Eﬂ . Education

FPT UNIVERSITY

UNDERGRADUATE THESIS

Cervical Spine Fracture Detection

via Computed Tomography scan

Author: Supervisor:
Tran Duc Tuan Dr. Phan Duy Hung
Le Quang Hung

Nguyen Trong Hieu

A thesis submitted in fulfillment of the requirements

for the degree of Bachelor of Artificial Intelligence

in the

Department of Information Technology

December 21, 2022

il

FPT UNIVERSITY

Abstract

Department of Information Technology
Bachelor of Artificial Intelligence

Cervical Spine Fracture Detection via Computed Tomography scan

The application of artificial intelligence in image processing and decision
support in the medical field has received increasing attention recently in the
community. In this work, we did experiments with multiple machine learn-
ing models to find the one that matches radiologists” performance in detect-
ing and locating fractures on the seven vertebrae of the cervical spine via a
Computed Tomography scan. Among our experiments, the model, which
consists of two stages using deep convolutional networks with RNN and
Attention layers to classify whether a patient has a cervical spine fracture,

achieved the highest performance.

Keywords: Convolutional Neural Network, CNN, Attention, cervical spine

fracture classification.

il

Acknowledgements

We want to express our gratitude to Dr. Phan Duy Hung, our lecturer, for his
tolerance, his time, and his enthusiastic instruction and guidance. Second,
we would like to thank FPT, our university, for providing us with a favorable
atmosphere in which to learn and develop over the years. Finally, we will
never forget the encouragement and support of our family. They inspire us to

get better every day, thus we want to express our sincere gratitude to them.

111

Contents

Abstract i
Acknowledgements ii
1 Introduction 1
1.1 Problem & Motivation 1

12 RelatedWorks Lo 2

13 Objectives 4

2 Background 5
2.1 Imageclassification 5
211 Convolutional Layer 6

212 PoolingLayer 6

2.2 3DImage Classification 7
221 3D Convolution Layer and 3D Pooling Layer 8

2.3 Image ClassificationModels 8
23.1 EfficientNet, 8

23.2 EfficientNetV2 10

233 ConvNeXt 11

24 ImageSegmentation, 12
241 3Dvs2Dvs25Dsegmentation 12

3D segmentation 12

2D segmentation 13

25D segmentation L 13

iv

Differences between 2D, 3D and 2.5D segmentation tech-

NIQUES vttt e e 14

2.5 Recurrent Neural Network 15
Long short-term memory (LSTM) 16

Attention. L oo oo oL 16

3 Data 18
3.1 Dataset Discovery and Explanation 18
32 Voxel 22
3.3 Exploratory Data Analysis 24

4 Implementation and Analysis 30
4.1 EvaluationMetric o o o000 30
42 DataProcessing 31
43 3D C(ClassificationModel 31
44 2D Classification 0000 32
44.1 Single-headModel 32

442 Multi-headModel 34

45 25DCNN+RNNModel 35
451 Stagel o 36

452 Stage2 37

5 Results and Discussion 41
51 Results e 41
5.2 Discussion and Future Works 42

References 43

List of Figures

21
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39
3.10

Image Classification. 5
Convolutional Layer 6
Pooling Layer 7
3D Convolutional Layer 8
3DPooling Layer 9
Model Scaling 9
ConvNeXt Architecture 11
3D Segmentation 00 o L 12
2D Segmentation L 13
2.5D Segmentation L 0oL 14
Comparison between 2D, 2.5D and 3D segmentations 14
LSTM Architecture, 16
Cervical Spines oL 19
DataExample 20
Data DICOM Example 22
Data Segmentation Example 23
Fracture distribution 24
Fracture distribution by Vertebrae 24
Fracture distribution by Patient 25
Train images size distribution 25
Sliceimagesexample Lo 27

Segmentation masksexample 27

3.11 Fractures overall (patient with boundingbox)

3.12 Distribution of number of bounding boxes per slice image

3.13 Slice image with boundingbox

4.1
4.2
4.3
44
4.5
4.6
4.7

BDCNN Classifier
CNN model for Vertebrae Classification
Single-head approach for Cervical Spine Fracture Detection

Multi-head model for Cervical Spine Fracture Detection
Two-stage Model Architecture
Stage-2 Model’s AUC on validation dataset

Stage-2 Model’s Accuracy on validation dataset

vi

28
28
29

vii

List of Tables

21
2.2

3.1

4.1
4.2
4.3

51
52

EfficientNet-B0 baseline network 10
EfficientNetV2-S architecture 11
Dataset overview e 19
Labelingrules 36
Augmentationmethods 000 37
Nchoosing 39
Results e 41

Comparison with contest’s solution. 42

Chapter 1

Introduction

1.1 Problem & Motivation

Patients with spine fractures often have a lot of difficulties in moving their
body, which prevent them from working and daily routines. The cause of
spine fractures can be due to accidents or old age. According to [1], there
have been over 1.5 million cases suffered from spine fractures annually in
the United States alone, leading to about 18000 spinal cord injuries, and these
cases are usually seen in elderly people. The early detection and localization
of spine fractures can play an essential role in preventing neurologic dete-
rioration and paralysis after trauma. However, it often requires computed
tomography (CT) to be performed instead of radiographs (x-rays), which
might be more time-consuming and require specialists or experts to carefully

examine patients’ spine.

Recently, more and more Al-based technologies have emerged to automate
various tasks that often require human intelligence to perform. To deal with
images, these technologies often use deep learning methods, which perform
quite well compared to traditional ones and sometimes even better than what

humans could do. However, these methods are not always giving accurate

Chapter 1. Introduction 2

results every time they are in use, which is why there have been many com-
petitions revolving around them in order to find the most accurate method
while still achieving the maximum time to be performed. As a result, a com-
petition on Kaggle, namely RSNA 2022 Cervical Spine Fracture Detection [1],
was held to find the best Al-based method to support the early detection and
localization of cervical spine fracture, which is the most common site of spine

fracture.

