA,U---UA,) sup(A{ UA, U---UA,)

cosine(A4,A,, ..., A;) = =
\/P(A1) X P(Az) X -+ X P(Ay) \/SUP(A1) X sup(A4z) X - X sup(4,)

 Null-invariant measure -
‘ ‘ Proposes FCHM..,..:.,. algorithm
» Anti-monotonicity property P cosine 413

Null-invariant property
« A null-transaction is a transaction that does not contain any of the itemsets being examined
 Null-(transaction) invariance is crucial for correlation analysis

Null-invariant

| Measure | Definition |Range|Null-Invariant
',‘»(_Ql;n. b Zid:n.i fefﬂ-i.bjl]u—iwli';jl?t-f.bj J]E [I_I le] No
Table 6.8 2 < 2 Contingency Table for Two Items Lift(a.b) Pi "f}?fm [0, oc] No
milk milk Yow | AllConf(a,b)) I [0,1] /Y.gﬁ\
coffee mc mic c Coherence(a,b) supla1+jﬁ§f§?lsuplubj [0.1] Yes
coffee mc me ¢ Cosine(a, b) ; mf”:&'%‘] — [0.1] Yes
2 ool m m z : %’rsuplmwpl -
Kule(a,b) Supzmm (sujcl'tcr,J + su_;'-ltlj) | [0.1] Yes
. MaxConf(a,b) max{ 2uplad) suplab)y 0,1 Yes
Null-transactions Tolle 5 Tarore 2=t~ O] A\
able 3. Interestingness measure definitions.
w.rt, mandc
Data set| me | 7o ~~Us ™o v= | Lift |[AllConf|Coherence|Cosine
Iy 10,000|1,000(1,00 0,00M[20557] 9.26 0.91 0.83 /7 0.91 NL.91 0.91
Dy [10,000(1,000| 1,000 _100_A4| O 1 0.91 0.83 NO91 Y091 091
g 0 00 |100,000() 670 | 8.44| 009 | 004 000 |0.09 0,0
Dy A1,000 [1,000] 1,000\]100,000(|24740(25. 76+ 0.5 0.33 0.5 0.5 [T~
D (]| 1,000 100 | 10,000 J100,000(| 8173 | 98 0. 0% 0.09 29 | 0.5 0.91 >
38 De NL0OOO | 10 [100,004|100,000(] 965 1.7 0.0 0ANLOs | oo
e— — " 7 -
Table 2. Example data sets. [__Subtle: They disagree

Proof for anti-monotonicity property

Sup(A1 U Az U--U ATL)
Jsup(4;) x sup(4,) X -+ X sup(Ay)

cosine(A,4,, ..., A,) =

Sup(A1 U AZ Uu---u An U ATL+1)
Jsup(4;) x sup(4,) X -+ X sup(4,) X sup(4np+1)

cosine(A, Ay, ..., A, Apiq) =

Since sup(4; UA, U--UA,) =sup(4; UA, U---UA, UA,,,) and
\/SUP(A1) X sup(Az) X --- X sup(4,) < \/SUP(A1) X sup(Az) X -+ X sup(4y) X sup(Ap41)

‘ cosine(Ay,4A,, ..., A;,) = cosine(A, Ay, ..., Ap, Apiq)
‘ If the itemset does not satisfy minimum cosine a, it is no need to traverse its superset

Calculation of cosine measure

Product of support value of all 1-items is calculated during the construction of the

utility list in FCHM algorithm:

product(Pxy) = product(Px) X product(Py) if prefix P is null
product(Px)Xproduct(Py)

product(P)
Support value of itemset X can be derived from utility list.

else product(Pxy) =

Additional optimization

Directly Outputting Single items (DOS)
Pruning Supersets of Non correlated itemsets (PSN)

