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Cervical Spine Fracture Detection via Computed Tomography scan

The application of artificial intelligence in image processing and decision
support in the medical field has received increasing attention recently in the
community. In this work, we did experiments with multiple machine learn-
ing models to find the one that matches radiologists” performance in detect-
ing and locating fractures on the seven vertebrae of the cervical spine via a
Computed Tomography scan. Among our experiments, the model, which
consists of two stages using deep convolutional networks with RNN and
Attention layers to classify whether a patient has a cervical spine fracture,

achieved the highest performance.

Keywords: Convolutional Neural Network, CNN, Attention, cervical spine

fracture classification.
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Chapter 1

Introduction

1.1 Problem & Motivation

Patients with spine fractures often have a lot of difficulties in moving their
body, which prevent them from working and daily routines. The cause of
spine fractures can be due to accidents or old age. According to [1], there
have been over 1.5 million cases suffered from spine fractures annually in
the United States alone, leading to about 18000 spinal cord injuries, and these
cases are usually seen in elderly people. The early detection and localization
of spine fractures can play an essential role in preventing neurologic dete-
rioration and paralysis after trauma. However, it often requires computed
tomography (CT) to be performed instead of radiographs (x-rays), which
might be more time-consuming and require specialists or experts to carefully

examine patients’ spine.

Recently, more and more Al-based technologies have emerged to automate
various tasks that often require human intelligence to perform. To deal with
images, these technologies often use deep learning methods, which perform
quite well compared to traditional ones and sometimes even better than what

humans could do. However, these methods are not always giving accurate
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results every time they are in use, which is why there have been many com-
petitions revolving around them in order to find the most accurate method
while still achieving the maximum time to be performed. As a result, a com-
petition on Kaggle, namely RSNA 2022 Cervical Spine Fracture Detection [1],
was held to find the best Al-based method to support the early detection and
localization of cervical spine fracture, which is the most common site of spine

fracture.

1.2 Related Works

U-Net [22] was first proposed as an deep learning approach for medical im-
age segmentation, which is the task of classifying each pixel in an image. It
outperforms the sliding-window convolutional network which is the prior
best method in terms of both score and speed, and from then it becomes a
popular approach for image segmentation in general. Along with the strong
use of data augmentation, U-Net can produce fine segmentation results while
training on a few images and it not only works well with 2D images but also

with 3D ones.

CNN serves as backbone in a variety of computer vision tasks such as im-
age classification, detection, segmentation, etc. It has existed from more than
decades, starting from the introduction of AlexNet [15] to the more effec-
tive architectures namely ResNet [11], EfficientNet [29], ConvNeXt [17], etc.
These architectures are well-known in the computer vision community for

achieving a lot of great success in terms of both accuracy and speed.

In the specific problem that is cervical spine fracture detection, there is some
previous research on deep learning models introduced. In [24], they pro-

posed a deep convolutional neural network (DCNN) with a bidirectional
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long-short term memory (BLSTM) layer for the automated detection of cer-
vical spine fractures in CT axial images. Besides, another work introduced
a 3D convolutional sequence to sequence model for vertebral compression

fractures identification in CT in [3]

Within the contest, there are several solutions from several top teams of [1]
which can detect fractures in cervical spines quite effectively. Most of the top
teams in the competition use an architecture that includes at least two mod-
els: a segmentation model and a classification model. Qishen Ha in [8] devel-
oped a 2-stage method for fracture detection. This method first trained an U-
Net model with resnet18d or efficientnet-v2s for 3D semantic segmentation to
generate 3D masks for all training data, then a 2D CNN (ConvNeXt) model
followed by a LSTM module was trained for final classification. Similarly,
Harshit Sheoran’s method [9] consists of 2 stages, in which U-Net models
were trained for both sagittal and bone segmentation, and EfficientNet CNN
with RNN model was trained for classification afterwards. In the classifica-
tion stage, images were put into 2.5D format, which is concatenating three
consecutive slices into a single image, and two bidirectional GRU layers with
attention and Conv1D layer were used for RNN model. [23] used an U-Net
model for 2.5D segmentation and a CNN with bidirectional GRU layers and
attention was trained for classification. In the second stage, a SpatialDropout
layer was added to the model; therefore, this gave a slight improvement in
the overall classification. However, the architectures mentioned above all
take a long time or a large amount of resources for training (or also pretrain).
Therefore, we did experiments to find a model that is more timely efficient

and still be able to achieve acceptable results.
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1.3 Objectives

In this study, we aim to contribute practical experiments to developing an
automated tool that can help doctors make quick and accurate decisions,
bringing the most benefit to patients and society. We experimented with
two approaches to the above-mentioned problem, which are 3D classifica-
tion and 2D classification. In the 2D approach, we implement two famous
backbone models, ConvNeXt and EfficientNet, with different training meth-
ods. Finally, we utilized convolutional neural network (CNN) model and
data processing techniques to obtain a model which consists of 2 stages: de-
tecting vertebrae bounding boxes and classifying whether a cervical spine
was fractured. At both stages, we used 2.5D input by stacking three slices
and ConvNeXt for the backbone model. The final model achieve an accept-
able results and lower inferrence time with limited training resources. The
tinal result is equivalent to the top 25 of the contest. Details of experiments,

data processing, and parameters will be covered in chapter 4.
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Background

2.1 Image classification

Image classification is a fundamental task that attempts to comprehend an

entire image as a whole. The objective is to label the image in order to cate-

gorize it.
Cat g
Ry
o =0
= Output
e
o Cat
Dog 1.

