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Abstract

The proposed car damage detection system follows a multi-stage cascade ap-
proach, where each stage consists of a classifier and a bounding box regressor.
The system leverages the Cascade Mask R-CNN architecture with a Swin-FPN
backbone, which provides multi-scale contextual information for accurate and
robust object detection. The system is trained on a large dataset of labeled car im-
ages, including various types of car damages such as dents, scratches, cracks...,
to learn the discriminative features for car damage detection.

To evaluate the performance of the proposed system, extensive experiments
are conducted on a benchmark dataset of car images with ground-truth car dam-
age annotations. The results show that the Cascade Mask R-CNN-based car dam-
age detection system achieves good performance in terms of detection accuracy
and computational efficiency. The proposed system is able to accurately localize
and segment car damages in images.
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Chapter 1

Introduction

1.1 Introduction

Car insurance in Vietnam has become a significant source of revenue for insur-
ance companies in recent years due to the rapid growth of the country’s overall
vehicle population. There is a risk of claims leakage occurring as a result of in-
correct evaluations made by insurers during the processing of customers’ claims.
These incorrect evaluations may be the result of subjective views or insufficient
training. Because of these mistakes, the companies would end up losing a signif-
icant amount of money [1]. In the absence of a deficiency in revenues, evaluation
performed by human labor may be time-consuming, which may result in dis-
satisfaction on the part of customers [2]. An automatic car damage assessment
system has the potential to cut down on human labor and insurance claim fraud.
As a result of recent advancements in deep learning, in particular convolutional
neural networks, artificial intelligence is currently a viable option for the con-
struction of the system. The system can accurately identify and classify different
types of damages such as dents, scratches, and cracks in a matter of seconds. This
technology has the potential to revolutionize the insurance industry by reducing
costs and improving customer experience.

1.2 Motivation

In the automotive field, detecting and identifying vehicle components is cru-
cial for improving performance and ensuring safety when carrying out mainte-
nance, repairs, inspections, and insurance. However, efficiently and accurately
identifying vehicle components is a significant challenge, especially when deal-
ing with thousands or millions of images from security cameras or autonomous
vehicles.

For many years, segmentation-based methods have been used to address this
issue. This method allows images to be divided into smaller regions and deci-
sions made about which region belongs to which part of the vehicle, improving
the accuracy and efficiency of the identification process.

However, traditional segmentation-based methods often require a lot of data
for training and complex models, leading to difficulties in implementation on real
systems. Therefore, it is necessary to use new and advanced methods to solve this
problem.

In this study, we used image segmentation methods to identify vehicle com-
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7 CHAPTER 1. INTRODUCTION

ponents with high accuracy and speed. We applied advanced techniques such as
the Cascade Mask RCNN model with the Swin Transformer backbone to achieve
optimal accuracy and speed. Additionally, we optimized the model training pro-
cess to reduce training time and resources.

The results of this study will contribute to improving the efficiency and accu-
racy of identifying and classifying vehicle components, especially in the field of
auto insurance. Insurance companies and automakers can apply this technology
to enhance their insurance processes and product quality inspections before re-
leasing them to the market. Additionally, this research can also be applied in the
field of traffic automation, significantly improving safety and traffic performance
on the road.

1.3 Contribution

To address the problem of recognizing car parts in car insurance, this study
contributes some important points as follows:

Firstly, this study uses the segmentation method to recognize car parts, in
which the Cascade Mask R-CNN model with Swin Transformer backbone is used
to achieve high accuracy. The segmentation method allows us to accurately de-
termine the position and size of each part of the car, making the evaluation of
post-accident damages more accurate.

Secondly, to improve the accuracy of car part recognition, this study uses the
Cascade Mask R-CNN model to recognize car parts. Using multiple stages helps
the model learn more complex features of cars and improve the accuracy of the
recognition results.

Thirdly, this study uses a large dataset containing many diverse car images,
which helps the model learn more features and richer knowledge about car parts,
thereby improving the accuracy of the recognition results.

Fourthly, in the model training process, this study uses the learning rate reduc-
tion method based on the value of the loss function, helping the learning process
to be more stable and avoid the overfitting phenomenon of the model.

In summary, this study has proposed a new approach to recognize and seg-
ment car parts using a multi-task neural network. Experimental results show
that the proposed method achieves high efficiency in recognizing car parts, sig-
nificantly improving accuracy compared to traditional methods.

In addition, this study also provides a new dataset with higher quality and
complete information about car parts, which can be used in related studies on car
part recognition and segmentation.