1.2 Related Works

U-Net [22] was first proposed as an deep learning approach for medical im-
age segmentation, which is the task of classifying each pixel in an image. It
outperforms the sliding-window convolutional network which is the prior
best method in terms of both score and speed, and from then it becomes a
popular approach for image segmentation in general. Along with the strong
use of data augmentation, U-Net can produce fine segmentation results while
training on a few images and it not only works well with 2D images but also

with 3D ones.

CNN serves as backbone in a variety of computer vision tasks such as im-
age classification, detection, segmentation, etc. It has existed from more than
decades, starting from the introduction of AlexNet [15] to the more effec-
tive architectures namely ResNet [11], EfficientNet [29], ConvNeXt [17], etc.
These architectures are well-known in the computer vision community for

achieving a lot of great success in terms of both accuracy and speed.

In the specific problem that is cervical spine fracture detection, there is some
previous research on deep learning models introduced. In [24], they pro-

posed a deep convolutional neural network (DCNN) with a bidirectional

Chapter 1. Introduction 3

long-short term memory (BLSTM) layer for the automated detection of cer-
vical spine fractures in CT axial images. Besides, another work introduced
a 3D convolutional sequence to sequence model for vertebral compression

fractures identification in CT in [3]

Within the contest, there are several solutions from several top teams of [1]
which can detect fractures in cervical spines quite effectively. Most of the top
teams in the competition use an architecture that includes at least two mod-
els: a segmentation model and a classification model. Qishen Ha in [8] devel-
oped a 2-stage method for fracture detection. This method first trained an U-
Net model with resnet18d or efficientnet-v2s for 3D semantic segmentation to
generate 3D masks for all training data, then a 2D CNN (ConvNeXt) model
followed by a LSTM module was trained for final classification. Similarly,
Harshit Sheoran’s method [9] consists of 2 stages, in which U-Net models
were trained for both sagittal and bone segmentation, and EfficientNet CNN
with RNN model was trained for classification afterwards. In the classifica-
tion stage, images were put into 2.5D format, which is concatenating three
consecutive slices into a single image, and two bidirectional GRU layers with
attention and Conv1D layer were used for RNN model. [23] used an U-Net
model for 2.5D segmentation and a CNN with bidirectional GRU layers and
attention was trained for classification. In the second stage, a SpatialDropout
layer was added to the model; therefore, this gave a slight improvement in
the overall classification. However, the architectures mentioned above all
take a long time or a large amount of resources for training (or also pretrain).
Therefore, we did experiments to find a model that is more timely efficient

and still be able to achieve acceptable results.

Chapter 1. Introduction 4

1.3 Objectives

In this study, we aim to contribute practical experiments to developing an
automated tool that can help doctors make quick and accurate decisions,
bringing the most benefit to patients and society. We experimented with
two approaches to the above-mentioned problem, which are 3D classifica-
tion and 2D classification. In the 2D approach, we implement two famous
backbone models, ConvNeXt and EfficientNet, with different training meth-
ods. Finally, we utilized convolutional neural network (CNN) model and
data processing techniques to obtain a model which consists of 2 stages: de-
tecting vertebrae bounding boxes and classifying whether a cervical spine
was fractured. At both stages, we used 2.5D input by stacking three slices
and ConvNeXt for the backbone model. The final model achieve an accept-
able results and lower inferrence time with limited training resources. The
tinal result is equivalent to the top 25 of the contest. Details of experiments,

data processing, and parameters will be covered in chapter 4.

Chapter 2

Background

2.1 Image classification

Image classification is a fundamental task that attempts to comprehend an

entire image as a whole. The objective is to label the image in order to cate-

gorize it.
Cat g
Ry
o =0
= Output
e
o Cat
Dog 1.

FIGURE 2.1: Image Classification

A convolutional neural network (CNN) is a commonly used paradigm in im-
age processing, which is the concept behind recent developments in the field
of computer vision. Among the different types of neural networks (others in-
clude recurrent neural networks (RNNs), long short-term memory (LSTMs),

artificial neural networks (ANNs), and more), CNNs is the most common

Chapter 2. Background 6

type. The most notable structures of a convolutional network in image pro-

cessing are: Convolutional Layer, Pooling Layer, ...

2.1.1 Convolutional Layer

The foundation of a CNN is a convolutional layer. It has a number of filters
(or kernels), whose settings must be learned over the course of training. Typ-
ically, the filters’ size is smaller than the original image. Each filter produces

an activation map after it convolves with the image.

Input Image Filter Activation
Map
3|8
8|4 1]10]-1 - -9
8|4 ® 1]10]-1 = 3| -2
2|7 1 1 0
5|4(4|5(4

FIGURE 2.2: Convolutional Layer

Due to the local connectivity of the convolutional layer, the network is forced
to learn filters with the highest response to a specific local region of the input.

[18]

2.1.2 Pooling Layer

Pooling layers are used to decrease the dimensions of the feature maps. As
a result, it lessens the quantity of network computation and the number of
parameters that must be learned. The feature map created by a convolution
layer’s feature pooling layer summarizes the features that are present in a
certain area. Therefore, instead of precisely positioned features produced

by the convolution layer, further operations are conducted on summarized

Chapter 2. Background 7

features. As a result, the model is more resistant to changes in the features’

positions in the input image.

Max pooling
/
12| 7
817|15]|3
2x2 pooling, 13| 14
12(9 (5|7 stride 2 >
13(2 (10| 3 Average pooling
914|5/(14 915
N
71 8

FIGURE 2.3: Pooling Layer

2.2 3D Image Classification

Deep learning models are being used more frequently in the medical field as
a result of the quick development of machine learning, graphics processing
technology, and the accessibility of medical imaging data. Using 3D deep
learning, it is now possible to analyze three-dimensional (3D) medical pic-
tures like CT, DTI, fMRI, ultrasound, and MRI scans thanks to falling com-
putational costs and the availability of powerful graphics processing units
(GPUs). These scans provide in-depth, three-dimensional images of human
organs and can be used to look for anomalies in blood vessels and organs as
well as infections, malignancies, and traumatic injuries. In this work, we also
experiment with 3D classification to classify whether a vertebra was frac-

tured or not. [26]

Chapter 2. Background 8

kernel

3D data

FIGURE 2.4: 3D Convolutional Layer

2.2.1 3D Convolution Layer and 3D Pooling Layer

The convolution layer is one of the key distinctions between 3D and 2D im-
age classification. Difference between 2D and 3D convolutions applied on
a set of frames. 2D convolutions use the same weights for the whole depth
of the stack of frames (multiple channels) and result in a single image. 3D
convolutions use 3D filters and produce a 3D volume as a result of the con-

volution, thus preserving temporal information of the frame stack.