FIGURE 2.1: Image Classification

A convolutional neural network (CNN) is a commonly used paradigm in im-
age processing, which is the concept behind recent developments in the field
of computer vision. Among the different types of neural networks (others in-
clude recurrent neural networks (RNNs), long short-term memory (LSTMs),

artificial neural networks (ANNs), and more), CNNs is the most common
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type. The most notable structures of a convolutional network in image pro-

cessing are: Convolutional Layer, Pooling Layer, ...

2.1.1 Convolutional Layer

The foundation of a CNN is a convolutional layer. It has a number of filters
(or kernels), whose settings must be learned over the course of training. Typ-
ically, the filters’ size is smaller than the original image. Each filter produces

an activation map after it convolves with the image.

Input Image Filter Activation
Map
3|8
8|4 1]10]-1 - -9
8|4 ® 1]10]-1 = 3| -2
2|7 1 1 0
5|4(4|5(4

FIGURE 2.2: Convolutional Layer

Due to the local connectivity of the convolutional layer, the network is forced
to learn filters with the highest response to a specific local region of the input.

[18]

2.1.2 Pooling Layer

Pooling layers are used to decrease the dimensions of the feature maps. As
a result, it lessens the quantity of network computation and the number of
parameters that must be learned. The feature map created by a convolution
layer’s feature pooling layer summarizes the features that are present in a
certain area. Therefore, instead of precisely positioned features produced

by the convolution layer, further operations are conducted on summarized
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features. As a result, the model is more resistant to changes in the features’

positions in the input image.

Max pooling
/
12| 7
817|15]|3
2x2 pooling, 13| 14
12(9 (5|7 stride 2 >
13( 2 (10| 3 Average pooling
914|5/(14 915
N
71 8

FIGURE 2.3: Pooling Layer

2.2 3D Image Classification

Deep learning models are being used more frequently in the medical field as
a result of the quick development of machine learning, graphics processing
technology, and the accessibility of medical imaging data. Using 3D deep
learning, it is now possible to analyze three-dimensional (3D) medical pic-
tures like CT, DTI, fMRI, ultrasound, and MRI scans thanks to falling com-
putational costs and the availability of powerful graphics processing units
(GPUs). These scans provide in-depth, three-dimensional images of human
organs and can be used to look for anomalies in blood vessels and organs as
well as infections, malignancies, and traumatic injuries. In this work, we also
experiment with 3D classification to classify whether a vertebra was frac-

tured or not. [26]
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kernel

3D data

FIGURE 2.4: 3D Convolutional Layer

2.2.1 3D Convolution Layer and 3D Pooling Layer

The convolution layer is one of the key distinctions between 3D and 2D im-
age classification. Difference between 2D and 3D convolutions applied on
a set of frames. 2D convolutions use the same weights for the whole depth
of the stack of frames (multiple channels) and result in a single image. 3D
convolutions use 3D filters and produce a 3D volume as a result of the con-

volution, thus preserving temporal information of the frame stack.

Another distinguishing feature between the two approaches is the pooling
layer. Similar to the convolution layer, the 3D pooling layer also uses a 3D

tilter when implementing the pooling algorithm.

2.3 Image Classification Models

2.3.1 EfficientNet

EfficientNet is a convolutional neural network design and scaling technique

that uses a compound coefficient to consistently scale all depth, breadth, and
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max(1~8) noﬂ

(a) Before max pooling (b) After max pooling

FIGURE 2.5: 3D Pooling Layer

resolution dimensions. The EfficientNet scaling method uniformly scales
network width, depth, and resolution using a set of fixed scaling coefficients,
in contrast to standard practice, which scales these variables arbitrarily. Not
only did it achieve 84.4% top-1 accuracy in the ImageNet classification task
but it did it with many times less parameters than the earlier state-of-the-art

models. [28]

- wider -
|————| e D —
[=—— | —
| E— [ |
#channels =4 | | ===
jemmmkmman N - wider - 1 i 1
[ ] i
L I deeper P =
[ [ - ! deeper
| ) | : -
— =n i =
- layer_i - E | I:I
“+~ higher ) ... higher
[} resolution HdWV i 1. reschution e +..resolution
(a) baseline (b) widin scaling (¢) depth scaling () resolution scaling (&) compound scaling

FIGURE 2.6: Model Scaling. (a) is a baseline network example;