Furthermore, this study has also tested and evaluated the effectiveness of dif-
ferent network architectures in recognizing and segmenting car parts. These re-
sults can provide useful information to the research community about network
architectures and how to apply them to the problem of recognizing and segment-
ing car parts.

Finally, this study contributes to the development and improvement of tools
and techniques in the field of image processing and object recognition, especially
in the problem of recognizing and segmenting car parts. The results and experi-
ences of this study can be applied in various fields such as production...



Chapter 2

Related Work

2.1 Rule based approaches

In recent years, there have been many studies on the use of machine learn-
ing algorithms for the purpose of car damage detection. However, non-machine
learning approaches have also been investigated. For example, Jayawardena [3]
collected 3D CAD models of undamaged cars and compared these models to
photographs of damaged cars. Based on patterns that are not in ground-truth in-
formation, their system could identify and evaluate damaged regions. However,
one disadvantage of this method is that the performance may be degraded over
time as car models change yearly.

2.2 Deep Learning approaches

In ”Deep Learning Based Car Damage Classification” by Kalpesh Patil [4] pro-
poses a deep learning approach for car damage classification using convolutional
neural networks (CNNs). They hand-crafted a dataset consisting of images be-
longing to different types of car damage: bumper dent, door dent, glass shatter,
headlamp broken, tail lamp broken, scratch and smash. They trained on multi-
ple DL models: Inception, Alexnet, VGG19, VGG16 and Resnet. The results show
that the Resnet model achieves the highest accuracy in car damage detection with
88,24%.

In the meantime, a project by Qinghui Zhang and colleagues [5] proposes an
enhanced Mask R-CNN algorithm for vehicle damage detection and segmenta-
tion. The model employs an optimized residual network (ResNet), and feature
extraction is accomplished using the Feature Pyramid Network (FPN). The An-
chor in the region proposal network (RPN) percentage and threshold are then
modified. Bilinear interpolation in ROIAlign preserves the spatial information
of the feature map, and different weights are incorporated in the loss function
for different-scale targets. Finally, the results of self-created dedicated dataset
training and testing reveal that the enhanced Mask RCNN has a higher Average
Precision (AP) value, detection accuracy, and masking accuracy, as well as im-
proved efficiency in addressing traffic accident compensation problems.

The paper ”CarDD: A New Dataset for Vision-based Car Damage Detection”
by Xinkuang Wang [6] introduced a new dataset for vision-based car damage
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9 CHAPTER 2. RELATED WORK

detection, called CarDD. The dataset contains over 15,000 car images with var-
ious types and degrees of damage annotations, including scratches, dents, and
fractures. They experimented on multiple models with backbone ResNet-50 and
ResNet101. All methods performed poorly on the APS and APbb S metrics, indi-
cating that existing methods are incapable of recognizing small objects for dam-
age detection and segmentation in automobiles.

In 2022, research, which was conducted by van Ruitenbeek, R.E. and Bhulai, S.
[7], evaluated various object detection models with diverse backbones utilizing
transfer learning and quantify the effect of various fine-tuning techniques. In ad-
dition, the researchers compared the model to domain experts and evaluated its
performance in a production environment under the intense lighting conditions
of a bright street.



Chapter 3

Proposal Methodology

3.1 Cascade Mask RCNN model

The cascade architecture serves as the foundation for a significant number of
the most recent and cutting-edge architectural designs, such as segmentation.
The use of cascading has resulted in a very powerful design that has improved
the efficiency of a great deal of work. The combination of the Cascade R-CNN
and the Cascade R-CNN is known as the Cascade Mask R-CNN. The Cascade R-
CNN framework is a multi-stage approach to object detection that addresses both
the problem of overfitting during training and the issue of quality mismatching
during inference. On the other hand, Mask R-CNN is an extension of the Faster
R-CNN .

Figure 3.1: Architecture of Faster R-CNN
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11 CHAPTER 3. PROPOSAL METHODOLOGY

3.1.1 Faster R-CNN

The Faster RCNN algorithm is a two-stage process that detects objects[8]. The
image will be fed into a fully convolutional network known as the Region Pro-
posal Network (RPN), which will extract the region of the image that has the
highest likelihood of containing an object based on the Anchor. Following the
collection of regions of interest, the ROI Pooling layer is used to extract a feature
vector of a fixed length from each of the areas. When the feature vectors have
been recovered, they are classified using the Fast R-CNN.

Region Proposal Network

The Region Proposal Network is fully convolutional. It takes an n × n spa-
tial window of the convolutional feature map as input and generates bounding
box proposals, each with an objectness score. This score suggests how likely the
bounding box contains an object .