Data
Effectiveness Analysis
Efficiency Analysis
Memory Analysis

Dataset

Foodmart

Mushroom
Retail

No. of distinct
items

21,566

88,162
88,162

No. of
transactions

1,599

16,470
16,470

Average
transaction
length

4.4

23
10.3

Type

Sparse with
short
transactions

Dense

Sparse with
many items

Table 4. Compare patterns count with FHM

Dataset Algorithm Number of patterns
ay a, - ay de
foodmart FHM 233,231 231,904 219,012 154,670 59,351
Co.o1 101,629 100,303 87,966 36,252 3,274
Co.o2 81,511 80,222 68,745 25,409 2,530
Co.oa 48,912 47,687 3.7667 10,546 2,063
Co.os 41.674 40,457 30,759 7,262 1,847
Coa 9,659 9,453 7.804 3,486 1,676
mushroom FHM 1,045,780 585,013 273448 179,215 92,656
Cooos 1740 1379 921 711 435
Cooos 501 406 303 253 178
Co.o1 207 140 85 59 37
Coa 161 109 63 40 20
Coa 160 109 63 40 20
retail FHM 14,045 13,017 12,103 11,234 10,479
Coa 1910 1820 1741 1651 1575
Co.12 1852 1765 1687 1598 1523
Co.1a 1812 1728 1650 1562 1458
Co.16 1779 1696 1619 1533 1461
Coa 1,490 1,482 1,470 1,455 1,445

Reduce a large number of weakly
mmm) correlated patterns compared to
FHM algorithm

Effectiveness Analysis

- focdmart (minCore: 0.1) Mushroom (minCaore: 0.4)

*

Pattern count
Pattern count
g &8 B B

|

W0 S0 100 W00 3500 4000 00K 120K 150K 170K 200K 250K
Minimum vty threshold Minimasm utility threshold

Retall (minCaore: 0.4)

000 200 200 2300 MO0 2500
Minimum utility threshald

¥ FCHM_ Al —® FCHM Cosine

=+ FCHM_Bond

Fig. 1. Compare pattern count with other versions (varying minUlil, fixing minCore)

Foodmart (minlUtil: 2000) Mushroom (minUtil: 200K)

:

;

Pattern count
=
=

100 4

T T T T T T T
001 ooz 003 004 005 0da 04 03
Minimum correlation threshold Minimum comelation threshold

Retail (minUtil: 2400)

T
L]

b1 01z 014 0l 018 o4
Minimum correlation threshold

v~ FCHM Al —® FCHM Cosine —#— FCHM Bond

Fig. 2. Compare pattern count with other versions (varying minCore, fixing minUtil)

The constraint set by the proposed algorithm can be
considered tighter than previous versions in some cases

Efficiency Analysis

foodmart (minCore: 0.1)

mushroom (minCore: 0,4)

Runtime {ms)
1k

g
=]

&
=

175000

150000 4

_ 125000 1
100000 1
7000 4

Runtime (ms

50000 1
=00

R I

1000 2000
Minimum ublity threshald

100 500

/00 4000

100K 150K 170K 200K

Minimum utility threshold

120K 250K

retal (minCore: 0.4)

T

700 P00 Moo 300

Mlimimumm uislity threshaold

14000
£ 13000 |
£
= 12000
2

11000

000 2100
- FHM

=~ FCHM Cosine

Fig. 3. Compare runtime with FHM (varying minUtil, fixing minCore)

g

Runtime [ms)

g 8

focdmart {minUtil: 2000) mushroom (minUtil: 200K}

{ %

Runtirme (ms)
HH

=]
g g

L e S S—

=

0ol 0Os 01 04 05 06
Minimum cormelation threshold

002 00 004 005 006

Minimurm comelation threshold

0.01

retail (minUtil: 2400)

— %

11100
11050 4
11000 1
10950 1
10500
10850 1

Runtirme (rms)