(b)-(d) are conventional scaling that only increases one dimen-

sion of network width, depth, or resolution. (e) EfficentNet’s

method that uniformly scales all three dimensions with a fixed
ratio.[28]
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Stagei Operator F; Resolution H; x W; #Channels C; #Layers L
1 Conv3x3 224 x 224 32 1
2 MBConv1,k3x3 112 x 112 16 1
3 MBConv6,k3x3 112 x 112 24 2
4 MBConv6,k5x5 56 x 56 40 2
5 MBConv6,k3x3 28 x 28 80 3
6 MBConv6,k5x5 14 x 14 112 3
7 MBConv6,k5x5 14 x 14 192 4
8 MBConv6,k3x3 7x7 320 1
9 Convixl & Pooling & FC 7 x 7 1280 1

TABLE 2.1: EfficientNet-B0 baseline network

There are multiple sized EfficientNet, which are named from B0 to B7 in an
ascending order based on the complexity of the network. EfcientNet-BO0 is the
baseline model that is then scaled to obtain EfficientNet B1-B7. The funda-
mental blocks of the EfficientNet-BO network are the squeeze-and-excitation

blocks and the inverted bottleneck residual blocks of MobileNetV2. [28]

The scaling method makes it possible to efficiently scale up a baseline Con-
vNet to any target resource restrictions in a more principled manner. With an
order of magnitude less parameters and FLOPS, the mobile size EfficientNet
model can be scaled up very effectively and surpass state-of-the-art accuracy

due to this compound scaling strategy. [29]

2.3.2 EfficientNetV2

EfficientNetV2 is a type of convolutional neural network that has faster train-

ing speed and better parameter efficiency than the original EfficientNet.[28]

EfficientNetV2-S achieved 83.9% top-1 accuracy in the ImageNet classifica-

tion task.[28]
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Stage Operator Stride #Channels #Layers

1 Conv3x3 2 24 1

2 Fuse-MBConv1,k3x3 1 24 2

3 Fuse-MBConv4,k3x3 2 48 4

4 Fuse-MBConv4,k3x3 2 64 4

5 MBConv4,k3x3,5E0.25 2 128 6

6 MBConv6,k3x3,SE0.25 1 160 9

7 MBConv6,k3x3,SE0.25 2 256 15

8 Convlxl & Pooling & FC - 1280 1

TABLE 2.2: EfficientNetV2-S architecture

2.3.3 ConvNeXt

With the development of Transformer architecture and Attention mechanism,

image processing models also achieve a new step with the combination of

Transformer with classic CNN architecture. One of the models created as a

result of this pairing, ConvNeXt, has shown promise in image classification.

ConvNeXt Architecture

‘ 4x4, 64, str. 4

LN

Block, W=96 *xJ
lLN + 2x2, 192, str. 2

Block, W=192 X3
iLN + 2x2, 384, str. 2

Block, W=384 x9
lLN + 2%2, 768, str. 2

Block, W=768 <3

Block

dix7, W

FIGURE 2.7: ConvNeXt Architecture

Constructed entirely from standard ConvNet modules, ConvNeXts compete
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favorably with Transformers in terms of accuracy and scalability, reaching
87.8% ImageNet top-1 accuracy while keeping the simplicity and effective-

ness of standard ConvNets. [17]

2.4 Image Segmentation

2.4.1 3D vs 2D vs 2.5D segmentation

3D segmentation

3D image segmentation, according to [32], is a computational technique to
predict the element-level labels of objects in a 3D volume. That means 3D
segmentation is able to directly generate segmented masks for whole 3D vol-

umes. Therefore, this technique usually applies for 3D volumes of data.

Original 3D HRXMT Image FB Segmented 3D Image

FIGURE 2.8: 3D image segmentation (source: [14])
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2D segmentation

Similar to 3D segmentation, 2D segmentation is another type of image seg-
mentation techniques, but applies for only 2D images, rather than 3D vol-
umes. As a result, 2D segmented masks are commonly less comprehensively

understandable than 3D masks, due to dimensional limitations.

AL N

o 'E b i

| -] B

- Fence
B Uniabel

Road Sidewalk Building

B pole [ Vegetation B Vehicle

FIGURE 2.9: An example of 2D image segmentation (source:
[33])

2.5D segmentation

This type of technique is considered in between 2D and 3D segmentation
types. This technique is done by putting stacks of 2D images, which are usu-
ally slices from 3D volumes, into 2D models [2]. Therefore, this technique is

able to overcome the dimensional limitations of 2D segmentation techniques,
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as well as reduce computational costs, which is one of the biggest disadvan-

tages of 3D segmentation techniques.

I A
! 2.5D CNN
with incoporation of

neighbouring slices

‘ Final Segmentation Results |

30 Input Valume

FIGURE 2.10: An example of 2.5D image segmentation (source:
[33])

Differences between 2D, 3D and 2.5D segmentation techniques

Comparing 3D, 2.5D, and 2D Approaches to Brain Image Segmentation

Performance
with
Limited
Training Data:
Which
Approach
is Better?