RPN uses a sliding window to run across the feature map to generate proposal
anchors. At each position, the window slides into, multiple anchors (number of
anchors: K) will be generated with different scales and ratios (Figure 3.2). And
the total number of anchor boxes with a feature map of size WxH and the number
of anchors for each position on the feature map can be given as WxHxK. Anchors
will be passed into two convolutional layers to be processed. One layer is the
Bounding Box Classifier layer(cls), whose job is to determine whether or not the
anchor box contains an object. The other is the Bounding Box Regressor layer
(reg), which predicts the offsets between the true object bounding box and the
anchor box.

These anchors will be assigned as positive or negative based on the overlap of
IoU between anchors and ground truth bounding boxes. The anchor labeling can
be interpreted as follows:

• Anchors, which have the highest overlap with ground truth, are labeled as
positive.

• Anchors, which have IoU higher than 0.7, are labeled as positive.

• Anchors, which have IoU lower than 0.3, are labeled as negative.

• Anchors, which have IoU between 0.3 and 0.7, will not be used in training.

RPN needs a loss function for training to determine the prediction’s effective-
ness. The Loss function can be defined as:

L ({pi, ti}) =
1

Ncls
∑

i
Lcls (pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg (ti, t∗i ) .

Here, i is an index of the anchor, and pi represents the probability of anchor
i whether an object or not. p∗i is ground truth label. If it is 1, then the anchor is
positive; if it is 0, then the anchor is negative. ti is a vector that contains 4 values
to determine an anchor and t∗i is the ground truth bounding box of an object.
Lcls is binary cross-entropy for identifying object vs not object.For the regression
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loss, we use Lreg
(
ti, t∗i

)
= R

(
ti, t∗i

)
where R is the robust loss function (smooth

L1). Ncls and Nreg are normalized by mini-batch size and the number of anchor
locations. λ is set by default as 10.

Overlapping, when anchors are generated, is unavoidable. To solve this prob-
lem, we use Non-max suppression. This means finding the ones with the highest
objectness score and dropping the others.

Figure 3.2: Region Proposal Network

Region of Interest pooling

The Region of Interest (ROI) pooling layer is a layer where each ROI was
downsampled into a small feature map with a fixed size of H x W by Max pool-
ing operation (Figure 3.3). H and W are hyper-parameter that do not depend on
any ROI. The purpose of the ROI pooling layer is to extract a fixed-length feature
vector from the feature map. And then, the vector will be put into two sibling
fully connected layers (FCN) for finding the class and bounding box of objects.

Figure 3.3: Max pooling
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Object Detection

After completing the ROI pooling operation, we get multiple fixed-size feature
map outputs. These feature maps will be flattened and passed through two fully
connected layers to do two tasks: classify objects with N+1 classes (N is the total
amount of classes, and 1 is the background) and find offset coordinates of objects’
bounding boxes. This head works the same as two FCNs in RPN.

Figure 3.4: Fast R-CNN Detection Head

3.1.2 Feature Pyramid Network

The Feature Pyramid Network (FPN) is a deep neural network model used in
computer vision and object recognition. It was introduced in 2017 [9]. FPN was
developed to address the challenge of efficient feature extraction from images
with varying resolutions, which is necessary for many computer vision applica-
tions such as object detection, object recognition, and object localization.

FPN works by building a pyramid system of features with different resolu-
tions from the input images. It uses a backbone to extract features from these
images and then synthesizes them to create a multi-level pyramid of features.
Specifically, FPN generates a set of features that are reconnected from pre-trained
convolutional networks such as ResNet or VGGNet.

One of the key features of FPN is its ability to propagate information from
high-resolution features to low-resolution features, and vice versa. This allows
FPN to help the model recognize objects of varying sizes, from small objects to
large objects in the same image. High-resolution features are used for the precise
localization of small objects, while low-resolution features are used for localizing
large objects.
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3.1.3 Mask R-CNN

In the field of computer vision, the Mask R-CNN [10] is a frequently encoun-
tered deep learning architecture that is used for instance segmentation. The Mask
R-CNN is an extension of Faster R-CNN. It adds a branch for predicting an object
mask in parallel with the branch that is already from Faster R-CNN for bounding
box identification. The extended branch is a convolutional network that creates
masks from the positive areas of the proposed region. The general structure can
be depicted by looking at Figure 3.5.

