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ABSTRACT

Many datasets centered around scene text detection have emerged with the progressive
evolution of deep learning techniques. These datasets exhibit attributes of high-resolution
imagery containing diminutive textual elements, thereby establishing a burgeoning trend
in computational tasks. Conventional approaches to mitigate the challenge of small text
within these images involve downsizing the image dimensions. However, such a strategy
often leads to text obfuscation and perceptual deterioration, consequently undermining
performance outcomes. Thus, the employment of substantial models operating on en-
larged input scales becomes imperative, albeit demanding significant GPU computational
resources and prolonged training durations.

In the context of this investigative inquiry, we introduce "TextFocus," an algorithm
designed to harness a multi-scale training strategy optimally and efficiently. Instead
of meticulously scrutinizing individual pixels across an image pyramid, the TextFocus
algorithm adopts a discerning approach. It endeavors to delineate contextual domains
encompassing instances of ground-truth text, referred to as "chips." Subsequently, the
algorithm engages in an intricate process of identifying all textual regions within the
sampled image. This entails accumulating comprehensive textual insights from each
"chip," which are subjected to meticulous post-processing techniques, culminating in
deriving definitive outcomes for text detection.

The prowess of TextFocus lies in its capacity to adeptly transmute expansive image
samples, boasting dimensions of 4000x4000 pixels, into scaled-down, lower-resolution
"chips" measuring 640x640 pixels. This transformation imparts a dual advantage of
expediting training procedures and enabling the accommodation of larger batch sizes,
with a remarkable upper limit of 50 batches on a solitary GPU, even under conventional
scaling paradigms. While the prevailing wisdom dictates an incremental enhancement in
outcomes with augmented training dimensions, our approach deviates from this paradigm.
Our experimentation illustrates that training on high-resolution scales might not yield
optimal performance.

Our implementation employs a ResNet-18 backbone, augmented by a segment-like
head architecture. The empirical outcomes showcase a commendable F1 score of 0.828
on the SCUT-CTW1500 dataset [1], alongside a respectable F1 score of 0.611 on the
Large CTW dataset [2]. These achievements are coupled with a real-time operational
capacity, as substantiated by the acceptable frames per second (FPS) metric.
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CHAPTER 1. INTRODUCTION

1.1 Scene text detection

Scene text detection represents an extensively pervasive and pivotal facet within com-
puter vision tasks. This computational undertaking holds paramount significance, finding
application across diverse domains of routine existence, encompassing endeavors such as
document digitization, bill processing, language translation, and surveillance operations,
exemplified by extracting information from credit cards and vehicular license plates as
shown in Figure 1.1. Furthermore, the significance of scene text detection extends to
encompass text-centric retrieval systems and the specialized realm of text-oriented visual
question answering. Despite its manifold potentialities, several impediments preclude its
seamless integration into practical contexts.

Figure 1.1: Illustration for the problem of Scene text detection. These images are results from the
Canny Text Detection in [3].

Foremost among these challenges is the delicate balance between the imperatives
of precision and swiftness in execution. This trade-off between the fidelity of results
and the expeditiousness of analysis remains a formidable hurdle in achieving optimal
operational outcomes. A second difficulty pertains to the inherently unpredictable and
diverse nature of arbitrary text instances that the system encounters as shown in Figure 1.2.
The erratic and variegated manifestations of text across various contexts pose intricate
conundrums, demanding sophisticated solutions for robust and reliable recognition.
Finally, the predicament of grappling with high-resolution imagery housing diminutive
textual content amplifies the intricacy of the task. The juxtaposition of extensive visual
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CHAPTER 1. INTRODUCTION

data with minute textual elements necessitates specialized methodologies to detect and
decipher such intricate components accurately. The triumvirate of challenges involving
accuracy-speed equilibrium, arbitrary-text instances, and high-resolution, small-scale text
further accentuates the multifaceted nature of the scene text detection problem.

Figure 1.2: This image elucidates the intrinsic unpredictable and heterogeneous characteristics of
scale exhibited by textual instances in the wild, through the utilization of bounding boxes. Figure

is taken from COCO-Text dataset [4].

The landscape of scene text detection has been significantly influenced by the emer-
gence of Deep Learning-based methodologies, most notably Convolutional Neural Net-
works (CNNs). These techniques have exhibited substantial promise in this domain,
showcasing exceptional proficiency in attaining elevated levels of accuracy and perfor-
mance. Leveraging the inherent capabilities of these models, particularly their adeptness
in comprehending extensive repositories of visual data, holds immense potential. When
realized, this potential can alleviate the demands placed upon users, offering a paradigm
shift towards a more streamlined and precise approach to text detection.

1.2 Arbitrary shape text detection

The domain of arbitrary shape text detection constitutes a specialized and discerning
realm within the expansive landscape of scene text detection and text recognition. In
contrast to conventional methodologies for text detection, which predominantly center
around the recognition of texts confined to rectangular or quadrilateral shapes, the
pursuit of arbitrary shape text detection embarks upon the challenge of localizing and
outlining textual constructs that manifest with complex, non-standard, and heterogeneous
geometries as shown in Figure 1.3. This encompasses instances wherein textual elements
assume contours that are convoluted, skewed, or harmoniously embedded within detailed
contextual backdrops. The principal objective resides in the precise delineation of the
spatial boundaries intrinsic to such textual instances, facilitating subsequent analytic
undertakings and cultivating comprehension. This domain finds resonance across an
expansive spectrum of application domains, including but not limited to scene text
recognition, document scrutiny, image comprehension, and other cognate areas. The
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CHAPTER 1. INTRODUCTION

Figure 1.3: The CTW1500 dataset’s images [1] are meticulously curated through manual
extraction from the Internet, representing both horizontally aligned text and text instances

exhibiting diverse orientations.

necessity for sophisticated methodologies and models is paramount, as they stand as
instrumental requisites in effectively surmounting the multifaceted challenges and nuances
engendered by the identification and delineation of text in these versatile compositional
configurations.

1.3 Background and problems of research

The domain of arbitrary shape text detection has undergone remarkable strides, pri-
marily attributed to integrating deep learning methodologies. These advancements have
been highlighted by notable contributions that encompass the adoption of models like the
Fully Convolutional Network [5] [6], coupled with encoder-decoder architectures such as
UNet [7] [8], UNet++ [9]. These models have exhibited substantial efficacy within the
confines of this specialized domain. In recent developments, a class of Transformer-based
paradigms, exemplified by models such as TextBPN [10]and DeepSOLO++ [11], has as-
cended to prominence, showcasing exceptional performance and achieving state-of-the-art
outcomes.

A dichotomy exists in addressing the text detection challenge, involving two divergent
approaches; one pertains to the analysis of images, while the other encapsulates the
investigation of videos. Although video inputs possess the potential to furnish temporal
insights into object motions, their utilization mandates intricate and resource-intensive
processing procedures. So, the research discourse is often inclined toward image-based
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CHAPTER 1. INTRODUCTION

Figure 1.4: The results of some recent model for Scene Text Detection task on SCUT-CTW1500
dataset [1].

detection due to its simplicity and broad applicability.

Recent investigations in the field have predominantly revolved around the quest for
novel architectural models. Nevertheless, the incremental enhancements in performance
metrics achieved through these approaches have become asymptotic as shown in Figure
1.4. Increasing accuracy by a few percent on public test datasets isn’t easy.

A second salient challenge pertains to the nuanced domain of arbitrary text instances.
These instances, characterized by their divergence from conventional rectangular con-
figurations, introduce complexities that representation through traditional bounding box
annotations.

Lastly, the challenge associated with high-resolution images harboring small textual
content compounds the barrier of scene text detection in both the training and inference
process. The precision of these challenges underscores the multiscale nature of scene text
detection.

In the present study, the goal is not to alter or propose the new model architecture.
Instead, the emphasis is directed toward refining learning and inference strategies simul-
taneous with the cultivation of expanded datasets to enhance accuracy and frames per
second (FPS) metrics.

4



CHAPTER 1. INTRODUCTION

1.4 Research objectives

The research objectives of this thesis, Efficient Multi-Scale for Arbitrary Scene Text
Detection for High-Resolution Image," are to investigate the current state-of-the-art in
arbitrary shape text detection algorithms, identify the limitations of existing methods, and
use an improved approach using multiple resolution techniques.

To solve the primary research objective, we thoroughly investigate arbitrary shape
text detection of the current methodologies. This investigation seeks to discern existing
approaches’ inherent limitations, thereby identifying critical areas that necessitate en-
hancement. From these experiments of previous methods, our algorithm will leverage the
benefits of multiple resolutions and multiple scales techniques to overcome the limitations
of existing processes, including recognizing small text accurately meanwhile ensure the
speed and resources when deploying.

Central to the research objectives is the conception and development of a novel text
detection algorithm. This algorithm is engineered to offer a dual advantage: the ability
to accurately and expediently detect instances of text within images characterized by
multi-resolution attributes. By harnessing the synergies afforded by multiple resolution
techniques, our algorithm aims to surmount the deficiencies that often beset current
methods, particularly their aptitude to discern diminutive textual elements. Furthermore,
this algorithm remains attuned to the imperatives of computational efficiency, ensuring
expedited and resource-effective deployment during its operational instantiation.