Another distinguishing feature between the two approaches is the pooling
layer. Similar to the convolution layer, the 3D pooling layer also uses a 3D

tilter when implementing the pooling algorithm.

2.3 Image Classification Models

2.3.1 EfficientNet

EfficientNet is a convolutional neural network design and scaling technique

that uses a compound coefficient to consistently scale all depth, breadth, and

Chapter 2. Background 9

max(1~8) noﬂ

(a) Before max pooling (b) After max pooling

FIGURE 2.5: 3D Pooling Layer

resolution dimensions. The EfficientNet scaling method uniformly scales
network width, depth, and resolution using a set of fixed scaling coefficients,
in contrast to standard practice, which scales these variables arbitrarily. Not
only did it achieve 84.4% top-1 accuracy in the ImageNet classification task
but it did it with many times less parameters than the earlier state-of-the-art

models. [28]

- wider -
|————| e D —
[=—— | —
| E— [|
#channels =4 | | ===
jemmmkmman N - wider - 1 i 1
[] i
L I deeper P =
[[- ! deeper
|) | : -
— =n i =
- layer_i - E | I:I
“+~ higher) ... higher
[} resolution HdWV i 1. reschution e +..resolution
(a) baseline (b) widin scaling (¢) depth scaling () resolution scaling (&) compound scaling

FIGURE 2.6: Model Scaling. (a) is a baseline network example;

(b)-(d) are conventional scaling that only increases one dimen-

sion of network width, depth, or resolution. (e) EfficentNet’s

method that uniformly scales all three dimensions with a fixed
ratio.[28]

Chapter 2. Background 10

Stagei Operator F; Resolution H; x W; #Channels C; #Layers L
1 Conv3x3 224 x 224 32 1
2 MBConv1,k3x3 112 x 112 16 1
3 MBConv6,k3x3 112 x 112 24 2
4 MBConv6,k5x5 56 x 56 40 2
5 MBConv6,k3x3 28 x 28 80 3
6 MBConv6,k5x5 14 x 14 112 3
7 MBConv6,k5x5 14 x 14 192 4
8 MBConv6,k3x3 7x7 320 1
9 Convixl & Pooling & FC 7 x 7 1280 1

TABLE 2.1: EfficientNet-B0 baseline network

There are multiple sized EfficientNet, which are named from B0 to B7 in an
ascending order based on the complexity of the network. EfcientNet-BO0 is the
baseline model that is then scaled to obtain EfficientNet B1-B7. The funda-
mental blocks of the EfficientNet-BO network are the squeeze-and-excitation

blocks and the inverted bottleneck residual blocks of MobileNetV2. [28]

The scaling method makes it possible to efficiently scale up a baseline Con-
vNet to any target resource restrictions in a more principled manner. With an
order of magnitude less parameters and FLOPS, the mobile size EfficientNet
model can be scaled up very effectively and surpass state-of-the-art accuracy

due to this compound scaling strategy. [29]

2.3.2 EfficientNetV2

EfficientNetV2 is a type of convolutional neural network that has faster train-

ing speed and better parameter efficiency than the original EfficientNet.[28]

EfficientNetV2-S achieved 83.9% top-1 accuracy in the ImageNet classifica-

tion task.[28]

Chapter 2. Background 11

Stage Operator Stride #Channels #Layers

1 Conv3x3 2 24 1

2 Fuse-MBConv1,k3x3 1 24 2

3 Fuse-MBConv4,k3x3 2 48 4

4 Fuse-MBConv4,k3x3 2 64 4

5 MBConv4,k3x3,5E0.25 2 128 6

6 MBConv6,k3x3,SE0.25 1 160 9

7 MBConv6,k3x3,SE0.25 2 256 15

8 Convlxl & Pooling & FC - 1280 1

TABLE 2.2: EfficientNetV2-S architecture

2.3.3 ConvNeXt

With the development of Transformer architecture and Attention mechanism,

image processing models also achieve a new step with the combination of

Transformer with classic CNN architecture. One of the models created as a

result of this pairing, ConvNeXt, has shown promise in image classification.

ConvNeXt Architecture

‘ 4x4, 64, str. 4

LN

Block, W=96 *xJ
lLN + 2x2, 192, str. 2

Block, W=192 X3
iLN + 2x2, 384, str. 2

Block, W=384 x9
lLN + 2%2, 768, str. 2

Block, W=768 <3

Block

dix7, W

FIGURE 2.7: ConvNeXt Architecture

Constructed entirely from standard ConvNet modules, ConvNeXts compete

Chapter 2. Background 12

favorably with Transformers in terms of accuracy and scalability, reaching
87.8% ImageNet top-1 accuracy while keeping the simplicity and effective-

ness of standard ConvNets. [17]

2.4 Image Segmentation

2.4.1 3D vs 2D vs 2.5D segmentation

3D segmentation

3D image segmentation, according to [32], is a computational technique to
predict the element-level labels of objects in a 3D volume. That means 3D
segmentation is able to directly generate segmented masks for whole 3D vol-

umes. Therefore, this technique usually applies for 3D volumes of data.

Original 3D HRXMT Image FB Segmented 3D Image

FIGURE 2.8: 3D image segmentation (source: [14])

Chapter 2. Background 13

2D segmentation

Similar to 3D segmentation, 2D segmentation is another type of image seg-
mentation techniques, but applies for only 2D images, rather than 3D vol-
umes. As a result, 2D segmented masks are commonly less comprehensively

understandable than 3D masks, due to dimensional limitations.