Figure 3.5: Overall architecture of Mask R-CNN

The Region of Interest alignment layer (ROI align) and the Instance Segmen-
tation Head are two new features added to the Mask R-CNN. These features are
distinct from those of the Faster R-CNN.

ROI aligns

ROI align was invented to replace the ROI pooling layer, because ROI pooling
quantizes a floating-number RoI to the discrete granularity of the feature map.
ROI pooling creates a misalignment between RoI and the extracted features. This
will reduce a lot of information for the segmentation task. To solve this issue, ROI
align uses bilinear interpolation to compute the exact values of the input features
at four regularly sampled locations in each. RoI bin. Figure 3.6 demonstrates this
operation.
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Figure 3.6: ROI align uses bilinear interpolation to compute the exact value of Region of Interest.

Instance Segmentation

The mask branch of the Mask RCNN is a straightforward structure; when the
output of ROI align will be processed through a fully convolutional network
to masking object in a Region of Interest. Mask R-CNN’s multi-task loss func-
tion combines classification, localization, and segmentation mask losses: L =
Lcls + Lbox + Lmask. While Lcls and Lbox has been defined in RPN, Lmask can be
interpreted as below:

Lmask = − 1
m2 ∑

1≤i,j≤m

[
yij log ŷk

ij + (1 − yij) log(1 − ŷk
ij)
]

Where yij is the label of a cell (i, j) in the true mask for the m x m region;ŷk
ij

is the predicted value of the same cell in the learned mask for the ground-truth
class k.

3.1.4 Cascade Networks

The implementation of cascading architecture has proven to be a highly ef-
fective strategy in enhancing the efficiency of various operations. Cascade Mask
R-CNN is a fusion of the Cascade R-CNN and Mask R-CNN models. The Cas-
cade R-CNN [11] is a framework for object detection that addresses the issues of
overfitting during training and quality mismatching during inference through a
multi-stage approach. The Hybrid Task Cascade (HTC) [12] is a cascade approach
employed to improve the efficacy of instance segmentation. In contrast to Cas-
cade Mask R-CNN, the HTC approach involves the integration of object detec-
tion and semantic segmentation branches, resulting in a multi-stage processing
methodology.
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Figure 3.7: Cascade Mask R-CNN

The difference between Mask-RCNN and Cascade Mask-RCNN, along with
their distinct methodologies for utilizing the instance mask-generating head, is
illustrated in Figure 3.7. Here, C stands for Class, B for Bounding Box, S for
Segmentation and H for Head. ”I” refers to the input image, ”conv” stands for
the backbone network and FPN, C0 and B0 refer to the RPN, and ”pool” to ROI
pooling.

Figure 3.8: Mask RCNN uses a convolutional neural network to mask objects

3.2 Backbone Swin Transformer

3.2.1 Transformer

The Transformer model design avoids recurrence and relies solely on an at-
tention mechanism to establish global dependencies between input and output.
Prior to the emergence of Transformers, the prevailing models for sequence trans-
duction relied on intricate recurrent or convolutional neural networks, which
comprised both an encoder and a decoder. The Transformer model also utilizes
an encoder and decoder architecture. However, it replaces recurrence with atten-
tion mechanisms, which results in a higher degree of parallelization compared to
techniques such as RNNs and CNNs.
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Figure 3.9: Transformer Architecture

Figure 3.9 shows the Transformer Architecture, which was interpreted in the
original paper [13]. It unveils the architecture consisting of an encoder and a
decoder layer. The Encoder layer contains a Multi-head Self Attention layer
(MSA) and a Feed-forward layer. The Decoder comprises three sub-layers: MSA,
masked MSA, and a Feed-forward layer. The masked MSA is adjusted MSA
where parts of the attention mechanism have been masked out (set to −∞), in
this case masking out all connections between a word and future words.

Positional Encoding

Positional encoding defines the location or position of an entity in a sequence
by assigning a unique representation to each position. Each position/index is
mapped to a vector in the transformers’ positional encoding scheme. Conse-
quently, the output of the positional encoding layer is a matrix in which each row
represents an encoded object of the sequence, along with its positional informa-
tion. Sine and cosine functions of different frequencies determine the positional
encoding:
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Figure 3.10: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention

PE(pos,2i) = sin(pos/100002i/dmodel )
PE(pos,2i+1) = cos(pos/100002i/dmodel )

The Formula above is how positional encoding is calculated; where pos is the
position of the word in the sentence, dmodel is the dimension of the output embed-
ding space, i is used for mapping to column indices 0 ≤ i < d/2, with a single
value of i maps to both sine and cosine functions.