In tandem with the algorithm’s conception, a research goal is evaluating the experiment
results of our model on many real datasets. The assessment will be predicated upon various
metrics, notably the Intersection Over Union (IOU) metric score and the Tightness-aware
Intersect-over-Union (TIOU) metric [12]. These metrics encapsulate performance value,
including recall, precision, and the harmonic mean (h-mean), offering a robust framework
for comparative analysis.

Moreover, the ambit of this research extends to contribute substantively to the field
of image processing and pattern recognition. The insights from the comprehensive
exploration of multiple-resolution techniques are fundamental to providing knowledge of
the advantages and limitations of multiple-resolution methods for object detection. The
implications of this research are potentially affording valuable guidance for researchers
and engineers working on optical character recognition (OCR) tasks.

In conclusion, this thesis aims to develop a novel arbitrary shape text detection
paradigm, distinguished by its adept utilization of multiple resolution techniques. This
methodology is set to pass established benchmarks, thereby contributing to advancing
arbitrary shape text detection and the broader horizons of image processing and pat-
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CHAPTER 1. INTRODUCTION

tern recognition. The implications of these findings hold the promise of serving as a
foundational platform for formulating novel approaches across diverse domains of image
detection.

1.5 Contributions

Our main contributions to this study include the following:

1. Applied a novel approach to arbitrary shape text detection called TextFocus, lever-
aging the power of multiple resolution techniques, that addresses the limitations of
existing methods, precisely the trade-off between accuracy and resource consumption
concerns intrinsically linked with high-resolution sample training.

2. Synthesized the data by applying the Alpha-shape algorithm to generate new anno-
tations for the CTW dataset [2] .

3. Conducted experiments to demonstrate the effectiveness and efficiency of the pro-
posal solution.

Our algorithm asymptotic existing state-of-the-art methods in terms of recall precision
and h-means scores on the same test dataset outperform that method in terms of FPS and
resource consumption. Our research provides a promising avenue for further study in text
detection.

1.6 Organization of Thesis

The thesis is a comprehensive study that addresses the problem of Arbitrary shape text
detection. To achieve this goal, the remaining parts of the thesis are organized as follows:

Chapter 2, entitled "Theoretical Foundation," is an essential section of the thesis that
provides the basic theory used in the Scene Text Detection problem. This chapter explores
the literature related to the research problem, including direct and indirect studies. The
chapter aims to establish a solid foundation for the research by presenting a comprehensive
understanding of the theoretical aspects of the problem.

Chapter 3, entitled "Methodology," is a critical section of the thesis that presents the
method called Text Focus. This chapter includes the baseline model architecture and the
Multi-resolution training and inference strategy. The methodology will be explained in
detail to provide a better understanding of the approach taken in this research. This chapter
aims to show how the Multi-resolution strategy can be used to improve the accuracy of
the Arbitrary Shape Text Detection problem.

Chapter 4, entitled "Experimental Results and Discussion," is an essential section
of the thesis that presents the experimental results and discussions. In this chapter, we
will deliver the datasets used for training and testing, the evaluation metrics we used
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CHAPTER 1. INTRODUCTION

for evaluation, the program implementation details, experimental results with different
configurations, and comparisons with current best practices. The chapter aims to provide a
comprehensive review of the method and comparisons with existing methods in the field.
The experimental results and discussions will be presented to give a better understanding
of the performance of TextFocus.

Chapter 5, entitled "Conclusion and Future Work," is the final section of the thesis
that gives the conclusion of contribution, the improvements, and the weaknesses of
the methods. This chapter provides an overall summary of the research, highlighting
the study’s main contributions. The chapter will also discuss the limitations and future
directions of the method. Finally, some learning cases and future development will be
presented to inspire further research.

In conclusion, the thesis aims to comprehensively understand the Arbitrary Shape Text
Detection problem and present a novel approach to address this challenge. By submitting
the theoretical foundation, methodology, experimental results, and future directions, the
thesis aims to contribute to the research in this field and inspire future developments.

7



CHAPTER 2. THEORETICAL FOUNDATION

In this section, we will present related works, from the first method of Polyp Segmen-
tation problem, to recent studies that directly inspired our research. We will then detail
the underlying theories that will be used in this project.

2.1 Related works

2.1.1 History of arbitrary shape text detection methods

Arbitrary shape detection has emerged as a critical research area within scene text
detection. The problem of arbitrary-shape text detection is challenging due to the variety
of shapes and appearances text can take.

Before deep learning flourished, Connected Component (CC) and Traditional sliding
window based had been widely used. Sliding window-based methods [13] [14] involve
a multi-scale window over an image and classify the current path to detect objects or
features of interest. CC-based modes [15] [16] get the character candidates by extracting
CCs. And then, these candidates’ CCs are classified as text or non-text.

Recently, deep learning based methods have become popular. These methods can be
divided into different groups: regression-based methods, segmentation-based methods,
and contour-based methods.

a, Regression-based methods

Regression-based methods [17]–[21] always modify box-regression-based object de-
tection frameworks with word-level and line-level for text instances. However, scene texts
frequently exhibit arbitrary orientations accompanied by diverse aspect ratios. To handle
this problem, TextBoxes and TextBoxes++ [18] use a series of anchors with different
aspect ratios. These methods comprise the text proposal generation stage, with candidate
text regions generated, and the bounding box refinement stage, in which candidate text
regions are verified and refined to create the final detection result.

Early solutions for polyp segmentation were mainly based on low-level features, such
as texture, geometric features, or simple linear iterative clustering superpixels. They
are called traditional methods mamonov2014automated, maghsoudi2017superpixel.
However, due to the high similarity between polyps and surrounding tissues, these
methods have a high risk of missed or false detection.

b, Segmentation-based methods

Segmentation-based methods [22]–[25] draw inspiration from semantic segmentation
to implicitly encode text instances with pixels mask. PSNET[26] employs a progress scale
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CHAPTER 2. THEORETICAL FOUNDATION

expansion algorithm for multi-scale segmentation map fusion. PAN [27] and LSAE [28]
enhance pixel embeddings for the same text while distinguishing different texts. TextFields
[29] employs a deep direction field to link neighboring pixels, generating potential
text instances. DB[30] simplifies text detection’s postprocessing using differentiable
binarization within a segmentation network. These methods emphasize segmentation
accuracy as a key determinant of boundary detection quality.

c, Contour-based methods

Contour-based methods [31]–[34] directly model text boundaries to detect arbitrary-
shape text. ABCNet [33] and FCENet [34] employ curve modeling (Bezier-Curve and
Fourtier-Curve) for text instance contours, accommodation progressive approximation
of closed shapes. TextRay [35] introduces the polar system formulation of text contours
using a single-shot anchor-free framework to predict geometric parameters and generate
simple polygon detections. PCR [36] proposes a progressive contour regression within
a top-down detection framework for arbitrary-shape scene text detection. Similar top-
down frameworks are used by some methods [31], [32], which regress key points on text
contours within text proposals. Relative to segmentation-based methods, considerable
room remains for performance and speed enhancement exploration.

d, Other methods

In addition, there are alternative approaches. End-to-end methods [22], [37], [38]in-
tegrate text detection and recognition within a single network. These approaches can
improve detection performance by leveraging text recognition information [37]. Moreover,
Yao et al. [39] predict text corner points for text detection, and Lyu et al. [31] adopt a
similar architecture skin to SSD [40] to reconstruct text instances based on predicted
corner points.

2.1.2 Studies that directly inspired our research

In response to the challenges mentioned earlier, we introduce our solution named
TextFocus, which comprises two main components:

Pixel Aggregation Network (PAN): The initial branch of TextFocus leverages the Pixel
Aggregation Network (PAN) [27], an arbitrary shape text detector that can archive a good
balance between speed and performance. PAN uses Resnet-18 [41] as a backbone in its
architecture and has a segmentation head characterized by its low computational overhead
and lightweight nature while upholding a high-performance standard. Furthermore, unlike
many other text detectors, PAN predicts the text regions, kernels, and similarity vectors
rather than just the instances themselves. Since the chips produced by the focus branch can
overlap or split a particular text instance into multiple parts, directly detecting instances
is not the best option.

9



CHAPTER 2. THEORETICAL FOUNDATION

Focused Branch: The second branch introduces the focused branch, a straightforward
algorithm that orchestrates the exploration of regions deserving attention on the more
extensive scale within the image pyramid. The focus branch searches for plausible text-
inclusive areas within the image at each incremental scale, generating chips destined for
the subsequent image scale. Noteworthy is that the branch selectively processes a mere
20% of the scale encompassed by the preceding image instead of directly assimilating the
entire next-scale appearance. This strategic simplification augments the training process’s
efficiency, economizes on hardware, memory, and temporal resources, and underscores its
efficacy through empirical validation across four challenging datasets: SCUT-CTW1500
[1], ICDAR 2015 [42], TotalText [43], and CTW [2].