Computational
Required GPU Speed during
Deployment:
2.5Dor 2D 3D

Memory:

FIGURE 2.11: Brief comparison between 2D, 2.5D and 3D seg-
mentations

Figure 2.11 briefly describes the differences between 3 techniques. As 3D
segmentation applies on whole 3D volumes, this technique is able to per-
form quite fast and accurately on training. However, this technique is ex-
tremely computational expensive and only suitable for highly computational

resource conditions, as well as with limited training data given. In contrast,
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2D and 2.5D segmentations could be less computational cost, as well as re-
quire less GPU memory and be compatible with larger training datasets. In
addition, 2.5D segmentation could be better than 2D in several domains, such
as in medical problems due to being more deeply informative in their masks.
Last but not least, while 3D segmentation puts the whole 3D volume as in-
put, 2.5D segmentation puts consecutive slices as input, and the consecutive
slices, when stacked together, may result in a single 3D volume. Therefore,
2.5D segmentation techniques are able to perform efficiently with 3D data,
despite a different way (as consecutive slices), but only require less amount
of resources than 3D segmentation techniques (as they only use 2D CNNs

rather than 3D ones).

2.5 Recurrent Neural Network

Machine learning focuses on creating algorithms that automatically improve
by practice. The learning algorithm should ideally get better the more times
it is used. The learning algorithm’s job is to build a classifier function from
the provided training data. The effectiveness of this built-in classifier is then
evaluated by using data that had never been seen before. Artificial neural
networks (ANN) are rough models of biological learning systems that draw
inspiration from them. Neuronal networks in biological learning systems are
intricate and linked. A vector of real-valued inputs and a single realvalued
output are all that neurons are capable of processing. Feed-forward neural
networks are the most prevalent type of conventional neural network. One
input layer, one output layer, and at least one intermediate hidden layer are
used to organize the sets of neurons in this system. Static classification tasks
are the only ones that feed-forward neural networks can handle. They can
only offer a static mapping between input and output as a result. Feedfor-

ward neural networks can be expanded to support dynamic classification.We
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must feed signals from earlier timesteps back into the network in order to
gain this attribute. Recurrent Neural Networks are these networks with re-

current connections. [27]

Long short-term memory (LSTM)

Despite such advantages, the maximum amount of time that RNNs can look
back is ten timesteps [12], [19]. This occurs as a result of the fed-back sig-
nal either disappearing or blowing up. Long Short-Term Memory Recurrent
Neural Networks (LSTM-RNN) were used to address this problem [6], [13].
Depending on the complexity of the created network, LSTM networks can

learn more than 1,000 timesteps and are somewhat biologically plausible [20].

A
4 N
———® >
Ganhd
|
[0} (0] tanh o
g U,

FIGURE 2.12: LSTM Architecture

Attention

The attention mechanism was included to enhance the machine translation
encoder-decoder model’s performance. By combining all of the encoded in-
put vectors in a weighted fashion, with the most pertinent vectors receiving
the highest weights, the attention mechanism was designed to allow the de-
coder to employ the most pertinent portions of the input sequence in a flex-
ible manner. In addition, self-attention and Transformer model, which was

proposed in [31], achieved state-of-the-art performance in natural language
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processing and became popular in other research field. A lot of new architec-
tures in image processing were introduced based on Transformer architecture

such as: ViT [4], Swin Transformer [16], ...
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Chapter 3

Data

3.1 Dataset Discovery and Explanation

The dataset used for this work is the dataset obtained from RSNA 2022 Cer-
vical Spine Fracture Detection [1] competition at Kaggle. This dataset has 3
main folders: train_images, test_images, and segmentations. The train_images
folder contains training images, and this folder contains 2019 subfolders.
Each subfolder is for a specific patient or case study, and it contains mul-
tiple slice images of the corresponding case. Therefore, those subfolders
were named as the UID of their corresponding case study. Every image in
those two folders is in the DICOM file format, which has slice thickness of
under 1 mm, as well as in the axial orientation and bone kernel [1], and
has a .dem extension in each one. Meanwhile, the segmentations folder
contains annotation masks and those masks are stored in NIFTI files (each
file for a single patient). Target labels of the training data are given in the
train.csv file. This file contains a column for case IDs, patient level labels (bi-
nary) and labels for a specific vertebra. In addition, this dataset provides a
training_bounding_boxes.csv file which stores information about bounding

boxes, such as anchor coordinates, width and height of bounding boxes.

According to [1], in the “train.csv” file, labels for training images are:
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Dataset Size #vertebrae | #masks #training | #testing
studies studies
| RSNA | 512—768 |7 | 87 | 2019 | 1080 |

TABLE 3.1: Dataset overview. Number of test studies of the
contest is 1500, but we only evaluate models on 72% of the
dataset (private hidden set)

* patient_overall: overall target label, when any of the vertebra is frac-

tured.

* C1 - C7: seven additional labels, whether a specific vertebra is frac-

tured. Each vertebra is located in Figure 3.1 below.