Scaled Dot-Product Attention

The Scaled dot-product attention involves taking queries and keys of dimen-
sion dk, and values of dimension dv as inputs and performing a dot-product com-
putation between the queries and keys as the initial step. The outcome is subse-
quently adjusted by the square root of dk resulting in the generation of attention
scores. Subsequently, the inputs are loaded into a softmax operation, resulting in
a collection of attention weights. Ultimately, the attention weights are employed
to scale the values via a multiplication operation with weights. The whole proce-
dure can be interpreted under the following math equation, where and represent
the queries, keys, and values, respectively:

Attention(Q, K, V) = softmax

(
QKT√

dk

)
V
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Multi-Head Attention

In self-attention, only one portion was focused on; consequently, only that
portion has global relationships with other portions. Multi-Head Self Atten-
tion(MSA) was used to establish a global relationship between all parts. The
outputs of independent attention are then concatenated and transformed linearly
into the desired dimension. MSA procedure was illustrated in Figure 3.10 or fol-
lowing Equation :

MultiHead(Q, K, V) = Concat(head1,..., headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i )

Residual Connection

Residual Connection is used in every ”two sub-layer” layer of Transformer.
The residual connections contribute in network training by enabling gradients to
travel directly through the networks.

Feed Forward Network

In addition to attention sub-layers, each of the layers in our encoder and de-
coder contains a fully connected feed-forward network, which is applied to each
position separately and identically.

3.2.2 Vision Transformer

Vision Transformer was introduced in the original paper in 2020 [14]. The
vision transformer architecture used the transformer architecture in a way that
was similar to a transformer-based text predictor. Each square patch of an image
was like a word in a text, and different parts of the image were focused on. An
enhanced version of ViT called Swin Transformer was brought up in 2021 [15].
Swin Transformer uses a shifted windowing scheme to allow for cross-window
attention connections. This helps the global attention of the image much better.

Figure 3.11: Vision Transformer Architecture
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Patches + Position Embedding

As shown in Figure 3.11, A 2D image will be split into a sequence of flattened
2D patches in this process. Each patch has a PxP size. The number of patches will
be determined by N = HW/P2; where N is the number of patches and (H, W)
is the resolution of the original image. Each element that has been flattened is
inserted into a linear projection layer, which produces the so-called ”Patch em-
bedding.” Position embeddings are then linearly added to the collection of image
patches to preserve the positional information of the images. According to the
position of the image patch, an extra learnable embedding is prepended to the
sequence.

Vision Transformer Encoder

The Transformer Encoder is used for calculating Attention between Patches.
Like the Encoder of the original Transformer, the Encoder in ViT consists of a
multi-headed self-attention block, MLP block, and Norm layer for every sub-
layer. But in ViT, the Norm layers are applied before the MSA and MLP blocks.
Residual connection is still used after every sub-layer. The MLP contains two
layers with a GELU non-linearity.

3.2.3 Shifted Window Transformer

Figure 3.12 depicts the Architecture of the Tiny version of the Swin Trans-
former. To begin, the input image is an RGB image of size HxWx3, which is
separated into patches identical to Vision Transformer, with each patch having a
size of 4x4 and is turned into a vector of length 4x4x3 = 48 to load into the Swin
Transformer. There are four versions of the Swin Transformer that introduces in
the original paper[15]:

• Swin-T: C = 96, layer numbers = {2, 2, 6, 2}.

• Swin-S: C = 96, layer numbers = {2, 2, 18, 2}.

• Swin-B: C = 128, layer numbers = {2, 2, 18, 2}.

• Swin-L: C = 192, layer numbers = {2, 2, 18, 2}.
where C is the channel number of the hidden layers in the first stage.

Figure 3.12: Swin Transformer Architecture
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Figure 3.13: Two Transformer Blocks

Swin Tranformer Stages and Patch Merging

At Stage 1, The Linear Embedding layer converts the original vector space
to another vector space with dimension C, which is then processed through a
few Swin Transformer Blocks, resulting in a total of H

4 × W
4 Transformer tokens

(also known as patches). At Stages 2, 3 and 4, each Stage consists of 2 main
components, a Patch Merging class and a few Swin Transformer Blocks. As the
network goes deeper, the number of tokens is reduced by patch-merging layers
to provide a hierarchical representation. The Patch Merging layer is in charge
of lowering the number of tokens by merging four patches into a single patch,
hence the number of tokens when traveling through Stage 2 will be H

8 × W
8 and

the length of 1 token will be 4C dimension (due to combining four pathways into
one). The tokens will then be sent via a Linear layer to lower the dimension to
2C before proceeding through multiple Swin Transformer Blocks. The output of
each Stage is H

16 ×
W
16 × 4C and H

32 ×
W
32 × 8C, as with Stages 3 and 4.