These two distinct components are synergistically harmonized to orchestrate a cohesive
and synchronized workflow that aligns with our overarching objectives. Notably, our
study rigorously curates an advanced pipeline; each block has been precisely examined to
generate the final process graph.

The prevalence of high-resolution inputs and intricate annotations within scene text
datasets has surged in the landscape of the explosion of deep learning applications.
However, these inputs are not suitable for conventional scene text detection. In response,
we employ data preprocessing techniques to reformat the original annotations, optimizing
their utility as model inputs.

It is imperative to underscore that each chip generated by the focus branch undergoes
processing within the model, thereby engendering a direct correlation between chip
quantity and processing duration. We have devised a postprocessing methodology that
aligns seamlessly with utilizing the model mentioned above components. Specifically,
the postprocessing approach accommodates scenarios wherein long text instances are
divided into multiple chips, simultaneously mitigating overlapping issues.

2.2 Foundational theories

This thesis contains numerous terms, and providing a detailed explanation of each is
outside this study’s scope. However, in this section, we will try to present the most crucial
theories related to and utilized in this thesis.

2.2.1 Resnet 18 architecture

The convolutional neural network architecture known as ResNet was formulated by
Microsoft Research in their publication "Deep Residual Learning for Image Recognition"
[41]. The Resnet-18 architecture is a widely used deep learning technique that has
been successfully applied to various tasks in computer vision. This specific variant
of the ResNet model has been meticulously tailored to cater to the demands of image
classification tasks.

10



CHAPTER 2. THEORETICAL FOUNDATION

Figure 2.1: The architecture of Resnet18 model.[41]

2.2.2 Feature Pyramid Network

The Feature Pyramid Network (FPN) [44] framework constitutes a comprehensive
architectural paradigm that encompasses two fundamental pathways: the bottom-up and
the top-down pathways. This innovative design is engineered to facilitate robust feature
extraction and semantic comprehension across varying spatial scales within the context
of object detection and related computer vision tasks as shown in Figure 2.2.

Figure 2.2: The architecture of Feature Pyramid Network model. [44].
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CHAPTER 2. THEORETICAL FOUNDATION

2.2.3 Encoder-Decoder architecture

Figure 2.3: The details of the UNet model. Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower
left edge of the box. White boxes represent copied feature maps. The arrows denote the different

operations. [45].

The Encoder-Decoder architecture is a widely used deep learning technique suc-
cessfully applied to various tasks in computer vision and natural language processing.
The architecture consists of two main components, the encoder and the decoder, which
transform an input sequence or image into an output sequence or embodiment.

In this chapter, we have provided a detailed presentation of the related works and
foundational theories that are relevant to the project. Our objective was to offer a thorough
understanding of the underlying theories, which will enable readers to appreciate our
TextFocus method, presented in the next chapter. This background information aims
to provide a comprehensive context for the TextFocus method, highlighting its unique
features and advantages in text detection.

12



CHAPTER 3. METHODOLOGY

The design of our TextFocus model is a comprehensive end-to-end framework encom-
passing training and inference phases. This foundational structure of our model embraces
an orchestrated between discrete yet harmonizing constituents: the Pixel Aggregation
Network (PAN) [27] and the Focus Branch [46]. Furthermore, we introduce a novel
method to generate annotations that facilitate the representation of arbitrary shapes for
text instances. This method leverages the bounding boxes attributed to each text character
and, through the Alpha-shape algorithm, produces the text instances with contours that
transcend the confines of conventional geometric. The first section introduces recon-
structing novel datasets and the overall architectural arrangement of the TextFocus model.
The subsequent explains the details of our training and inference strategy to optimize the
operational efficacy of the model.

3.1 Data enhancement and preprocesing

3.1.1 Alpha hull and Alpha shape

The concept of α hulls was introduced by Edelsbrunner et al. (1983) [47] as a natural
generalization of convex hulls. The positive α hull of a set of points, such as p1, p2, ..., pn,
is defined as the intersection of all closed discs (referred to as α discs) with radius
Rα (where Rα = 1

a) that contain all the points. In contrast, the negative α hull is the
intersection of all closed compliments of discs that contain all the points. This is generated
by point pairs that can be touched by an empty disc of radius Rα

Figure 3.1: Alpha hull and Alpha shape

In computational geometry, alpha shapes find application in the abstraction of the
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Figure 3.2: From left to right: the α-hull of a set of points sampling the shape of the symbol α in
the plane, the α-shape of the same set, and the union of disks of radius α centered at the points

Voronoi diagram of a set of points Voronoi diagram and Delaunay triangulation

Figure 3.3: Voronoi diagram and Delaunay triangulation

convex hull on a finite assemblage of points within the confines of the Euclidean plane.
The defining trait of an alpha hull manifests through its arcuate edges, which traverse
point pairs, mirroring the contour of a curved disk’s periphery. This delineation of the
alpha shape materializes after substituting these arcuate edges with linear interconnections
bridging the respective point pairs. A graphical depiction of the contrasting attributes
between alpha shapes and the convex hull is proffered in Figure 3.1.

Figure 3.1 illustrates this concept, where the dashed circle represents a disc with a
radius of 1

α , the blue arcs notation denotes the boundary of the alpha hull, and the red
line delineates the border of the alpha shape between two alpha nodes (also referred to as
points in design space). The structure of the alpha shape is dependent on the value of α,
meaning that for a given set of points, the shape will differ as α changes in Figure 3.2 . In
this work, alpha shapes are used for reliability estimation, as they can be represented as
linear boundaries that are well-suited for analytical approaches such as the First Order
Reliability Method (FORM).

In the context of this study, the utility of alpha shapes extends to the realm of relia-
bility estimation. This efficacy emanates from their amenable representation as linear
boundaries, harmonizing adeptly with analytical methodologies such as the First Order
Reliability Method (FORM).
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Figure 3.4: Idea of generating new boundary for CTW dataset [2]

The alpha shape emerges as an elegant and computationally efficient construct, in-
trinsically intertwined with two fundamental geometric structures: the Voronoi diagram
and the Delaunay triangulation. A Voronoi region of a specific point, denoted as p1,
encompasses all points (designated as point i) that exhibit equidistant proximity to both
p1 and another distinct point within the set. The Voronoi diagram essentially includes the
amalgamation of these Voronoi regions for all constituent points within the collection.
A visual representation of the Voronoi diagram corresponding to a designated group of
subjects is delineated in Figure 3.3. This diagram vividly illustrates the space partitioning
into Voronoi regions, each inextricably associated with its respective point.

3.1.2 Generate new annotations for CTW dataset

For the purposes of training and validation, the present study made use of the Chinese
Text in the Wild (CTW) Dataset, as delineated in Yuan et al. [2]. However, it is pertinent
to underscore that this dataset exclusively encompassed annotations corresponding to
instances of Chinese characters discernible within each individual image. To transcend
this inherent limitation and facilitate the incorporation of text instances characterized by
arbitrary shapes, a strategic recourse was adopted involving the deployment of the Alpha-
Shape algorithm. This algorithm was instrumental in circumventing the aforementioned
constraint and served as the mechanism through which delineations of text instance
boundaries endowed with arbitrary geometries were synthesized.

The operational sequence of this approach encompassed the systematic computation of
the coordinates aligned with all vertices and intermediary midpoints distributed along the
edges of the bounding boxes that encapsulate each character instance. These computed
coordinates were subsequently harnessed as the fundamental inputs for the Alpha-Shape
algorithm. Following this, meticulous fine-tuning of the alpha parameter was undertaken
to generate an entirely novel dataset replete with annotations. The values engendered
within this dataset were meticulously structured to be readily conducive for delineat-
ing borders characterized by arbitrary shapes. This strategic augmentation effectively
extended the dataset’s capacity to accommodate the heterogeneous array of text lines
prevalent across the images under investigation, a visual representation of which is vividly
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Figure 3.5: TextFocus for training process.

elucidated in Figure 3.4.

3.2 Baseline architecture

In this thesis, we present distinct strategies for the training pipeline and the inference
(or detection) pipeline due to their inherent dissimilarity.

3.2.1 Training pipeline

In this thesis, we present distinct strategies for the training pipeline and the inference
(or detection) pipeline due to their inherent dissimilarity.

Illustrated in Figure 3.5, the training procedure encompasses the subsequent steps:
Before ingestion into the model, input images, exhibiting diverse annotator formats con-
tingent on the dataset, undergo preprocessing to establish uniformity. Post-preprocessing,
utilizing a lightweight backbone (ResNet-18) [41], the model handles the processed
inputs. It subsequently channels the outputs through dual branches, yielding outcomes
encompassing text regions, text kernels, similarity vectors for subsequent textual outcome
instances, and focus maps intended to generate higher-level chips. It is pertinent to under-
score that the path represented by the dotted line in Figure 3.5 describes that this cycle is
entirely distinct from the result of the prediction branch.