AL N

o 'E b i

| -] B

- Fence
B Uniabel

Road Sidewalk Building

B pole [Vegetation B Vehicle

FIGURE 2.9: An example of 2D image segmentation (source:
[33])

2.5D segmentation

This type of technique is considered in between 2D and 3D segmentation
types. This technique is done by putting stacks of 2D images, which are usu-
ally slices from 3D volumes, into 2D models [2]. Therefore, this technique is

able to overcome the dimensional limitations of 2D segmentation techniques,

Chapter 2. Background 14

as well as reduce computational costs, which is one of the biggest disadvan-

tages of 3D segmentation techniques.

I A
! 2.5D CNN
with incoporation of

neighbouring slices

‘ Final Segmentation Results |

30 Input Valume

FIGURE 2.10: An example of 2.5D image segmentation (source:
[33])

Differences between 2D, 3D and 2.5D segmentation techniques

Comparing 3D, 2.5D, and 2D Approaches to Brain Image Segmentation

Performance
with
Limited
Training Data:
Which
Approach
is Better?

Computational
Required GPU Speed during
Deployment:
2.5Dor 2D 3D

Memory:

FIGURE 2.11: Brief comparison between 2D, 2.5D and 3D seg-
mentations

Figure 2.11 briefly describes the differences between 3 techniques. As 3D
segmentation applies on whole 3D volumes, this technique is able to per-
form quite fast and accurately on training. However, this technique is ex-
tremely computational expensive and only suitable for highly computational

resource conditions, as well as with limited training data given. In contrast,

Chapter 2. Background 15

2D and 2.5D segmentations could be less computational cost, as well as re-
quire less GPU memory and be compatible with larger training datasets. In
addition, 2.5D segmentation could be better than 2D in several domains, such
as in medical problems due to being more deeply informative in their masks.
Last but not least, while 3D segmentation puts the whole 3D volume as in-
put, 2.5D segmentation puts consecutive slices as input, and the consecutive
slices, when stacked together, may result in a single 3D volume. Therefore,
2.5D segmentation techniques are able to perform efficiently with 3D data,
despite a different way (as consecutive slices), but only require less amount
of resources than 3D segmentation techniques (as they only use 2D CNNs

rather than 3D ones).

2.5 Recurrent Neural Network

Machine learning focuses on creating algorithms that automatically improve
by practice. The learning algorithm should ideally get better the more times
it is used. The learning algorithm’s job is to build a classifier function from
the provided training data. The effectiveness of this built-in classifier is then
evaluated by using data that had never been seen before. Artificial neural
networks (ANN) are rough models of biological learning systems that draw
inspiration from them. Neuronal networks in biological learning systems are
intricate and linked. A vector of real-valued inputs and a single realvalued
output are all that neurons are capable of processing. Feed-forward neural
networks are the most prevalent type of conventional neural network. One
input layer, one output layer, and at least one intermediate hidden layer are
used to organize the sets of neurons in this system. Static classification tasks
are the only ones that feed-forward neural networks can handle. They can
only offer a static mapping between input and output as a result. Feedfor-

ward neural networks can be expanded to support dynamic classification.We

Chapter 2. Background 16

must feed signals from earlier timesteps back into the network in order to
gain this attribute. Recurrent Neural Networks are these networks with re-

current connections. [27]

Long short-term memory (LSTM)

Despite such advantages, the maximum amount of time that RNNs can look
back is ten timesteps [12], [19]. This occurs as a result of the fed-back sig-
nal either disappearing or blowing up. Long Short-Term Memory Recurrent
Neural Networks (LSTM-RNN) were used to address this problem [6], [13].
Depending on the complexity of the created network, LSTM networks can

learn more than 1,000 timesteps and are somewhat biologically plausible [20].

A
4 N
———® >
Ganhd
|
[0} (0] tanh o
g U,

FIGURE 2.12: LSTM Architecture

Attention

The attention mechanism was included to enhance the machine translation
encoder-decoder model’s performance. By combining all of the encoded in-
put vectors in a weighted fashion, with the most pertinent vectors receiving
the highest weights, the attention mechanism was designed to allow the de-
coder to employ the most pertinent portions of the input sequence in a flex-
ible manner. In addition, self-attention and Transformer model, which was

proposed in [31], achieved state-of-the-art performance in natural language

Chapter 2. Background 17

processing and became popular in other research field. A lot of new architec-
tures in image processing were introduced based on Transformer architecture

such as: ViT [4], Swin Transformer [16], ...

18

Chapter 3

Data

3.1 Dataset Discovery and Explanation

The dataset used for this work is the dataset obtained from RSNA 2022 Cer-
vical Spine Fracture Detection [1] competition at Kaggle. This dataset has 3
main folders: train_images, test_images, and segmentations. The train_images
folder contains training images, and this folder contains 2019 subfolders.
Each subfolder is for a specific patient or case study, and it contains mul-
tiple slice images of the corresponding case. Therefore, those subfolders
were named as the UID of their corresponding case study. Every image in
those two folders is in the DICOM file format, which has slice thickness of
under 1 mm, as well as in the axial orientation and bone kernel [1], and
has a .dem extension in each one. Meanwhile, the segmentations folder
contains annotation masks and those masks are stored in NIFTI files (each
file for a single patient). Target labels of the training data are given in the
train.csv file. This file contains a column for case IDs, patient level labels (bi-
nary) and labels for a specific vertebra. In addition, this dataset provides a
training_bounding_boxes.csv file which stores information about bounding

boxes, such as anchor coordinates, width and height of bounding boxes.

According to [1], in the “train.csv” file, labels for training images are:

Chapter 3. Data 19

Dataset Size #vertebrae | #masks #training | #testing
studies studies
| RSNA | 512—768 |7 | 87 | 2019 | 1080 |

TABLE 3.1: Dataset overview. Number of test studies of the
contest is 1500, but we only evaluate models on 72% of the
dataset (private hidden set)

* patient_overall: overall target label, when any of the vertebra is frac-

tured.

* C1 - C7: seven additional labels, whether a specific vertebra is frac-

tured. Each vertebra is located in Figure 3.1 below.