C1iAvas) @5

€2 (Axis)

L5 = “

s sacrum

Coceyx

FIGURE 3.1: Vertebral column, cervical spines are C1 to C7 (top)

DICOM files, according to [10], in this dataset have 2 uses. One of them re-
lates to the data in each file. These files, typically, are loaded via a function

named dcmread in a library named pydicom which is a Python library used
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for accessing DICOM-format files. After loading images, there are four at-
tributes that can be retrieved: ImageOrientationPatient, ImagePositionPatient,
PatientID, PatientName. PatientID indicates the ID of the patient, the case
study itself. PatientName shows the name of the patient; however, in this
dataset, the name of the patient is the ID itself. ImageOrientationPatient indi-
cates the orientation of the patient, while ImagePositionPatient indicates the
position itself. ImagePositionPatient stores a list of 3 values, which is the po-
sition in 3-dimension space (x-axis, y-axis, z-axis). In addition, [10] revealed
that unlike other competitions, z-axis value is the position of the slice image
in the sagittal plane, rather than the timestamp. Sagittal plane, according to
[30], is a vertical plane that creates two sections on either side of the body.
However, all images in this dataset, according to [10], are in axial orienta-
tion, that means there is only one bone to observe for each image. Despite

that, z-axis value can be referenced for position in the sagittal plane.

Sag bone Ax soft Ax bone (2.5 mm)

y
(7N

- gimal

FIGURE 3.2: Bone images in sagittal plane and axial plane
(source: [10])

In Figure 3.2, the left side is the bone image in the sagittal plane. Next, the
middle is the axial view of bones. This view is quite soft; however, this type

of data is not available in this dataset. Similarly, the right size is the axial
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view, but 2.5mm deep. The images in this dataset are only under Imm deep,

that means they are sharper than the right size of Figure 3.2.

Additionally, one thing needs to be considered on the left side of Figure 3.2 is
the thin line. That line is the line that indicates the bone in axial view, and z-
axis coordinate shows where the line is, as well as the corresponding position

of the axial view in the sagittal plane.

However, there is a problem: although the sagittal view is available in this
dataset, there is no way to check where the image is corresponding to which
bone. As a result, data in the segmentation folder comes into action. This
folder contains 87 files, and each file is for a specific case and named as the
UID of that case. Unlike slice images, segmentations are in NIFTT format;
therefore, another Python library named nibabel is used to load this kind of
data. Moreover, the segmentations loaded are in 3D format (height, width,
num_images), and num_images is the same number of slices of correspond-
ing case study in the train_images folder. As there are differences about for-
mat between NIFTI segmentations and DICOM images, while DICOM files
are segmented in the axial plane, NIFTI files are in the sagittal plane. This also
allows us to choose the proper orientation so that the DICOM pictures and
segmentation match using the NIFTI header information; otherwise, there is
a chance that the segmentations will be mirrored in the x-axis and flipped in
the z-axis. That is the guide to load segmentations properly. Figure 3.3 and
3.4 shows the slice image and its corresponding segmentation slice (in the

case loaded properly).

After loading segmentations properly, we inspected the values in each seg-
mentation slice, then we discovered that unique values would indicate which
bone on each slice. For example, the unique values for the slice in Figure 3.4
are 0 and 6; and while number 0 indicates the background, number 6 refers

to which bone, in this case, it is bone Cé6.
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FIGURE 3.3: The sample image (after loading from DICOM for-
mat) (source: [10])
Figure 3.2, not only describes the vertebral column, but also is like the refer-
ence table of which value in segmentation corresponds to which bone. For
example, value 1 is bone C1, value 2 is bone C2, value 8 is bone Th1l and so

on.

3.2 Voxel

As the segmentation files in this dataset are in 3D format, every element in
the segmentation cannot be called as pixels as in regular 2D images. Instead,

they are called voxels.

A voxel in 3D computer graphics represents a value on an even three-dimensional
grid. Voxels often do not explicitly encode their position (for example, coor-
dinates) with their values, similar to how pixels in a 2D bitmap do. Instead,
rendering systems infer a voxel’s position based on how it is situated in re-

lation to other voxels. Then, about the voxel size, [21] discusses that slice
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FIGURE 3.4: The corresponding segmentation of the image in
Figure 3.3 (source: [10])
thickness and pixel size both influence voxel size; moreover, both the field of
view and the picture matrix affect pixel size. In addition, [21] depicts that the

higher the spatial resolution, the smaller the pixel size.

In CT simulations, Goertzen et. al in [7] illustrated that voxelized approach
could be used in X-ray CT system simulations. In contrast, Goertzen discov-
ered a drawback of this method, which would result in inherent errors due

to the phantom voxelization.

On the other hand, voxels data can be used for deep learning. Gao et. al in [5]
developed a deep learning based detection method for voxel-wise mapping
of lumbar spine modic changes. As a result, the model obtained a sensitivity
of 0.71 (+0.072), specificity of 0.95 (+0.022), and a Cohen’s kappa score of
0.63 in 85.7% of samples in the unseen test set. This demonstrated major
concurrence with radiologists and this method would be used to strengthen

inter-rater reliability for modic changes assessments.
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Due to the characteristics of segmentation data in this dataset, nibabel library

is used for loading this type of data in Python.