3.2.2 Inference pipeline

Given the required time, conducting sequential processing for every sample is im-
practical, mainly as the chips generated across varying scales encompass the original
scale. As depicted in Figure 3.6, the inference procedure is outlined in some steps. The
processing phase is the same as the training phase; inputs traverse a lightweight backbone
within each scale iteration, yielding feature and focus maps. The focus map serves the
purpose of generating chips to be employed in subsequent scales. Upon the cessation of
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Figure 3.6: TextFocus for inference process.

chip generation, all features are amalgamated into a batch and forwarded to the residual
branch. This branch produces the final prediction for the text instance.

More information on each block and approach is provided below.

3.3 Pixel Aggregation Network - PAN

Pixel Aggregation Network (PAN) is an optimized approach by Wang et al [27]
for detecting text instances with arbitrary shapes, primarily due to its adept balance
between speed and performance. To achieve heightened efficiency, the segmentation
network’s backbone must be lightweight. Nonetheless, such lightweight architectures
often yield features characterized by diminutive receptive fields and limited representation
capabilities. To address this challenge, the model was designed with a computationally
efficient segmentation head to refine the extracted features. This segmentation head
encompasses two pivotal components: the Feature Pyramid Enhancement Module (FPEM)
and the Feature Fusion Module (FFM). In this study, we embrace this methodology
to address the intricacies of detecting arbitrary-shaped text within images of varying
resolutions.

3.3.1 Overall PAN’s Architecture

Figure 3.7 illustrates the comprehensive architecture of PAN, wherein the backbone
network employs a lightweight model, specifically ResNet-18 [41]. The backbone gen-
erates four distinct feature maps through conv2, conv3, conv4, and conv5 layers, corre-
sponding to spatial strides of 4, 8, 16, and 32 pixels relative to the input image. To reduce
the channel dimension of each feature map to 128 and achieve a more streamlined feature
pyramid, a module for channel reduction is implemented utilizing a 1× 1 convolutional
layer.

The thin feature pyramid undergoes augmentation via a series of nc cascaded Feature
Pyramid Enhancement Modules (FPEMs). These FPEMs are engineered to be cascadable,
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Figure 3.7: The architecture of PAN model.

characterized by their minimal computational overhead, rendering them suitable for
integration behind the backbone network. This integration enriches the depth and semantic
richness of features across diverse scales. Following each iteration of this enhancement
process, an upgraded feature pyramid is generated, leading to nc augmented feature
pyramids: F1, F2, ..., Fnc.

Subsequently, the Feature Fusion Module (FFM) is engaged to amalgamate the feature
outputs from the FPEMs situated at varying depths. The outcome of this fusion process
culminates in a final segmentation-oriented composite. PAN undertakes the task of text
region prediction, enabling a comprehensive depiction of the contours of text instances.
Additionally, the model predicts kernels that facilitate the differentiation of distinct text
instances. The network anticipates a similarity vector for each text pixel to establish a
coherent association between text pixels and kernels from the same text instance. The
objective is to minimize the dissimilarity between the similarity vectors of a pixel and its
corresponding kernel within the same text instance.

A straightforward and efficient post-processing algorithm is administered to derive the
ultimate text instances from the model’s predictions.

3.3.2 Reducing Channel Block

Four feature maps are engendered upon subjecting the input image to the ResNet
[41] backbone, each distinct in scale. Typically, these feature maps exhibit augmented
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Figure 3.8: The reducing channel block in PAN model.

dimensions with the network’s profundity. This phenomenon can precipitate considerable
parameter escalation and computational requisites, mainly when larger filter dimensions
are employed. To solve this problem, the model uses a 1× 1 convolutional layer, concomi-
tant with batch normalization and a rectified linear unit (ReLU) layer. This composite
configuration facilitates channel-wise pooling, effectively mitigating the potential perfor-
mance overhead. Moreover, it substantiates the expeditiousness of both model training
and inference; the block’s architecture has shown in Figure 3.8.

3.3.3 Feature Pyramid Enhancement Module

The architectural configuration of the Feature Pyramid Enhancement Module (FPEM)
resembles the well-recognized U-Net architecture [7], as visually depicted in Figure 3.9.
The module encompasses two phases, each contributing to its functionality: up-scale and
down-scale enhancement. Within the up-scale enhancement stage, the module iteratively
refines the feature maps of the input feature pyramid, progressively augmenting their
quality with strides of 32, 16, 8, and 4 pixels, respectively. Conversely, the down-scale
enhancement phase operates in reverse, utilizing the feature pyramid engendered by the
up-scale enhancement stage as input. Enhancement is executed, proceeding from a stride
of 4 pixels to that of 32 pixels. The down-scale enhancement phase bestows upon us the
definitive output feature pyramid generated by FPEM.
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Figure 3.9: The architecture of Feature Pyramid Enhancement Module.

To engineer the fusion point within FPEM, the model employs a 3×3 depthwise convo-
lution, followed by a 1× 1 projection, as a departure from the conventional convolutional
mechanism. This strategic choice accentuates the efficiency of FPEM by expanding the
receptive field. This configuration mitigates computational overhead while optimizing
receptive fields and network depth augmentation. Notably, the versatile character of
FPEM is underscored by its cascadable nature. Increasing the cascade number, denoted
as NC, consequently accentuates the efficacy of feature fusion across disparate scales,
concomitantly augmenting the expansiveness of receptive fields intrinsic to the features.

In summary, the Feature Pyramid Enhancement Module (FPEM) entails an architecture
similar to the U-Net, underpinning its dual-phase operation: up-scale and down-scale
enhancement. The cascading of its cascadable nature empowers the module’s adaptability
and feature fusion capabilities. FPEM enriches the network’s depth and receptive field
by adopting specialized convolutional mechanisms, concomitantly minimizing compu-
tational intricacies. These attributes collectively contribute to FPEM’s prominence as a
pivotal component, facilitating advanced feature aggregation and enhancing a receptive
lot of the network’s features.

3.3.4 Feature Fusion Module

Feature fusion represents an essential stage in exploring the insights embedded within
feature maps. This entails merging feature pyramids characterized by distinct depths, thus
harnessing low-level and high-level semantic particulars. A straightforward and efficient
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Figure 3.10: The architecture of Feature Fusion Module.

strategy for integrating these divergent feature pyramids involves their upsampling and
subsequent concatenation.

In the initial step, the model executes an element-wise summation between the feature
maps of corresponding scales extracted from the initial and terminal outputs of the Feature
Pyramid Enhancement Modules (FPEMs). The resultant feature maps, arising from this
additive operation, undergo an upsampling process and subsequently converge into a
culminating feature map marked by a mere 4× 128 channels.

This technique strategically serves the dual objectives of preserving information post
traversal through multiple layers of the model while concurrently sustaining expeditious-
ness in training and operational phases when applied on computational devices.

3.3.5 Pixel Aggregation

To address text detection challenges, considering both text regions and kernels is
very important. Text regions are instrumental in accurately representing text instances’
complete shape. However, the text regions may exhibit overlapping characteristics when
dealing with proximate text instances. This inherent overlap necessitates a mechanism to
differentiate and demarcate distinct text instances effectively.

In sharp contrast, the utilization of kernels offers a discerning advantage. Text instances
can be uniquely delineated through kernels, facilitating the differentiation process. Yet, it
is crucial to acknowledge that kernels may not encapsulate the entirety of a text instance’s
spatial extent. Consequently, a vital augmentation step becomes indispensable, the fusion
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of pixels residing within text regions into kernels. This process contributes to the holistic
reconstruction of complete text instances.

To accomplish this, the model applies an adaptive algorithm termed Pixel Aggregation
(PA), characterized by its learnable attributes. The primary function of PA is to judiciously
steer text pixels toward their respective kernels in a guided manner. This algorithm’s
fundamental principle resonates with clustering methodologies. In this case, text instances
can be likened to clusters, wherein the kernels are the same as the centers of these
clusters, and text pixels represent the samples to be categorized within the clusters. In this
paradigm, the optimization objective centers around minimizing the distance between
text pixels and the kernels corresponding to the same text instance. This proximity-based
rationale fuels the aggregation process, channeling text pixels toward their designated
kernels, ultimately unifying pixel clusters into coherent kernels.

Inherent to aggregating text pixels with their corresponding kernels is minimizing
the distance between the text pixel and the kernel of the identical text instance. This
proximity-based criterion serves as the foundational principle that guides the aggregation
process. During the training phase, this principle materializes through an aggregation loss,
denoted as Lagg and expressed through Equation 3.1 3.2. This loss function effectively
encapsulates the essence of the rule underpinning pixel-to-kernel aggregation.

Lagg =
1

N

N∑
i=1

1

|Ti|
∑
p∈Ti

ln(D(p,Ki) + 1) (3.1)

with

D(p,Ki) = max(||F(p)− G(Ki)|| − θagg, 0)
2 (3.2)

where the Ti is the ith text instance. The N is the number of text instances. D(p,Ki)

defines the distance between text pixel p and the kernel Ki of text instance Ti. θagg is
a constant, which is set to 0.5. F (p) is the similarity vector of the pixel p. G(·) is the
similarity vector of the kernel Ki, which can be calculated by

∑
q∈Ki

F(q)/|Ki|.