Shifted Window

Swin Transformer Block, unlike Vision Transformer, employs multi-head self-
attention (MSA) on a local window region rather than the entire image. The right
side of Figure 3.13 shows two consecutive Swin Transformer Blocks, W-MSA and
SW-MSA, which are multi-head self-attention in Transformers with ”regular win-
dow” and ”sliding window” mechanisms, respectively. According to the graphic,
the input of the block will be transferred through Layer Norm (LN) and then
through W-MSA (or SW-MSA.) and MLP, with a residual connection in between.

In the window-based self-attention module, attention calculation is done lo-
cally within patches inside each window boundary (A window contains M × M
patches). But this method lacks connections across windows, which lower the
model performance. The Shifted Window kicks in to solve this issue. The idea
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is : Shift the window by a factor M/2, where M is window size (Figure 3.14). In
the original paper[15], Swin Transformer uses cyclic shift to reduce computation
heavy. That means it moves patches into an empty slots to complete a window.

Figure 3.14: Shifted Window

3.3 Implementation Method

3.3.1 Implemented Model

After some research and experiments with our Mentor, we decide to choose
Cascade Mask R-CNN as our instance segmentation model. We also use Swin
Transformer integrates FPN as the backbone for our model.

FPN is used to generate a feature pyramid that captures features at multiple
resolutions, which can be used for detecting objects of different scales in an im-
age. The FPN in Swin Transformer is typically added on top of the output of
the last transformer stage, which already captures global contextual information.
FPN then enhances the Swin Transformer by providing additional contextual in-
formation at different scales, which is important for accurate object detection. The
combination of Swin Transformer with FPN allows the model to capture both lo-
cal and global contextual information from the transformer layers and also cap-
ture multi-scale features through the FPN. This enables the model to effectively
detect objects of varying sizes in an image, making it highly accurate in object
detection tasks.

As depicted in Figure 3.15, our implemented Model uses Swin-B Transformer
combine with FPN as a feature extractor. Images go into the Swin Transformer
model. Output from each Stage goes to Topdown Feature Pyramid Network. The
feature maps from different levels of the FPN pyramid are combined to generate
a single set of fused feature maps, which capture both local details and global
context at different levels of granularity. The output feature map from FPN goes
into the RPN block and ROI aligns each Stage of Cascade Mask R-CNN. The
model contains three identical detection stages. Each stage consists of a class
head, bbox head and mask head.
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Figure 3.15: The overview structure of implemented Model

3.3.2 Source Code Implementation

We use MMdetection [16] as our base implementation. MMDetection is an
object detection toolbox that contains a rich set of object detection, instance seg-
mentation, and panoptic segmentation methods as well as related components
and modules. MMDetection was written mostly on Pytorch, which is created by
Python language.

3.4 Evaluation Metrics

When working with object detection or segmentation, we need evaluation
metrics to measure the performance of our model. One of the most often used
metrics for object detection, instance segmentation, and semantic segmentation
is intersection over union (IoU)[17], which is interpreted in the formula below,
where Bp is the predicted bounding box and, Bgt is the ground truth bounding
box.

IoU =
area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

Using only IoU is impractical when measuring multiple object detection. Mean
Average Precision is a better evaluation metric. It uses the concept of Precision
and Recall .

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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Here, TP (True Positive) is the result in which the model predicts the positive
class accurately. FP (False Positive) is the number of predicted bounding boxes
that do not identify any ground truth boxes accurately. FN (False Negative) is the
number of ground truth boxes that have not been correctly detected. In summary,
Precision is the ratio of successfully recognized bounding boxes to anticipated
boxes, whereas recall is the percentage of properly identified boxes to the number
of boxes in the dataset.

The mean Average Precision (mAP) calculates the Precision-Recall curve’s AUC
[17]. Higher values mean better instance segmentation algorithms. If accuracy re-
mains high as recall grows, an instance segmentation algorithm is good. mAP50

means mAP with IoU cutoff at 0.5. mAP70 means mAP with IoU cutoff at 0.7.

mAP =
1
N

N

∑
i=2

(ri − ri−1)
pi−1 − pi

2
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Experiments

4.1 Dataset

4.1.1 Dataset Description

With the help of the company where one of us works, I got permission to use
the company’s dataset and add more newly prepared data myself to increase
the diversity of the dataset. We use AICycle’s automotive image data set, which
includes images of different car manufacturers and photos with auto damage
by type. Specifically include 25,606 images in which the train set data is 22951
images spread over 62 popular car models in Vietnam such as Toyota Innova,
Mitsubishi Xpander, KIA Sorento,...Some examples in the dataset are shown in
Figure 4.1.