3.3 Exploratory Data Analysis

Fractures distribution by patient
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FIGURE 3.5: Dataset distribution (overall))
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FIGURE 3.6: Fractures distribution by vertebrae

Figure 3.5 illustrates that the dataset, in overall, is roughly balanced (961 pa-

tients have fractures compared to 1058 normal ones); however, Figure 3.6
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shows that distribution of fractures based on vertebrae seems to be imbal-
anced. Meanwhile in Figure 3.7, most of the fractured patients have fractures
on only 1 single vertebra, that means some of patients have fractures on mul-

tiple vertebrae (no one has fractures on all 7).

Number of fractures by patient
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1000

count

FIGURE 3.7: Number of fractures distribution

As can be seen from Figure 3.8, most of the training images have the size of
512 x 512 pixels, and some others have a little bit bigger sizes. As a result, we

will scale all of the training images to the size 512 x 512 to unify the size for

training processes.
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FIGURE 3.8: Image sizes distribution [25]
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Figure 3.9 and 3.10 are examples of slice images and their corresponding seg-
mentation masks of a particular case. Although there are a total of 2019 cases
in the training dataset, only 87 of them have corresponding segmentation

masks.

However, there is a difference about the dimension between images and
segmentation masks. While all images are two-dimensional, segmentation
masks are three-dimensional masks. Slices visualized in Figure 3.10 are just
the position of 2D slices in the whole 3D data. As a result, while each case
study in the train_images folder is a sub-directory which stores 2D images,
each case in the segmentations folder is just a single file. This indicates that

3D segmentation techniques might be suitable for this type of data.

In addition, this difference can be eliminated by stacking consecutive slice
images of each case, which results in a single 3D volume for the case. There-
fore, this opens up opportunities for deep learning methods which use 3D
volumes as input, such as 3D CNNs. Moreover, as 3D images are formed by
stacking consecutive slices, 3D volumes can be in a variety of sizes; therefore,

this might fit various 3D CNNs for fracture detection.

Similar to segmentations, only a subset of the training set have bounding
boxes measurements (235 cases out of 2019), and Figure 3.11 depicts that all

of those cases are fractured.

Moreover, Figure 3.12 illustrates that all of the images that have bounding
boxes, only have 1 single bounding box for each. Last but not least, Figure

3.13 is the example of a slice image with a bounding box drawn on it.
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ID: 1.2.826.0.1.3680043.10921
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FIGURE 3.9: Example of 15 slice images
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FIGURE 3.10: Example of 15 segmentation masks
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FIGURE 3.11: Example of 15 segmentation masks
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FIGURE 3.12: Distribution of number of bounding boxes per
slice image
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ID: 1.2.826.0.1.3680043.25651, Slice: 119
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FIGURE 3.13: Example of a slice image with bounding box
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Chapter 4

Implementation and Analysis

4,1 Evaluation Metric

Model performance is evaluated using a weighted multi-label logarithmic
loss. Each fracture sub-type is its own row for every exam, and the model is
expected to predict a probability for a fracture at each of the seven cervical
vertebrae designated as C1, C2, C3, C4, C5, C6 and C7. There is also an “any
label”, patient_overall, which indicates that a fracture of any kind described
before exists in the examination. Fractures in the skull base, thoracic spine,
ribs, and clavicles are ignored. The “any label” is weighted more highly than

specific fracture level sub-types.

The binary weighted log loss function for label j on exam i is specified as:

Lij = wy; x [y;j x log(pij) + (1 —yi) x log(1 — pij)] (4.1)
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where the weights given by:

1,  if vertebrae negative
2,  if vertebrae positive
7,  if patient negative

14, if patient positive

Finally, loss is averaged across all rows.

4.2 Data Processing

We first download the images from the directory provided by the contest and
then remove the corrupted images. The data after being loaded will be nor-
malized and resized. As for the data for the 3D model, the 2D images are
stacked to obtain the 3D input and then are augmented by Random Rota-
tion and Random Horizontal Flip. With input for 2D model, image will be
3x384x384 size, while input for 3D model will be 224x224x224.

4.3 3D Classification Model

Our first experiment was the 3D classification model, which has proven its
performance in medical image data processing. [26] After being converted
to 3D, the data will be passed through a model of 3 3D convolution blocks
to calculate the feature map. Then the output matrix will be passed through
several Fully Connected layers to get the final output. The architecture of
a convolutional block consists of a convolution layer, an activation layer, a

pooling layer, and a normalization layer.

The output of this model will have 8 dimensions, corresponding to the per-

centage of 8 layers: vertebrae C1-C7, patient overall. The goal of the model is
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to optimize the loss function given by the contest organizer, which has been

described above.