Moreover, ensuring that the kernels remain distinctly discernible in cluster center
differentiation is imperative. This mandates that the kernels associated with disparate
text instances exhibit substantial separation. A discrimination loss, denoted as Ldis and
delineated by Equation 3.3, is harnessed during the training phase to operationalize this
criterion. This loss function encapsulates the essence of maintaining adequate kernel
separation, ensuring the preservation of distinctiveness among kernels belonging to
different text instances.
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Ldis =
1

N(N − 1)

N∑
i=1

N∑
j=1

ln(D(Ki, Kj) + 1) (3.3)

with

D(Ki, Kj) = max(θdis − ||G(Ki)− G(Kj)||, 0)2 (3.4)

where θdis which is set to 3 in all our experiments.

The testing phase uses the predicted similarity vector as a guiding mechanism. This
vector is a navigational tool to direct the alignment of pixels within the text area’s con-
fines, ultimately facilitating their convergence toward the pertinent kernel. This strategic
orchestration effectively realizes the pixel-to-kernel alignment process, an integral step
within the overall text instance detection framework.

3.3.6 Loss function

The formulation of our PAN model loss function can be expressed as follows:

L = Ltex + αLker + β(Lagg + Ldis) (3.5)

Ltex = 1−
2
∑

i Ptex(i)Gtex(i)∑
i Ptex(i)2 +

∑
iGtex(i)2

(3.6)

Lker = 1−
2
∑

i Pker(i)Gker(i)∑
i Pker(i)2 +

∑
iGker(i)2

(3.7)

where P (·) and G(·) refer to the value of pixel result and ground truth of the text region
respectively. We set α = 0.5 and β = 0.25 in all experiments.

3.4 Focus branch

Figure 3.11: The architecture of Focus branch.
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To mimic the foveal system of humans, we adopt the autofocus framework [46]
with some modifications. The process aims to predict interesting regions in the image
that may contain text information and discard remaining background regions that are
unlikely to have text information at the following scale. The module zooms and crops
from interesting regions when applying the detector at successive scales. Focus branch
comprises three main parts: the first predicts FocusPixels through learning; the second
produces FocusChips; and the third, FocusCombining, combines segmentation regions
from various scales. Since the first component is the only one used in the training phase,
all three will be used in the inference phase.

3.4.1 Focus Pixels Finding

(a) (b) (c) (d)

Figure 3.12: All pixels that a particular text instance covers are regarded as Focus pixels if their
sizes fall within a certain range and do not deviate too much from the previous scale. When

training, it is best to ignore some cases where the area is slightly higher than the upper bound or
lower than the lower bound of the area range as mentioned. (a) Previous scale. (b) Chip for the

next scale. (c) Current scale. (d) Ground truth for focus map of current scale, where regions with
green color are positives (equal 1), yellow color is negatives (equal -1), gray color is background

(equal 0)

Focus Pixels are established at the convolutional feature network’s granularity from
the output of the lightweight backbone. Simple modules process the feature map from
the lightweight backbone and produce the focus map, which is then trained to match the
interesting ground truth map accordingly. If a feature map pixel overlaps with a small-
sized text instance, it is referred to as a focus pixel. In the resized chip, which is input to
the network, a text instance is deemed small if the root square value of the text area within
the image samples falls within a range (between 3 and 50 in our implementation). Note
that in some cases, specific text can be split when generating a chip, and the remaining
split text in the chip may not cover enough information of a text instance, so if the area
text in the chip is higher, 80% are of the original one, we consider all pixels it covers
as focus pixels. In the training process, we mark Focus Pixels as positives. Some pixels
that overlap text have a square root of area value less than or slightly more significant
than the range we defined for positive pixels (less than five or between 50 and 100). All
of those pixels are regarded as negatives. They should be ignored during training since
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the network does not have sufficient information to make correct predictions about them
at that particular scale. We regarded all remaining pixels as background, has shown in
Figure 3.12.

Specifically, given an image of size W ×H, and the whole backbone with stride is s,
the labels L will be of size W ′ ×H ′, where W ′ =

⌈
W
s

⌉
and H ′ =

⌈
H
s

⌉
. Since the stride is

s , the rach label l ∈ L corresponds to s× s pixels in the image. The label l is defined as
follows,

l =


1, IoU(GT, l) > 0, a <

√
GTArea < b

−1, IoU(GT, l) > 0,
√
GTArea < a

−1, IoU(GT, l) > 0, b <
√
GTArea < c

0, otherwise

(3.8)

where IoU is intersection over union of the s × s label block with the groundtruth
boundary of text instance. GTArea is the area of the ground truth boundary after scaling.
a, b, c are parameters in order to determine which text instance is valid (all pixels consid-
ered as 1s), ignored (all pixels considered as -1s), or background (all pixels considered as
0s). a is typically 3, b is 50, c is 100.

For training the network, we use simple modules consisting of two common convolu-
tional layers with a ReLU non-linearity on top of the conv 5 feature map. Ultimately, we
use the sigmoid function to classify Focus Pixels as shown in Figure 3.13.

Fconv5, Fconv6, Fconv7, Fconv8 = Fb(In) (3.9)

P = Sigmoid(FFocus(Fconv5)) (3.10)

Given output focus map P with size W ′ ×H ′ the loss function is calculated for every
pixel as binary classification if the pixel is not ignored,

LFocus = −
W ′∑
i

H ′∑
j

C∑
c

ti,j,cki,jlog(pi,j,c)/

W ′∑
i

H ′∑
j

ki,j

where

ki,j = 0 if pixel at position i, j of groundtruth focus map is ignored; ki,j = 1 otherwise.
c ∈ (0, 1). ti,j,c = 1 if pixel at position i, j of grountruth focus map is c; ti,j,c = 0 otherwise.
pi,j,c is probability prediction of pixel i, j classified as c.
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3.4.2 Focus Chips Generation

Focus branching is used during inference to produce focus maps P , which are then
used to predict which pixels in the focus maps will be in the foreground t and have some
connected components S. With a size d× d filter, we dilate every part before merging it.
Then, chips were created to contain these connected components. If two chips overlap, the
two chips are combined, and the overlapped chips are replaced with the boundary regions
surrounding them. Be aware that sometimes, even after dilation, the number of connected
components is huge, but each is very small in size. The batch inference is inefficient and
takes a long time because so many small chips are produced. Therefore, we eliminate
chips whose width or height is below the minimum size k. The process is described in
Algorithm 1.

Algorithm 1: Focus Chips Generation
Input: Focus map P , threshold t, dilation constant d, minimum size k

Output: Chips C

1 Transform P into the binary map using threshold t

2 Dilate binary map with a dxd filter
3 Obtain the list of connected components S
4 Generate enclosing chips C for each component in S if the component size is

larger than k

5 If chips C overlap, merge these chips
6 return Chips C

3.4.3 Focus Combination for final results

An issue encountered in multi-scale inference for text instance detection pertains to
situations where a text instance assumes considerable size and elongation at one scale.
The consequent creation of chips for the subsequent scale might inadvertently truncate
the text instance present in the prior scale. While an alternative detection option could be
more accurate, its adoption could result in an elevated count of false positives. This arises
from the possibility of the exact text being detected independently in two different scales,
yielding two distinct text outputs.

Addressing this complexity necessitates a more nuanced approach than simply selecting
the superior outcome or applying the conventional Non-Maximum Suppression (NMS)
algorithm to eliminate instances with overlaps. This is attributed to the fact that multiple
detections might pertain to the same text instance. As such, the filtered outcome could
potentially carry insights about the instance that remain elusive in other detections.

As depicted in Figure 3.13, the outputs from the model do not inherently offer bounding
box information akin to prevalent detection models. Instead, integrating region maps and
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Figure 3.13: Description of focus branch process

kernel maps culminates in generating ultimate results. In contrast to the conventional
employment of the NMS technique, a distinctive strategy is adopted wherein all regions
and kernels originating from each scale are unified to generate the final regions and
kernels.

3.5 Implementing TextFocus

The comprehensive TextFocus pipeline is outlined in Figure 3.14, involving the amal-
gamation of two distinct branches, each oriented towards specific tasks. Commencing
with preprocessing, the input sample characterized by dimensions "W x H" is directed
to the lightweight backbone ResNet-18. This stage yields an array of feature maps
[conv5, conv6, conv7, conv8] possessing dimensions of [W/8 × H/8,W/16 × H/16, W32 ×
H
32 ,

W
64 × H

64 ], respectively. Notably, among these feature maps, the one emanating from
conv5 is chosen due to its suitability for defining Focus Pixels. The rationale behind this
selection arises from the fact that other feature maps are comparably diminutive in size.
This strategic choice offers the advantage of expediting the extraction of focus maps,
which subsequently facilitates their utilization during later inference stages.