Figure 4.1: Sample in dataset
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The test set data has 2755 images in which 24 vehicle lines are added as test
data. In addition, out of a total of 22,951 images in the training set, there is addi-
tional information about the damage as follows:

Table 4.1: Training Data Set

Training Data Set
Damaged name Number of photos
Dent, flatten (thumb) 5684
Cracked 533
Broken, punctured, torn 2491
Scratched 16027
Shed 403

Table 4.2: Testing Data Set

Testing Data Set
Damaged name Number of photos
Dent, flatten (thumb) 684
Cracked 46
Broken, punctured, torn 264
Scratched 2169
Shed 56

4.1.2 Dataset Preprocessing

We conduct web scraping to collect data from some sources on the Internet,
such as:

• Facebook: Data is collected from Facebook, including diverse images of new
undamaged cars to serve for processing car parts. Additionally, there are
images from accidents to include damages and scratches.

• Google: Similar data is collected from Facebook.

Moreover, we are supported by a company to obtain a portion of data from car
insurance companies to increase the number of specific images of damages and
car parts.

After preparing a large number of photos, we labeled the car parts consisting
of 68 parts. For example: Roof, Front bumper, Logo,...(Figure 4.2) Manual label-
ing helps us better identify and understand vehicle parts.(Figure 4.3)
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(a) 1a (b) 1b

Figure 4.2: Sample in dataset

Figure 4.3: Labeling Data

Finally, from the labeled data, we output the JSON file. In there:

• id: the id of the annotation.

• image id: id of the image containing the object.

• category id: id of the object (the list of ids listed in the categories field).

• segmentation: contains information about the x, y coordinates for the poly-
gons surrounding the classes.

• area: bounding box area of the object.

• bbox: coordinates of the bounding box relative to the object ( x top left, y-top
left, width, height).

The training pipeline is a sequence of preprocessing steps applied to a training
dataset in preparation for model training. The steps in the training pipeline can
vary depending on the specific requirements of the problem and the model ar-
chitecture used. Here are the preprocessing steps commonly used in the training
pipeline for object detection:
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Training Pipeline:

• Load Image From File: This is the first step in the training pipeline, where
the training images are loaded from the image file into memory.

• Load Annotations: After loading the image, the next step is to download
the bounding box information of the objects in the image from the data file
containing the annotation information.

• Random Flip: This step is used to generate new versions of the data from
the training images by flipping the images horizontally or vertically. This
enhances the training data and improves the generalizability of the model.

• Auto Augment: This step is used to apply automatic data enhancement tech-
niques such as color enhancement, rotation, zoom, etc. to generate new data
versions and diversify the training data.

• Normalize: This step is used to normalize the values of the pixels of the
training image to return to a certain range of values. Usually, the mean and
standard deviation of the pixels is calculated based on the entire training
data set.

• Pad: This step is used to bring the training images to the same size by adding
white pixels to the uninformed positions in the image.

• DefaultFormats Bundle: This step is used to reformat the training images
and bounding boxes of the objects in the image into the input format of the
model.

• Collect: The final step of the training pipeline is to collect all the prepro-
cessed training data and put them in a batch to use for training the model.

Figure 4.4: Training Pipeline
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Test pipeline: CascadeRCNN’s test pipeline consists of two main steps:
Load Image From File and Multi-Scale Flip Aug.

• Load Image FromFile takes as input the path to the image file and returns
the image tensor with the original size.

• Multi-Scale Flip Aug is used to apply different data enhancement techniques
to the input image:

– The first step of MultiScale Flip Aug is resizing to scale the image to the
desired size.

– RandomFlip is applied to invert the random image vertically or horizon-
tally to generate more diverse data.

– Pad is used to add zero value to the missing parts of the image to ensure
that the image size after cropping does not change.

– Collect is used to collect the converted images into a batch to feed into
the model for prediction.

Figure 4.5: Test Pipeline
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4.2 Result

We used a computer with AMD Ryzen 7 5700G with Radeon Graphics NVIDIA
RTX A4000. We spent 3 days for training. An effective system when applied to
mid- and panoramic shots of a car. Car parts are detected by boxes and corre-
sponding segments.

Our training process is depicted in Figure 4.6 and Figure 4.7.