C1iAvas) @5

€2 (Axis)

L5 = “

s sacrum

Coceyx

FIGURE 3.1: Vertebral column, cervical spines are C1 to C7 (top)

DICOM files, according to [10], in this dataset have 2 uses. One of them re-
lates to the data in each file. These files, typically, are loaded via a function

named dcmread in a library named pydicom which is a Python library used

Chapter 3. Data 20

for accessing DICOM-format files. After loading images, there are four at-
tributes that can be retrieved: ImageOrientationPatient, ImagePositionPatient,
PatientID, PatientName. PatientID indicates the ID of the patient, the case
study itself. PatientName shows the name of the patient; however, in this
dataset, the name of the patient is the ID itself. ImageOrientationPatient indi-
cates the orientation of the patient, while ImagePositionPatient indicates the
position itself. ImagePositionPatient stores a list of 3 values, which is the po-
sition in 3-dimension space (x-axis, y-axis, z-axis). In addition, [10] revealed
that unlike other competitions, z-axis value is the position of the slice image
in the sagittal plane, rather than the timestamp. Sagittal plane, according to
[30], is a vertical plane that creates two sections on either side of the body.
However, all images in this dataset, according to [10], are in axial orienta-
tion, that means there is only one bone to observe for each image. Despite

that, z-axis value can be referenced for position in the sagittal plane.

Sag bone Ax soft Ax bone (2.5 mm)

y
(7N

- gimal

FIGURE 3.2: Bone images in sagittal plane and axial plane
(source: [10])

In Figure 3.2, the left side is the bone image in the sagittal plane. Next, the
middle is the axial view of bones. This view is quite soft; however, this type

of data is not available in this dataset. Similarly, the right size is the axial

Chapter 3. Data 21

view, but 2.5mm deep. The images in this dataset are only under Imm deep,

that means they are sharper than the right size of Figure 3.2.

Additionally, one thing needs to be considered on the left side of Figure 3.2 is
the thin line. That line is the line that indicates the bone in axial view, and z-
axis coordinate shows where the line is, as well as the corresponding position

of the axial view in the sagittal plane.

However, there is a problem: although the sagittal view is available in this
dataset, there is no way to check where the image is corresponding to which
bone. As a result, data in the segmentation folder comes into action. This
folder contains 87 files, and each file is for a specific case and named as the
UID of that case. Unlike slice images, segmentations are in NIFTT format;
therefore, another Python library named nibabel is used to load this kind of
data. Moreover, the segmentations loaded are in 3D format (height, width,
num_images), and num_images is the same number of slices of correspond-
ing case study in the train_images folder. As there are differences about for-
mat between NIFTI segmentations and DICOM images, while DICOM files
are segmented in the axial plane, NIFTI files are in the sagittal plane. This also
allows us to choose the proper orientation so that the DICOM pictures and
segmentation match using the NIFTI header information; otherwise, there is
a chance that the segmentations will be mirrored in the x-axis and flipped in
the z-axis. That is the guide to load segmentations properly. Figure 3.3 and
3.4 shows the slice image and its corresponding segmentation slice (in the

case loaded properly).

After loading segmentations properly, we inspected the values in each seg-
mentation slice, then we discovered that unique values would indicate which
bone on each slice. For example, the unique values for the slice in Figure 3.4
are 0 and 6; and while number 0 indicates the background, number 6 refers

to which bone, in this case, it is bone Cé6.

Chapter 3. Data 22

100

200

300

400

500

0 100 200 300 400 500

FIGURE 3.3: The sample image (after loading from DICOM for-
mat) (source: [10])
Figure 3.2, not only describes the vertebral column, but also is like the refer-
ence table of which value in segmentation corresponds to which bone. For
example, value 1 is bone C1, value 2 is bone C2, value 8 is bone Th1l and so

on.

3.2 Voxel

As the segmentation files in this dataset are in 3D format, every element in
the segmentation cannot be called as pixels as in regular 2D images. Instead,

they are called voxels.

A voxel in 3D computer graphics represents a value on an even three-dimensional
grid. Voxels often do not explicitly encode their position (for example, coor-
dinates) with their values, similar to how pixels in a 2D bitmap do. Instead,
rendering systems infer a voxel’s position based on how it is situated in re-

lation to other voxels. Then, about the voxel size, [21] discusses that slice

Chapter 3. Data 23

100

200

300

400

500

0 100 200 300 400 500

FIGURE 3.4: The corresponding segmentation of the image in
Figure 3.3 (source: [10])
thickness and pixel size both influence voxel size; moreover, both the field of
view and the picture matrix affect pixel size. In addition, [21] depicts that the

higher the spatial resolution, the smaller the pixel size.

In CT simulations, Goertzen et. al in [7] illustrated that voxelized approach
could be used in X-ray CT system simulations. In contrast, Goertzen discov-
ered a drawback of this method, which would result in inherent errors due

to the phantom voxelization.

On the other hand, voxels data can be used for deep learning. Gao et. al in [5]
developed a deep learning based detection method for voxel-wise mapping
of lumbar spine modic changes. As a result, the model obtained a sensitivity
of 0.71 (+0.072), specificity of 0.95 (+0.022), and a Cohen’s kappa score of
0.63 in 85.7% of samples in the unseen test set. This demonstrated major
concurrence with radiologists and this method would be used to strengthen

inter-rater reliability for modic changes assessments.

Chapter 3. Data 24

Due to the characteristics of segmentation data in this dataset, nibabel library

is used for loading this type of data in Python.

3.3 Exploratory Data Analysis

Fractures distribution by patient

1200
1000 4
800 4
€ 00
g8
m p
200 4
0 A
patient_overall
FIGURE 3.5: Dataset distribution (overall))
2250 Fractures distribution by verterbrae
fractured
2000 A 4 - 0
1873 1546 1911 .

1750 -
1500 -

o 1250 1
8 1000 -
750
500 1

250 4

4
verterbrae

FIGURE 3.6: Fractures distribution by vertebrae

Figure 3.5 illustrates that the dataset, in overall, is roughly balanced (961 pa-

tients have fractures compared to 1058 normal ones); however, Figure 3.6

Chapter 3. Data 25

shows that distribution of fractures based on vertebrae seems to be imbal-
anced. Meanwhile in Figure 3.7, most of the fractured patients have fractures
on only 1 single vertebra, that means some of patients have fractures on mul-

tiple vertebrae (no one has fractures on all 7).