We use AdamW as optimizer and CosineAnnealingLR as scheduler.

ap Fracture
e e Classifier —» |17 —» | detection weighted
BCE Loss

3D CNN Block
. | 3D Convolutional Layar |

3D CNN Block | L |

3D 3D CNN ¢
Classifier Block

v | MaxPooling |

3D GNN Block | BatchNorm3D |
¥

< AvgPooling
v
FLATTEN

FIGURE 4.1: 3D CNN Classifier

4.4 2D Classification

4.4.1 Single-head Model

In this approach, we first trained a CNN model with ConvNeXt-Tiny as back-
bone on vertebrae labels provided by the organizers. There are only 87 stud-
ies in the training data that have the segmentation labels; a slice is deter-
mined to belong to a class if there is at least one pixel of that slice classified
to that class. The data is split into 5 folds, 5 models then trained on 4 folds of

them and evaluated on the others. After that, we used 5 models to infer all
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FIGURE 4.2: CNN model for Vertebrae Classification

the training data to get the pseudo vertebrae labels to train the next model,

predictions of the models are averaged to get the final prediction.

(!

Fracture
detection weighted
BCE Loss

2 ConvNeXt-encoder 7

(frac)

FIGURE 4.3: Single-head approach for Cervical Spine Fracture
Detection

After getting the pseudo vertebrae labels, we multiplied vertebrae label and
fracture label provided by the contest of each image to get the final frac-
ture label. Next, we simply passed training data with fracture binary label
through CNN model (ConvNeXt-Tiny) as a binary classification model. We
used the multilabel loss function Binary Cross Entropy Loss with Logit from

the library pytorch.

In the end we get a model that detects fractures and visible C1-C7 verte-

brae using a single image. After that, for each StudyInstanceUID we first
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aggregate predictions for each of C1-C7 vertebrae by getting the max frac-
ture probability predictions among slices. We use a simple formula to derive
patient_overall fracture probability. patient_overall is the probability of
any vertebra being fractured. It is equal to the maximum fracture probability
of a vertebral component. Under assumption of independence of vertebrae

fractures we can derive the following simple equation:

_ 7
P patient_overall — max;_q b C; (4‘2)

We split data into 5 folds using GroupKFold with StudyInstanceUID as group
to avoid data leakage and trained 5 versions to get the ensemble model.
From this point forward, k-folds splitting is understood to be applied to the

grouped-by-study data.

4.4.2 Multi-head Model

At the first stage, we trained a CNN model to vertebrae classification with
aforementioned architecture in 4.4.1 and inferred all training data. For this

method, we also used EfficientNetV?2 for backbone of this model.
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1x7
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¢'1
N

3 EfficientNatV2-ancoder > Final Loss

17 -+ -
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FIGURE 4.4: Multi-head model for Cervical Spine Fracture De-
tection
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Data is passed to a pre-trained encoder of EfficientNetV2S. The final classi-
tication layer of the EfficientNetV2S was ignored, because its shape is irrele-
vant given the current task. The output of the encoder is then flattened and
is passed to 2 Fully Connected Layers parallelly to optimize 2 loss functions
contemporaneously. Note that we use logits in the loss function to improve

numerical stability.

Vertebrae fracture targets are loaded from training data of the contest, while

vertebrae detection targets are pseudo-label which comes from Stage 1.

Finally, we also had a model that classify fractures on single image. The final
output of each StudyInstanceUID was obtained in the same way with the

previous approach. The sole difference is the patient_overall fomular:

Ppatient_overall =1- H(l - PCZ') (4.3)

1

We also split data into 5 folds and trained 5 versions of EfficientNetV2 models

to obtain an ensemble model, which has slightly improved performance.

4.5 2.5D CNN+RNN Model

Overall, our final experiment consists of two stages: cervical vertebrae seg-
mentation and fracture classification. At stage 1, we trained a CNN model
using 2.5D images from 87 samples provided by the organizers to get the
segmentation mask of cervical vertebrae and ratio of each cervical vertebra
in all train data. After that, we cropped out all 7 cervical vertebrae of each
study separately and trained a fracture classification model using these out-
puts. The model at stage 2 is a convolution network followed by bidirectional

LSTM layers with attention.
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Label Cervical vertebrae

1 C1
2 C2
7 Cc7
8 T1-T12

TABLE 4.1: Labeling rules

4.5.1 Stagel

First, we used the 87 studies of segmentation which were provided labels.

We recreated the class labels as the Table 4.1.

We used 2.5D inputs with 3 channels of image data: the original image i and
its sides (i-1, i+1). The detailed data augmentation section is in Table 4.2. In
preparation for this stage, from the segmentation mask provided by orga-
nizer, we need to determent the bounding box of the bone. To do this phase,
we first label connected regions of the mask, then measure the morphological
properties of these connected regions and keep the bounding boxes. For each
connected region, a bounding box of the form (x_min, y_min, x_max, y_max)
is returned. For this stage’s model, we used ConvNeXt-Tiny as the backbone
of the encoder. In terms of the training process, we used AdamW as opti-
mizer and CosineAnnealingWarmRestarts as the scheduler. Our model in
this stage has two output: bounding box of the vertebra and the ratio of the
vertebra’s type. Note that the ratio is calculated by dividing the maximum
number of pixels belonging to Cj class in all slices by the number of pixels

belonging to Cj class in the current slice.