(a) RPN loss (b) Bounding box loss

(c) Class loss (d) Mask loss

Figure 4.6: Loss over epochs for SwinB-Cascade Mask RCNN

Figure 4.7: Total loss of Model
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As in Table 4.3 shows, Cracked damage has the highest recall and mAP with
the score of 0.74 and 0.547, respectively. In constrast, Shed has the lowest Recall
and mAP with the score of 0.282 and 0.083. The others damage types are quite
moderate.

Table 4.3: Result on each type of Damages

Result
Damaged name Recall mAP
Dent, flatten (thumb) 0.586 0.421
Cracked 0.740 0.547
Broken, punctured, torn 0.415 0.117
Scratched 0.584 0.380
Shed 0.282 0.083

We have some results 4.4 of other models to compare. The result shows that
HTC with Resnext101 backbone performs the best object detection performance
with a mAP50 score of 0.838. In the mean while, our model - Cascade Mask
RCNN with SwinB backbone, achieved the best result among the tested models
in the segmentation task with an mAP of 0.817.

Table 4.4: Comparison between Models

Comparision between Models
Model bbox mAP 50 bbox mAP 75 seg mAP 50 seg mAP 75
Resnext101CascadeMaskRCNN 0.817 0.721 0.797 0.650
Resnext101 HTC 0.838 0.724 0.805 0.656
Swin-T Cascade Mask RCNN 0.817 0.699 0.801 0.661
Swin-B Cascade Mask RCNN 0.836 0.771 0.817 0.705
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(a) Result 1

(b) Result 2

(c) Result 3

Figure 4.8: Detection Results



Chapter 5

Conclusion

Car damage detection is an important application of computer vision that has
many practical uses, such as insurance claim processing, car inspections, and ve-
hicle maintenance. In this thesis, we introduces a solution for classifying car dam-
age using deep learning. We uses Cascade Mask RCNN with back bone Swin
Transformer, which intergrates Feature Pyramid Network. On testing dataset,
the model achieved mean average precision of 81,7 % on segmentation , which
indicates the effectiveness of the model.

Overall, our study demonstrates that the Cascade Mask R-CNN model is a
powerful tool for car damage detection, with significant potential for real-world
applications in areas such as car insurance and maintenance. Future work could
focus on improving the model’s performance on specific types of car damage, as
well as extending the dataset larger.
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Appendix

Table 5.1: Average precision (AP) scores for car parts.

Car part AP Car part AP
Roof 0.946 Mirror base (rearview mirror glass) 0.926
Roof edge (hood) 0.924 Door window pillar 0.976
Wrench 0.907 Door pillar 0.942
Front windshield, front fender 0.974 Rear side cover (vehicle body side) / truck bed 0.916
Front grille 0.978 Rear trunk lid trim 0.917
Front bumper 0.955 Door sill 0.97
Spare tire at the back of the car 0 Front fender trim 0.904
Front shock absorber 0.978 License plate 0.986
Front shock absorber grille 0.777 Daytime running lights 0.683
Front shock absorber cover 0.807 Door trim 0.812
Logo 0.979 Front bumper lower cover trim 0.715
Rear reflector on the shock absorber 0.929 Rear shock absorber cover trim LR 0.824
Rear trunk/hatchback 0.979 Front shock absorber cover trim LR 0.643
Rear shock absorber 0.961 Door trim FB 0.628
Rear shock absorber cover 0.92 Front blind spot mirror 0.82
Rear windshield 0.962 Vehicle model name 0.858
Undercarriage lights 0.796 Front grille trim 0.796
Undercarriage light cover 0.92 Door window trim 0.87
Front lights assembly 0.949 Door trim 0.769
Mirror face (rearview mirror glass) 0.983 Tail lights 0.951
Mirror housing (rearview mirror glass) 0.942 Blind spot mirror 0.891
Turn signal light on the side mirror 0.838 Side window 0.958
Front pillar 0.94 Truck bed cover 0.806
Front fender 0.951 Truck bed cover LR 0.842
Front fender cover 0.826 Rear truck bed cover 0.921
Rear shock absorber turn signal light 0.953 Rear truck bed glass 0.915
Rear shock absorber turn signal light cover 0.935 Rear truck bed glass LR 0.949
Rear side (vehicle body side) / truck bed 0.956 Gas tank lid 0.943
Rear pillar 0.943 Door panel 0.976
Rear trunk lid taillights 0.96 Door glass 0.974
ArithmeticError 0.987 Door handle 0.936
Tire (car tire) 0.987
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