Number of fractures by patient
1200

1058

1000

count

FIGURE 3.7: Number of fractures distribution

As can be seen from Figure 3.8, most of the training images have the size of
512 x 512 pixels, and some others have a little bit bigger sizes. As a result, we

will scale all of the training images to the size 512 x 512 to unify the size for

training processes.

Image sizes in train images
800000

710574

600000
o
=
S 400000
o
o

200000

o 245 782
512 x 512 512 x 519 768 x 768
ImagesSize

FIGURE 3.8: Image sizes distribution [25]

Chapter 3. Data 26

Figure 3.9 and 3.10 are examples of slice images and their corresponding seg-
mentation masks of a particular case. Although there are a total of 2019 cases
in the training dataset, only 87 of them have corresponding segmentation

masks.

However, there is a difference about the dimension between images and
segmentation masks. While all images are two-dimensional, segmentation
masks are three-dimensional masks. Slices visualized in Figure 3.10 are just
the position of 2D slices in the whole 3D data. As a result, while each case
study in the train_images folder is a sub-directory which stores 2D images,
each case in the segmentations folder is just a single file. This indicates that

3D segmentation techniques might be suitable for this type of data.

In addition, this difference can be eliminated by stacking consecutive slice
images of each case, which results in a single 3D volume for the case. There-
fore, this opens up opportunities for deep learning methods which use 3D
volumes as input, such as 3D CNNs. Moreover, as 3D images are formed by
stacking consecutive slices, 3D volumes can be in a variety of sizes; therefore,

this might fit various 3D CNNs for fracture detection.

Similar to segmentations, only a subset of the training set have bounding
boxes measurements (235 cases out of 2019), and Figure 3.11 depicts that all

of those cases are fractured.

Moreover, Figure 3.12 illustrates that all of the images that have bounding
boxes, only have 1 single bounding box for each. Last but not least, Figure

3.13 is the example of a slice image with a bounding box drawn on it.

Chapter 3. Data 27

ID: 1.2.826.0.1.3680043.10921

slice no: 100 slice no: 101 slice no: 102 slice no: 103 slice no: 104
U U

Slice no: 105 slice no: 106 slice no: 107 Slice no: 108 Slice ne: 109
U U

Slice no: 110 Slice no: 111 Slice no: 112 Slice no: 113 Slice no: 114

FIGURE 3.9: Example of 15 slice images

ID: 1.2.826.0.1.3680043.10921

Slice: 100 Slice: 101 Slice: 102 Slice: 103

v v

Slice: 105 Slice: 106 Slice; 107 Slice: 108 Slice: 109

v

24 "%

Slice: 110 slice: 111 Slice: 112 Slice: 113 slice: 114

FIGURE 3.10: Example of 15 segmentation masks

Chapter 3. Data

Fractures overall (patients with bounding boxes)

250 -
235
200 -
o 150 1
=
=
8
100
50 -
0-
1
patient_overall
FIGURE 3.11: Example of 15 segmentation masks
Number of bounding boxes per slice
7000 -
6000 -
5000 1
£ 4000
2
S
3000
2000 1
1000 -
0 r T T r

06 08 10 12 14
No. of bounding boxes

FIGURE 3.12: Distribution of number of bounding boxes per
slice image

Chapter 3. Data

29

ID: 1.2.826.0.1.3680043.25651, Slice: 119

(A

FIGURE 3.13: Example of a slice image with bounding box

30

Chapter 4

Implementation and Analysis

4,1 Evaluation Metric

Model performance is evaluated using a weighted multi-label logarithmic
loss. Each fracture sub-type is its own row for every exam, and the model is
expected to predict a probability for a fracture at each of the seven cervical
vertebrae designated as C1, C2, C3, C4, C5, C6 and C7. There is also an “any
label”, patient_overall, which indicates that a fracture of any kind described
before exists in the examination. Fractures in the skull base, thoracic spine,
ribs, and clavicles are ignored. The “any label” is weighted more highly than

specific fracture level sub-types.

The binary weighted log loss function for label j on exam i is specified as:

Lij = wy; x [y;j x log(pij) + (1 —yi) x log(1 — pij)] (4.1)

Chapter 4. Implementation and Analysis 31

where the weights given by:

1, if vertebrae negative
2, if vertebrae positive
7, if patient negative

14, if patient positive

Finally, loss is averaged across all rows.

4.2 Data Processing

We first download the images from the directory provided by the contest and
then remove the corrupted images. The data after being loaded will be nor-
malized and resized. As for the data for the 3D model, the 2D images are
stacked to obtain the 3D input and then are augmented by Random Rota-
tion and Random Horizontal Flip. With input for 2D model, image will be
3x384x384 size, while input for 3D model will be 224x224x224.

4.3 3D Classification Model

Our first experiment was the 3D classification model, which has proven its
performance in medical image data processing. [26] After being converted
to 3D, the data will be passed through a model of 3 3D convolution blocks
to calculate the feature map. Then the output matrix will be passed through
several Fully Connected layers to get the final output. The architecture of
a convolutional block consists of a convolution layer, an activation layer, a

pooling layer, and a normalization layer.

The output of this model will have 8 dimensions, corresponding to the per-

centage of 8 layers: vertebrae C1-C7, patient overall. The goal of the model is

Chapter 4. Implementation and Analysis 32

to optimize the loss function given by the contest organizer, which has been

described above.