After training the stage 1 model, we inferred all 2019 studies with the inputs
preprocessed using the same method mentioned earlier. We keep a list of
categorized slices for each patient and each type of bone. Note that a slice can

be more than one vertebra (for example 60% C1 and 70% C2), and we save
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Augmentation methods

HorizontalFlip
RandomBrightnessContrast

HueSaturationValue
ShiftScaleRotate
Cutout

TABLE 4.2: Augmentation methods

images of vertebrae with more than 50% of that kind to the vertebra’s image
list. We individually intented to crop each study’s seven cervical vertebrae.
A fracture label from train.csv is attached to each cervical vertebrae. Our
EDA estimated that the majority of studies have 200-300 slices per study, so
that each vertebra typically has 30 slices. We chose from lists of slices to get
24 images using evenly spaced indices for each type of bone. For cervical
vertebrae with less than 24 slices, we evenly duplicated some slices to get

enough images.

4.5.2 Stage2

After getting the bounding box from stage 1, we cropped the images fol-
lowing to the bounding boxes. Once all the cervical vertebrae have been
cropped, the data shape of our input was (batch_size, number_of_channels,
image_size, image_size), we then stacked three slices into one to get the 2.5D
inputs, 24 images chosen as earlier mentioned method turned into a sequence
of 8 2.5D images, it is also the sequence length of LSTM layers. We used the
same augmentation with Stage 1. For the model we also utilized ConvNeXt-
Tiny from the timm library for backbone model. Additionally, we included

an Attention Layer, which also provides a slight improvement.
The patient_overall is calculated as:

N

P patient_overall — 1-— H(l — P Ck) (4-4)
k=1
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where:
N is the top N highest ratio vertebrae (N = 1: Ppatient_overall = max(Pc,))

Pc, is the ratio of vertebrae Cj

stage 2 l
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FIGURE 4.5: Two-stage Model Architecture

We ran several times to choose the suitable N. The result of each run is indi-
cated in table 4.3. At this stage, we split the data into 5 folds for training and

ensembled the results of 5 models for final prediction.

All aforementioned experiments were implemented on resources that are free
and available for everyone: Tesla T4 GPU on Google Colab and P100 GPU on
Kaggle Notebook. More detail on our experiments can be found at: https:

//github.com/trantuan4132/kaggle-RSNA-Fracture-Detection


https://github.com/trantuan4132/kaggle-RSNA-Fracture-Detection
https://github.com/trantuan4132/kaggle-RSNA-Fracture-Detection
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N Score N Score

1 04228 5 0.3691
2 03862 6 0.3676
3 03762 7 0.3668
4 0.3716

TABLE 4.3: N choosing. Score is cross-validate contest metric.

val/auc
= convnext_tiny-320-fold4 — convnext_tiny-320-fold3
= convnext_tiny-320-fold2 = convnext_tiny-320-fold1l
convnext_tiny-320-foldo
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FIGURE 4.6: Stage-2 Model’s AUC on validation dataset
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val/acc

= convnext_tiny-320-fold4 = convnext_tiny-320-fold3
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FIGURE 4.7: Stage-2 Model’s Accuracy on validation dataset
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Chapter 5

Results and Discussion

5.1 Results

We compared different approaches for cervical spine fracture detection. Ta-
ble 5.1 shows the performance of each approach on the private test dataset of

the contest with the representative metric mentioned earlier.

Regarding solutions in the Kaggle contest, our final implementation is in-
spired by the top-2 method [23], which also uses a segmentation model along
with a classification model. The critical difference in our model is that its
segmentation component is smaller in size than the top-2 one; therefore, our
model has a shorter inference and training time and requires fewer resources.
Our final work’s achievement is equivalent to the score of top 24 and 25 of

the contest on the public and private test dataset respectively.

Model Score
3D CNN 0.6048
Single-head 0.5813
Multi-head 0.5019

2.5D CNN + RNN 0.3691

TABLE 5.1: Results on hidden test dataset provided by the or-
ganizer
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Model Score Stage-1 inference time (h)

Kaggle Top 2 0.2389 4.55
25D CNN + RNN 0.3691 3.67

TABLE 5.2: Comparison with Top-2 solution. Score is contest
metric on hidden test set. Inference time is calculated on full
2019 studies training data.

5.2 Discussion and Future Works

In this work, we experimented multiple approaches for cervical spine frac-
ture detection. The final model 2.5D CNN + RNN demonstrated higher ef-
ficiency in time and resources than the previous methods and achieved a
reasonable result. This model still has various parts that can be optimized to
get higher performance. With the benefits of Transformer’s recently proven
string data such as faster training time due to parallelization, better per-
formance with self-attention techniques, our next steps will be experiment-
ing with Transformer layers instead of LSTM for sequence data processing,
training another backbone model, trying models with bigger image size and

longer sequence length, etc.
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