01 012 014 0l6 018 04
Manamum correlation theeshold

~% FHM - FCHM Cosine
Fig. 4. Compare runtime with FHM (varying minCore, fixing minUtil)

mmm) The runtime of FCHM i, 1S much improved compared to FHM

Efficiency Analysis

foodmart (minCore: 0.1) mushroom (minCore: 0.4)

e — - 2000 §
Emn- Elb«nﬂ-) T -

'Esnn- .Emcl-

2 2 1200 |
4001 1mu='—_“-‘——'____.___h_1

100 500 1000 2000 3500 4000 100K 1206 150K 170K 200K 250K
Iinirmem utility threshold Mimimum utility threshald

retail (minCaore: 0.4)

175000 1 M
150000 4
E 125000 1
E 100000 1
=
é Ta000
50000
2S000
L L L L = L
E"DIC]EI Jllﬂl} ?_Z:J'D 2300 H:HEI ElIIIH}
Minimum utility threshokd
¥ FCHM Al -® FCHM Cosine =+ FCHM Bond

Fig. 5. Compare runtime with other versions (varying minUzil, fixing minCore)

foodmart (minUtil: 2000) miushroom {minUtil: 200K)

3500 1
12400 4 0000 A
g 10040 g B
E 1 E
E E Z00H 4
E BOD 4 S 15000 -
i i
o0 | 100040
5000
400 + : 0l , . ; " -
0ol a2 Qa3 oL .05 Ll ool 005 0l (L] 05 {EL]

Minimum comelation threshold Minimum comelation threshold

retail (minUtil: 2400)
175000 -

- —ly— 4 i —y
150000 -
< 125000 -
"E' 100000 4
¢
= 75000 -
&
S0000
=R
[§ L_§ - L L |
01 olz 0l4 o0le ol8 04
Minimum caorrelation threshold
¥= FCHM_AllLT -% FCHM Cosine == FCHM_Bond

Fig. 6. Compare runtime with other versions (varying minCore, fixing minUtil)

) * The runtime of FCHM yin 1S quiet similar to FCHM 11— confidence
* The runtime of FCHM ,¢ine 1S better than FCHM,,,,,4 €xcept for mushroom dataset

Memory Analysis

. - . foodmart (minUtility: 2000) mushroom (minUtility: 200K)
foodmart (minCore: 0.1) mushroom (minCore: 0.4)
250 1 200 | 00 §
750 - —
= 200 1 o i 200 1 E
= Z 2004 = -
= 150 1 = 5 qzg -]
E g 150 E E
100 4
¥ g w0
50 4 < 50
ol]
0= 0= 0ol on2 o3 s] 005 006 ol o5 0l [iT] 05 -1
100 500 1000 2000 3500 4000 100K 120K 150K 170K H00K 250K
Mmimum utility threshold Mimimum utility threshold Minimum cormelation threshold Minimum comelation threshold
Retail (minCore: 0.4) Retail (minUtility: 2400)
BODD -
m P
— BOD 1
E AD0 E 400 1
¥ =
=
200 4 00 1
o4 o4
2000 200 2200 2300 MO0 2500 01 @l 014 016 018 04
[i I.Illllt"' threshold Minimum comelation threshold
BN FHM ™88 FCHM Al BB FCHM Cosine HEE FCHM Bond BN FHM W FCHM Al NS FCHM Cosine M FCHM Bond

Fig. 7. Compare memory with FHM and other versions (varying minUtil, fixing minCore) Fig. 8. Compare memory with FHM and other versions (varying minCore, fixing minUtil)

mm) The FCHM_, sy iS always in the top two algorithms with the lowest memory consumption

Conclusion

* Proposes the FCHM ., in. algorithm, which is a new version of the FCHM algorithm

« FCHM _,.ine Significantly reduces weakly correlated patterns compared with the
traditional HUIM algorithm

« FCHM_,¢;ne has a stable runtime with memory consumption and in some cases better
than the previous two versions of the FCHM algorithm

Future works

 Developing new pruning strategies which suitable for cosine measure
 Research more on other null-invariant measures

Thanks for your attention !

Q&A