We use AdamW as optimizer and CosineAnnealingLR as scheduler.

ap Fracture
e e Classifier —» |17 —» | detection weighted
BCE Loss

3D CNN Block
. | 3D Convolutional Layar |

3D CNN Block | L |

3D 3D CNN ¢
Classifier Block

v | MaxPooling |

3D GNN Block | BatchNorm3D |
¥

< AvgPooling
v
FLATTEN

FIGURE 4.1: 3D CNN Classifier

4.4 2D Classification

4.4.1 Single-head Model

In this approach, we first trained a CNN model with ConvNeXt-Tiny as back-
bone on vertebrae labels provided by the organizers. There are only 87 stud-
ies in the training data that have the segmentation labels; a slice is deter-
mined to belong to a class if there is at least one pixel of that slice classified
to that class. The data is split into 5 folds, 5 models then trained on 4 folds of

them and evaluated on the others. After that, we used 5 models to infer all

Chapter 4. Implementation and Analysis 33

overall C1 €2 ©J C4 C8 C8 €7

- BCELoss

20 CNN * LY

FIGURE 4.2: CNN model for Vertebrae Classification

the training data to get the pseudo vertebrae labels to train the next model,

predictions of the models are averaged to get the final prediction.

(!

Fracture
detection weighted
BCE Loss

2 ConvNeXt-encoder 7

(frac)

FIGURE 4.3: Single-head approach for Cervical Spine Fracture
Detection

After getting the pseudo vertebrae labels, we multiplied vertebrae label and
fracture label provided by the contest of each image to get the final frac-
ture label. Next, we simply passed training data with fracture binary label
through CNN model (ConvNeXt-Tiny) as a binary classification model. We
used the multilabel loss function Binary Cross Entropy Loss with Logit from

the library pytorch.

In the end we get a model that detects fractures and visible C1-C7 verte-

brae using a single image. After that, for each StudyInstanceUID we first

Chapter 4. Implementation and Analysis 34

aggregate predictions for each of C1-C7 vertebrae by getting the max frac-
ture probability predictions among slices. We use a simple formula to derive
patient_overall fracture probability. patient_overall is the probability of
any vertebra being fractured. It is equal to the maximum fracture probability
of a vertebral component. Under assumption of independence of vertebrae

fractures we can derive the following simple equation:

_ 7
P patient_overall — max;_q b C; (4‘2)

We split data into 5 folds using GroupKFold with StudyInstanceUID as group
to avoid data leakage and trained 5 versions to get the ensemble model.
From this point forward, k-folds splitting is understood to be applied to the

grouped-by-study data.

4.4.2 Multi-head Model

At the first stage, we trained a CNN model to vertebrae classification with
aforementioned architecture in 4.4.1 and inferred all training data. For this

method, we also used EfficientNetV?2 for backbone of this model.

Fracture
— detection weighted
BCE Loss

1x7
(frac)

¢'1
N

3 EfficientNatV2-ancoder > Final Loss

17 -+ -
{vert) BCE Loss

=N
{®

FIGURE 4.4: Multi-head model for Cervical Spine Fracture De-
tection

Chapter 4. Implementation and Analysis 35

Data is passed to a pre-trained encoder of EfficientNetV2S. The final classi-
tication layer of the EfficientNetV2S was ignored, because its shape is irrele-
vant given the current task. The output of the encoder is then flattened and
is passed to 2 Fully Connected Layers parallelly to optimize 2 loss functions
contemporaneously. Note that we use logits in the loss function to improve

numerical stability.

Vertebrae fracture targets are loaded from training data of the contest, while

vertebrae detection targets are pseudo-label which comes from Stage 1.

Finally, we also had a model that classify fractures on single image. The final
output of each StudyInstanceUID was obtained in the same way with the

previous approach. The sole difference is the patient_overall fomular:

Ppatient_overall =1- H(l - PCZ') (4.3)

1

We also split data into 5 folds and trained 5 versions of EfficientNetV2 models

to obtain an ensemble model, which has slightly improved performance.

4.5 2.5D CNN+RNN Model

Overall, our final experiment consists of two stages: cervical vertebrae seg-
mentation and fracture classification. At stage 1, we trained a CNN model
using 2.5D images from 87 samples provided by the organizers to get the
segmentation mask of cervical vertebrae and ratio of each cervical vertebra
in all train data. After that, we cropped out all 7 cervical vertebrae of each
study separately and trained a fracture classification model using these out-
puts. The model at stage 2 is a convolution network followed by bidirectional

LSTM layers with attention.

Chapter 4. Implementation and Analysis 36

Label Cervical vertebrae

1 C1
2 C2
7 Cc7
8 T1-T12

TABLE 4.1: Labeling rules

4.5.1 Stagel

First, we used the 87 studies of segmentation which were provided labels.

We recreated the class labels as the Table 4.1.

We used 2.5D inputs with 3 channels of image data: the original image i and
its sides (i-1, i+1). The detailed data augmentation section is in Table 4.2. In
preparation for this stage, from the segmentation mask provided by orga-
nizer, we need to determent the bounding box of the bone. To do this phase,
we first label connected regions of the mask, then measure the morphological
properties of these connected regions and keep the bounding boxes. For each
connected region, a bounding box of the form (x_min, y_min, x_max, y_max)
is returned. For this stage’s model, we used ConvNeXt-Tiny as the backbone
of the encoder. In terms of the training process, we used AdamW as opti-
mizer and CosineAnnealingWarmRestarts as the scheduler. Our model in
this stage has two output: bounding box of the vertebra and the ratio of the
vertebra’s type. Note that the ratio is calculated by dividing the maximum
number of pixels belonging to Cj class in all slices by the number of pixels

belonging to Cj class in the current slice.

After training the stage 1 model, we inferred all 2019 studies with the inputs
preprocessed using the same method mentioned earlier. We keep a list of
categorized slices for each patient and each type of bone. Note that a slice can

be more than one vertebra (for example 60% C1 and 70% C2), and we save

Chapter 4. Implementation and Analysis 37

Augmentation methods

HorizontalFlip
RandomBrightnessContrast

HueSaturationValue
ShiftScaleRotate
Cutout

TABLE 4.2: Augmentation methods

images of vertebrae with more than 50% of that kind to the vertebra’s image
list. We individually intented to crop each study’s seven cervical vertebrae.
A fracture label from train.csv is attached to each cervical vertebrae. Our
EDA estimated that the majority of studies have 200-300 slices per study, so
that each vertebra typically has 30 slices. We chose from lists of slices to get
24 images using evenly spaced indices for each type of bone. For cervical
vertebrae with less than 24 slices, we evenly duplicated some slices to get

enough images.