In the context of the focus branch, a pair of convolutional layers (3 × 3 and 1 × 1)

augmented with ReLU non-linearity is incorporated. This design choice channels the
feature map emerging from conv5 through these uncomplicated modules. Subsequently,
a sigmoid classifier is introduced to predict the presence of Focus Pixels. During the
inference phase, the focus maps denoted as P stemming from this branch play a pivotal
role in the generation of chips.
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Figure 3.14: The complete architecture of TextFocus

All feature maps from the backbone output for the detection branch are passed through
a common 1× 1 convolutional layer to obtain a list of feature maps with the same number
of channels; in this case, the number of channels is set to 128. Then, to enhance the
knowledge contained in feature maps, two cascade modules are combined and used by
the FFM module. The outputs of the Text Region, Text Kernel, and Similarity Vector are
used in the training phase and produce text instances in the inference phase.

The detection branch processes all feature maps obtained from the backbone output.
These feature maps undergo a uniform transformation via a 1 × 1 convolutional layer,
generating a series of feature maps characterized by a consistent channel count of 128. The
subsequent step involves the integration of two cascade modules, which are subsequently
harnessed by the Feature Fusion Module (FFM) to augment the insights encapsulated
within the feature maps. During the training phase, the outcomes stemming from the
Text Region, Text Kernel, and Similarity Vector components are utilized, while in the
inference phase, these components contribute to generating text instances collaboratively.
Our loss function can be formulated as:

L = Ltex + αLker + β(Lagg + Ldis) + γLFocus (3.11)

where Ltex is the loss of text regions and Lker is the loss of the kernels. The α, β, γ are
used as loss weights to balance the importance of each loss, and we set them to 0.5, 0.25

28



CHAPTER 3. METHODOLOGY

Figure 3.15: The result of Polynomial Learning Rate Scheduler

and 0.5 respectively in all experiments.

We employed the extensive SynthText dataset [48], which comprises approximately
800,000 synthetic images, to demonstrate the substantial improvement achievable in
metric outcomes by pretraining text models on this dataset before their subsequent
application to the target dataset. Consequently, our approach involves pretraining the
SynthText model and transferring the learned weights to the target dataset. For the training
phase involving SynthText, we opted for the Adam optimizer algorithm and employed a
learning rate of 0.01. A learning rate of 0.001 was adopted for training after transitioning
to the target dataset. We incorporated the Polynomial LR Scheduler during training to
govern the learning rate progression, as depicted in Figure 3.15.

Throughout the training process, we incorporated a set of straightforward augmentation
techniques. These techniques encompassed Random Scale, Horizontal Flip, Random
Rotate and Random Crop Padding. This strategic augmentation approach ensured uniform
input dimensions for the model. Notably, before being fed into the model, the inputs
underwent normalization.

In this chapter, we presented the method TextFocus with a Multi-resolution approach.
We will demonstrate the superior efficiency of this method by experimental results in the
next chapter.
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4.1 Datasets

The research landscape has witnessed the compilation of numerous datasets aimed at
detecting and recognizing text within natural images, significantly propelling the progress
of contemporary methodologies. These datasets can be categorized into real-world text
datasets [2][1][42][43]and synthetic text datasets [48] [49]. Predominantly featuring
Internet images and Google Street View images, the images constituting these datasets
encapsulate diverse real-world scenarios.

4.1.1 Chinese Text in the Wild (CTW datasets)

The Chinese Text in the Wild dataset (CTW) [2] constitutes an expansive collection
of images meticulously curated to encompass various scenarios wherein Chinese text
becomes apparent within uncontrolled, real-world settings. Annotated by experts, CTW
features approximately 1 million Chinese characters, stemming from 3,850 distinct ones,
across over 30,000 high-resolution street view images. This dataset encapsulates instances
of text seamlessly integrated within authentic contexts, encompassing elements like signs,
posters, labels, and advertisements. With its deliberate focus on capturing the nuances of
Chinese script in diverse contextual landscapes, CTW emerges as a noteworthy resource
for propelling advancements in text detection and recognition.

4.1.2 SCUT-CTW1500

The CTW1500 dataset [1] is a specialized image compilation explicitly designed for
curved text detection. It encompasses an assemblage of approximately 1,500 images
featuring 10,751 bounding boxes. Each image encapsulates instances of curved text found
within real-world scenes. Notably, the dataset is meticulously annotated, with each bound-
ing box delineating the precise regions of curved text. Given its meticulous annotation and
specialized focus, the CTW1500 dataset is a substantial asset for researchers and prac-
titioners embarking on addressing the intricate complexities and challenges associated
with the detection and recognition of curved text within natural environments.

4.1.3 ICDAR15

The International Conference on Document Analysis and Recognition (ICDAR) [42]
has assumed a substantial role in orchestrating text detection competitions and fostering
the advancement of datasets and algorithms. The ICDAR15 dataset was unveiled in the
context of the ICDAR15 Robust Reading Competition, designed to address incidental
scene text detection. This dataset encompasses 1,000 training and 500 testing images
featuring English text instances.
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4.1.4 TotalText

The TotalText dataset [43] constitutes an extensive assemblage of images meticulously
compiled to advance scene text detection. This dataset, recently introduced during the
ICDAR17 event, comprises 1255 training and 300 testing images. It comprehensively
captures diverse instances of text seamlessly integrated within natural scenes, encompass-
ing an array of real-world contexts such as signage, posters, banners, and advertisements.
Notably, the dataset stands out due to its comprehensive annotations, which meticulously
delineate the text instances’ word-level and character-level regions. With its distinctive
attributes and comprehensive content, the TotalText dataset emerges as a valuable asset,
poised to empower researchers and developers to enhance the efficacy and robustness of
scene text detection algorithms, particularly within intricate and varied environmental
contexts.

4.1.5 SynthText

SynthText [48] is a large-scale dataset with around 800,000 synthetic images. These
images are created by blending natural images with randomly rendered text. Verisimilarity
Image Synthesis Dataset(VISD) [49] contains 10,000 images synthesized with 10,000
background images. Thus, there are no repeated background images for this dataset.
Furthermore, we have used the SynthText dataset as a pre-train for all data in our study.

In the context of this study, the evaluation encompasses a comprehensive amount
of datasets, where pre-existing annotations of arbitrary shapes characterize the Scut-
CTW1500, ICDAR15, and Total Text datasets. In contrast, the Large CTW dataset has
novel annotations generated by applying our algorithms. Further diversifying the testing
spectrum, the Synth Text dataset is explicitly employed to establish pre-trained models.
We use the test datasets above, similar to the previous research and the baseline PAN
model. The detail information of datasets as shown in Table 4.1.

The charts below depict the size of the object in the image A. We can see that the area
of the things occupies about 10 - 30% of the entire image area. Through this, we can
see that the train and test datasets are both high-quality images, and the text has a small
space, occupying a small amount compared to the background.

Datasets Range of resolution(pixel) Real/synthetic Annotation level Language in image
Large CTW [2] 320x240 - 3840x3200 real word/line Chinese
Total Text [43] 640x480 - 1920x1080 real word/line English
ICDAR15 [42] 300x300 - 2400x2400 real word/line Various
Scut-CTW1500 [1] 640x480 - 1920x1080 real word/line Chinese
Synth Text [48] 320x240 - 1920x1080 synthetic word/line Various

Table 4.1: The detail information of datasets.
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Figure 4.1: Unreasonable cases obtained using recent evaluation metrics. (a), (b), (c), and (d) all
have the same IoU of 0.66 against the GT. Red: GT. Blue: detection. [12]

4.2 Evaluation metrics

Given that the primary function of text region detection is to facilitate text recognition,
it becomes imperative for bounding boxes representing text regions to accurately encap-
sulate the entirety of text information while avoiding interference with other instances of
text. However, famous evaluation metrics such as the IOU-metric lack consideration for
the consequences of segmented ground truth (GT) regions and aberrant GT instances,
as shown in Figure 1. Moreover, discerning the adequacy of detection tightness presents
challenges. Consequently, the comprehensive representation of the strengths of detection
methods still needs to be completed.

The "Tightness-aware Intersection-over-Union (TIoU) Metric" [12] refers to a special-
ized evaluation measure employed in the context of object detection or localization tasks.
Unlike the traditional Intersection-over-Union (IoU) metric, which computes the ratio
of the overlapping area to the union of two bounding boxes, the TIoU metric introduces
an element of tightness sensitivity. This means that it considers the relative tightness
or compactness of the bounding boxes, providing a more nuanced assessment of the
spatial alignment between predicted and ground truth object boundaries. The TIoU metric
is particularly valuable when dealing with objects of varying sizes and aspect ratios,
allowing for a refined evaluation of detection accuracy. This metric is often employed in
evaluating object detection models to provide insights into their performance in terms of
spatial localization precision while considering the inherent diversity in object shapes
and sizes.
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4.2.1 TIoU-Recall

At an intuitive level, the scenario where a ground truth (GT) rectangle Gi is intersected
by a detection bounding box Dj can lead to erroneous recognition outcomes. While
conventional Intersection-over-Union (IoU) metrics are capable of gauging the extent of
overlap between Gi and Dj in terms of tightness, they do not possess the capability to
assess these situations in a goal-oriented manner, as depicted in Figure 4.1 (a) and (b).
In this example, the detections in both (a) and (b) share the same IoU value (0.66) with
the ground truth, despite the former failing to encompass a few characters of the GT. To
rectify this limitation, the cutting phenomenon can be addressed by introducing a penalty
proportional to the intersection area within the GT.

Ct = A (Gi)− A (Dj ∩Gi) , Ct ∈ [0, A (Gi)] , (4.1)

where A(·) means the area of the region.

The proportion of intersection in Gi is given by:

(Ct) = 1− x, x =
Ct

A (Gi)
(4.2)

The final TIoU-Recall is defined as follows:

TIoURecall =
A (Gi ∩Dj) ∗ f (Ct)

A (Gi ∪Dj)
. (4.3)

Equation 4.3 presents a straightforward yet highly effective approach to addressing the
issue of cutting behavior. For instance, in Fig4.1 (a) and (b), the TIoU-Recall values are
computed as 0.424 and 0.66, respectively. This reveals that the omission of characters
leads to a substantial reduction of 35.8% in the recall performance. This empirical result
underscores the significance of the solution in quantifying the impact of cutting behavior
on the overall performance of the detection algorithm.

4.2.2 TIoU-Precision

Conversely, a single detection covering multiple ground truths (GTs) can introduce
complexities in recognition outcomes. This challenge emerges from the recognition
methods’ difficulty distinguishing which text instance constitutes the intended target
GT, as exemplified in Fig.4.1 (c). To address this issue, a solution involves imposing
penalties on such detections to encourage compactness, thus minimizing the influence of
outlier GTs. It is worth noting, however, that in cases where outlier GTs are positioned
within the target GT region, even an ideal detection bounding box might inadvertently
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encompass these outliers. Hence, only outlier GT regions inside the detection bounding
box but external to the target GT region are penalized. The union area (Ot) computation
pertaining to all eligible outlier GTs is undertaken using Equation .

Otij =A ((G1 ∩Dj −G1 ∩Dj ∩Gi)∪

. . . ∪ (Gi−1 ∩Dj −Gi−1 ∩Dj ∩Gi)∪

(Gi+1 ∩Dj −Gi+1 ∩Dj ∩Gi) ∪ . . .∪

(Gn ∩Dj −Gn ∩Dj ∩Gi)) ,

Otij ∈ [0, A (Dj −Dj ∩Gi)] .

(4.4)

It’s worth mentioning that, in cases where each ground truth instance Gn (where
n ̸= i) doesn’t intersect with the detection bounding box Dj , it can be straightforwardly
disregarded. This selective approach contributes to enhanced computational efficiency.
Subsequently, the ratio of intersection within Dj is determined by the following equation:

(Ot) = 1− x, x =
Ot

A (Dj)
(4.5)

The TIoU-Precision is defined as follows:

TIoUPrecision =
A (Dj ∩Gi) ∗ f (Ot)

A (Dj ∪Gi)
(4.6)

4.2.3 Tightness-aware Metric

The harmonic mean of recall and precision is usually adopted as the primary metric:

Hmean = 2
Recall · Precision
Recall + Precision

(4.7)

where recall and precision are calculated by:

Recall ori =

∑
Match gti

Num gt
,

Precision ori =

∑
Match dtj

Num dt
.

(4.8)

4.3 Implementation detail

We have put in significant effort and thoroughness in generating data, implementing
the TextFocus strategy, training, testing, and analyzing and visualizing results. In this
section, we will provide detailed information about the implementation process.

34



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

Frameworks and libraries: Our TextFocus strategy is coded using Python program-
ming language and the PyTorch framework. With PyTorch, we can seamlessly read,
preprocess, and feed the training data and easily implement the TextFocus strategy dur-
ing training and inference. PyTorch also includes a Tensorboard tool, which enables
users to conveniently track training progress and view training loss, testing loss, and
evaluation scores during training. Apart from PyTorch, we utilize several other built-in
Python libraries such as OpenCV for image processing, Numpy for matrix computation,
Pandas and Matplotlib for result analysis, and other auxiliary libraries such as openmim,
mmcv==1.3.1, shapely, pyclipper, editdistance.

Environment: Regarding the environment, for implementation, debugging, data anal-
ysis, and data synthesis, we utilize personal computers with the following configuration:
Intel Core i7-9300H CPU, 8GB of RAM, and NVIDIA GeForce GTX 1650 Ti GPU with
4GB of VRAM. However, for training, we rely on Google Colab’s and Kaggle virtual
machines equipped with an Intel Xeon CPU and 40GB of RAM, paired with NVIDIA
P100 GPU boasting 40GB VRAM or GPU T4 x2 boasting 30GB VRAM.

Code: We reused a pre-existing codebase from the PAN model [27] 1 and AutoFo-
cus[46] 2 to build our own model. In addition, we developed all of the source code
ourselves, including data generation, data loading, training-testing-inference procedures,
and visualization.

Hyperparameters: Table 4.2 provides a detailed breakdown of the hyperparameters
used during our training process. While most of the parameters remain the same as in the
baseline, there are a few changes that we made:

Each dataset contains a predetermined number of training and testing data. Because
the attribution data for each dataset varies greatly, since virtually all of the dataset’s texts
are pretty little, we set the input size for Large CTW to (640× 640). We set the input size
for other datasets to (320 × 320) because those texts are large enough to be detectable.
Then train the model with a learning rate of 0.001, batch size 32, and num epochs 150.
We adopt the Adam optimizer with the same hyper-parameters and use the Polynomial
LR Scheduler strategy to adjust the learning rate during training in Table 4.2.

We must choose the ground truth appropriate for each chip produced for the focus
branch. As shown in Table 4.3, a text instance is considered positive if the square rootof
the area is small enough (greater than a and less than b) or damaging if the room is too
large (larger than c). If not, we ignore it because it will confuse the model whenit is being
trained.

1https://github.com/WenmuZhou/PAN.pytorch
2https://github.com/mahyarnajibi/SNIPER
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Parameter Large CTW Dataset Other Datasets
Input shape 640,640 320,320

base lr 0.001 0.001
batch size 32 32
num epoch 150 150
optimizer Adam Adam

lr scheduler Polynomial lr Polynomial lr

Table 4.2: Overall training parameters.

Parameter Value
do not care low - a 3
small threshold - b 50
do not care high - c 200

Table 4.3: Parameters for groundtruth selection when generate chip for focus branch training.

4.4 Results and analysis

We execute and get results from all experiments with an NVIDIA Tesla P100 GPU
16Gb and one 2.00GHz CPU in a single thread. We evaluate TextFocus on the ICDAR2015
[42], Total-Text [43], SCUT-CTW1500 [1], and Large CTW [2]. Our model, with an input
size of (320× 320), obtained competitive results of 84.70 F1 Score on the ICDAR2015,
82.05 on the Total-Text, 84.90 on the SCUT-CTW1500 (Table. 4.4). Large CTW is a
substantial Chinese text dataset in the wild with a very high-resolution image sample,
text instances in the dataset are often tiny according to the overall image. With an input
size of (640,640), TextFocus obtained a 61.1 F1 Score with acceptable real-time FPS in
Table4.5.

Since the focus branch generates various sizes, we aggregate chips with the same

Method ICDAR2015 [42] Total-Text [43] SCUT-CTW1500 [1]
P R F1 FPS P R F1 FPS P R F1 FPS

CTPN [50] 74.2 51.6 60.9 3.55 - - - - 60.4 53.8 56.9 3.57
SegLink [51] 73.1 76.8 75.0 - 30.3 23.8 26.7 - 42.3 40.0 40.8 1.35
EAST [20] 83.6 73.5 78.2 - 50.0 36.2 42.0 - 78.7 49.1 60.4 2.52
RRPN [52] 82.0 73.0 77.0 - - - - - - - - -

PSENet [26] 84.5 86.9 85.7 0.8 78.0 84.0 80.9 1.95 79.7 84.8 82.2 0.9
TextSnake [53] 84.9 80.4 8.6 0.55 82.7 74.5 78.4 - 67.9 85.3 75.6 -

PAN [27] 84.0 81.9 82.9 12.29 83.6 78.5 80.1 10.11 86.4 81.2 83.7 13.11
Ours (320) 86.1 74.5 79.9 8.51 82.7 74.1 78.1 11.13 84.8 80.9 82.8 14.21
Ours (640) 84.3 85.1 84.7 1.92 82.6 81.5 82.05 2.12 84.4 83.8 84.9 2.45

Table 4.4: Results on ICDAR2015 [42], Total-Text [43], SCUT-CTW1500 [1]. ”P”, “R”, “F” and
“FPS” represent the precision, recall, F-measure, and frame per second, respectively.

36



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

Method Large CTW [H-7]
R P F FPS

Ours (448) 54.6 52.3 53.4 5.12
Ours (640) 62.1 60.1 61.1 1.71

Table 4.5: Results on Large CTW [2]. ”P”, “R”, “F” and “FPS” represent the precision, recall,
F-measure, and frame per second, respectively.

size and aspect ratio to achieve a high batch inference throughput. When executing
batch inference, we occasionally apply padding, which can slightly alter the number of
pixels analyzed per image. Since the number of groups (for size and aspect ratio) can be
increased without lowering the batch size, this overhead is negligible for large datasets.

Beyond just achieving efficient and balanced metrics results, TextFocus also aids in
efficient training. Chips are generated sequentially for each scale to help input image size
to the model always be the same to avoid performance from being impacted by small size
input, which helps conserve resources and expedite training.

4.4.1 The effectiveness and influence of the backbone and Detection branch

We adopt PAN[27] as the detecting branch for our model, with ResNet-18[41] serving
as the module’s neural network. The detection branch of our TextFocus uses an anchor-
free text detection strategy, directly getting the text region map and kernel region map
combined to now segment the text instances in contrast to text detector models that
find regions during the process feature to get the area of interest, through this, to get
a bounding box of each text. Furthermore, ResNet-18 is a lightweight backbone; the
output of the features cannot describe a specific region in the image sample; the cascaded
strategy of the FPEM and FFM modules, which have a low computational cost, allows
for a more profound and more expressive expression of features at various scales. The
model is very effective and can be used in real-time thanks to its lightweight backbone,
cascaded pipeline strategy, and segment-based text detection.

4.4.2 The effectiveness of Focus branch

Saving on resources and computation: Processing a super-resolution image sample
for a lightweight backbone cannot learn all the detail in the image for features output, even
with features boosting strategy. Additionally, processing high-resolution image samples
requires a lot of time and resources. Resource usage and computation increase when the
image size increases, as seen in Figures 4.6 and ??. In our experiments, training the model
with 320-pixel images can result in batches that are more than 1.5 times larger than those
prepared with 640-pixel photos, taking a total of 10 hours for 150 epochs as opposed to 17
hours for training on an NVIDIA Tesla P100 GPU 16Gb with 640-pixel ideas. However,
downscaling the image to process through the model will blur or remove a text instance if
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Method GPU memory (Gb per image) GFlops per image F-Score
CTPN 5.2 181.36 56.9
SegLink 2.8 103.09 40.8
EAST 3.1 116.84 60.4
PSENet 5.3 183.43 82.2
TextSnake 2.6 95.62 75.6
PAN 2.5 90.24 83.7
Ours (320) 1.8 24.56 82.8
Ours (640) 2.7 98.37 84.9

Table 4.6: GPU memory and GFlops per image of methods on SCUT-CTW1500[1]. The usage is
calculated on the entire inference processes.

it is small, which will worsen performance. The focus branch will zoom in on the exciting
regions that may have text instances so the input size of the model doesn’t need to be
high; each chip generated will be scaled to a specific resolution to process through the
model at the following scale, this solve information missing problem of low-resolution
and resource, computing, time consumption problem of high-resolution.

Real-time text detection: When resource consumption is low, processing image
samples at all resolutions while maintaining an acceptable runtime pipeline is made
possible by continuously zooming in the image sample. The Large CTW dataset [2]
contains a high resolution of real-world Chinese text, each image sample having a
maximum image size of (5000,5000), and most of the text instances are pretty small.
Utilizing the focus branch, we train with just 60 epochs and archive results of 61.1 F1
Score with 1.71 FPS. Figure B.1 visualizes the inference pipeline of TextFocus on the
Large CTW dataset, tiny text instances of complex images can be detected at higher scales
effectively.
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(a) (b)

(c) (d)

Figure 4.2: Runtime measurement and FPS of TextFocus on SCUT-CTW1500 [1]. The runtime
is calculated by getting the mean of each measure for all samples in the dataset. (a) Focus runtime
consists of a backbone and a focus branch. (b) Detect runtime consists of detecting branches and

post-processing. (c) Total runtime consists of backbone, focus branch, detect branch, and
post-processing. (d) FPS is calculated from the total runtime for each image size input
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4.4.3 Comparison results

CTW1500 [1] ICDAR [42] TotalText [43]

Figure 4.3: Visualize results on three standard benchmarks. (a) Results on SCUT-CTW1500. (b)
Results on TotalText. (c) Results on ICDAR2015.

To evaluate the performance of our method for detecting text instance and speed, we
compare the TextFocus with other state-of-the-art methods on SCUT-CTW1500, Total
Text, and ICDAR2015. In the testing phase, we set the short side of images input to the
model to different scales (320, 640). We report the single-scale performance of TextFocus
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on these datasets in Table 4.2.

On SCUT-CTW1500, TextFocus-320 with short side 320 achieves the F-measure 82.8
with astonishing speed (14.21 FPS), and TextFocus-640 outperforms all other methods in
F-measure by 1.2% while real-time runtime is acceptable (2.45).

The same conclusion can be obtained from Total-Text. TextFocus-320 achieves a
competitive F-measure of 78.1 with real-time speed (11.13 FPS), and the best F-measure
conducted by TextFocus-640 is 82.05, while the rate can still be acceptable (2.12 FPS).

On ICDAR2015, TextFocus-640 achieves a better F-measure than the quickest method,
PAN and has a faster runtime than the best F-measure score one is PSENet (85.7), but
TextFocus-640 still achieves a slightly lower result (84.7).

Performance on SCUT-CTW1500, TotalText, and ICDAR2015 shows that the TextFo-
cus is superior in detecting text instances and maintaining real-time speed. We also
illustrate several visual results in Figure B, which demonstrate the performance of TextFo-
cus on this dataset.
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In this thesis, we have a novel method for arbitrary shape text detection using multiple
resolutions. The method is designed to overcome previous methods’ limitations and
improve text detection accuracy in real-world images. The TextFocus model has been
developed with a multiresolution strategy, which can observe the input image at different
resolutions, providing more detailed information for recognizing text instances.

The method has been thoroughly researched and analyzed, and extensive experiments
have been conducted to validate its performance. The experiments have shown that the
method significantly outperforms the baseline model on FPS and TIoU-metric improve-
ment. This demonstrates the validity and advantages of the method in improving the
accuracy of arbitrary shape text detection .

However, there are still some limitations in the method that need to be addressed
in future works. Firstly, the model has not achieved state-of-the-art performance on
some datasets with low-resolution images. This could be improved by developing a
more robust model that can handle low-resolution images more effectively. Secondly, the
focus branch head in the model has not performed as well as expected, and a brighter,
lighter attention head needs to be designed to improve its performance. Thirdly, the
computational complexity of the method needs to be reduced to make it more suitable for
real-world computer vision applications and pattern recognition tasks.

To address these limitations, future works can focus on several aspects to improve the
method. Firstly, incorporating more advanced deep learning techniques, such as transfer
learning and attention mechanisms, could further enhance the performance of the method.
Secondly, developing a more robust model to handle more multiresolution images more
effectively would improve the method’s overall performance. Thirdly, creating a more
efficient attention head and reducing the computational complexity of the technique
would make it more suitable for real-world applications.

Furthermore, the method of creating synthetic data needs to be reviewed. A better way
is required to place the text region in challenging positions resembling the real-world
scenario. Moreover, an algorithm must be developed to place the text in the work that
best suits the background, improving the segmentation’s accuracy.

In addition, the method can be extended to other image detection applications, such as
mini object detection and OCR. The technique can also be applied to real-time scenarios
and integrated with edge devices such as traffic cameras to solve intelligent traffic systems.

In conclusion, this thesis has a new method for arbitrary shape text detection using

42



CHAPTER 5. CONCLUSION AND FUTURE WORK

multiple resolutions, demonstrating significant accuracy improvements compared to state-
of-the-art techniques. The future works outlined in this thesis will further improve the
method and contribute to the advancement of text recognition applications. The method
can potentially improve the accuracy of text detection and reduce the false positive rate,
ultimately improving the understanding of text scenarios on images. The results of this
thesis will contribute to the object detection field and pattern recognition.
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A. Data

Figure A.1: Area of objects of different sizes and backgrounds in the SCUT-CTW1500[1] , Total
Text[43], ICDAR2015[42], and Large CTW[2]. Things are divided based on their site (in pixels)

into small, medium, and large.
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B. MORE VISUALIZATIONS

Detections on Scale 0 Focus Scale 0 Detections on Scale 1 Final Detections

Figure B.1: Inference pipeline in TextFocus. All the results are processed on the Large CTW
dataset [2]. Focus Pixels are masked as pink, interesting region chips are shown in yellow in the
second and fourth rows. Text instances detected in each chip are shown in purple in the first and
third rows, final detection results are shown in red in the last row. As can be seen, high resolution
image samples contain small text instances and some of them can be detected in the higher scale.
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