4.5.2 Stage2

After getting the bounding box from stage 1, we cropped the images fol-
lowing to the bounding boxes. Once all the cervical vertebrae have been
cropped, the data shape of our input was (batch_size, number_of_channels,
image_size, image_size), we then stacked three slices into one to get the 2.5D
inputs, 24 images chosen as earlier mentioned method turned into a sequence
of 8 2.5D images, it is also the sequence length of LSTM layers. We used the
same augmentation with Stage 1. For the model we also utilized ConvNeXt-
Tiny from the timm library for backbone model. Additionally, we included

an Attention Layer, which also provides a slight improvement.
The patient_overall is calculated as:

N

P patient_overall — 1-— H(l — P Ck) (4-4)
k=1

Chapter 4. Implementation and Analysis 38

where:
N is the top N highest ratio vertebrae (N = 1: Ppatient_overall = max(Pc,))

Pc, is the ratio of vertebrae Cj

stage 2 l

.50 CHN
+BilsTH

| lﬁf‘f’_"ﬁ“_“_

o 1

[§

FIGURE 4.5: Two-stage Model Architecture

We ran several times to choose the suitable N. The result of each run is indi-
cated in table 4.3. At this stage, we split the data into 5 folds for training and

ensembled the results of 5 models for final prediction.

All aforementioned experiments were implemented on resources that are free
and available for everyone: Tesla T4 GPU on Google Colab and P100 GPU on
Kaggle Notebook. More detail on our experiments can be found at: https:

//github.com/trantuan4132/kaggle-RSNA-Fracture-Detection

https://github.com/trantuan4132/kaggle-RSNA-Fracture-Detection
https://github.com/trantuan4132/kaggle-RSNA-Fracture-Detection

Chapter 4. Implementation and Analysis 39

N Score N Score

1 04228 5 0.3691
2 03862 6 0.3676
3 03762 7 0.3668
4 0.3716

TABLE 4.3: N choosing. Score is cross-validate contest metric.

val/auc
= convnext_tiny-320-fold4 — convnext_tiny-320-fold3
= convnext_tiny-320-fold2 = convnext_tiny-320-fold1l
convnext_tiny-320-foldo

ﬁfw =

0.85

0.8

0.75

0.7

Step

FIGURE 4.6: Stage-2 Model’s AUC on validation dataset

Chapter 4. Implementation and Analysis

40

val/acc

= convnext_tiny-320-fold4 = convnext_tiny-320-fold3
== convnext_tiny-320-fold2 = convnext_tiny-320-fold1
== convnext_tiny-320-foldo

0.94

0.93

0.92

0.91

0.9

0.89

FIGURE 4.7: Stage-2 Model’s Accuracy on validation dataset

Step

41

Chapter 5

Results and Discussion

5.1 Results

We compared different approaches for cervical spine fracture detection. Ta-
ble 5.1 shows the performance of each approach on the private test dataset of

the contest with the representative metric mentioned earlier.

Regarding solutions in the Kaggle contest, our final implementation is in-
spired by the top-2 method [23], which also uses a segmentation model along
with a classification model. The critical difference in our model is that its
segmentation component is smaller in size than the top-2 one; therefore, our
model has a shorter inference and training time and requires fewer resources.
Our final work’s achievement is equivalent to the score of top 24 and 25 of

the contest on the public and private test dataset respectively.

Model Score
3D CNN 0.6048
Single-head 0.5813
Multi-head 0.5019

2.5D CNN + RNN 0.3691

TABLE 5.1: Results on hidden test dataset provided by the or-
ganizer

Chapter 5. Results and Discussion 42

Model Score Stage-1 inference time (h)

Kaggle Top 2 0.2389 4.55
25D CNN + RNN 0.3691 3.67

TABLE 5.2: Comparison with Top-2 solution. Score is contest
metric on hidden test set. Inference time is calculated on full
2019 studies training data.

5.2 Discussion and Future Works

In this work, we experimented multiple approaches for cervical spine frac-
ture detection. The final model 2.5D CNN + RNN demonstrated higher ef-
ficiency in time and resources than the previous methods and achieved a
reasonable result. This model still has various parts that can be optimized to
get higher performance. With the benefits of Transformer’s recently proven
string data such as faster training time due to parallelization, better per-
formance with self-attention techniques, our next steps will be experiment-
ing with Transformer layers instead of LSTM for sequence data processing,
training another backbone model, trying models with bigger image size and

longer sequence length, etc.

43

References

[1]

Errol Colak FelipeKitamura HCL-kanishkaa Hui Ming Lin JeffRudie
John Mongan Katherine Andriole Luciano Prevedello Michelle Riopel
Robyn Ball Sohier Dane Adam Flanders Chris Carr. RSNA 2022 Cervical
Spine Fracture Detection. 2022. URL: https://kaggle.com/competitions/
rsna-2022-cervical-spine-fracture-detection.

Arman Avesta et al. “Comparing 3D, 2.5D, and 2D Approaches to Brain
Image Segmentation”. In: medRxiv (2022). DOI: 10.1101/2022.11.03.
22281923.

David Chettrit et al. 3D Convolutional Sequence to Sequence Model for Ver-
tebral Compression Fractures Identification in CT. 2020. DOI: 10 . 48550/
ARXIV.2010.03739.

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2020. DOI: 10.48550/ARXIV.2010.11929.
Kenneth T. Gao et al. “Automatic detection and voxel-wise mapping of
lumbar spine Modic changes with deep learning”. In: JOR SPINE 5.2
(2022), €1204. DOI: https://doi.org/10.1002/jsp2.1204.

F.A. Gers,]J. Schmidhuber, and F. Cummins. “Learning to forget: con-
tinual prediction with LSTM”. In: 1999 Ninth International Conference on
Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470). Vol. 2. 1999,
850-855 vol.2. DOI: 10.1049/cp:19991218.

Andrew Goertzen, Freek Beekman, and Simon Cherry. “Effect of voxel
size in CT simulations”. In: vol. 3. Feb. 2000, 20/93 —-20/97 vol.3. ISBN:

0-7803-6503-8. DOI: 10.1109/NSSMIC.2000.949326.

https://kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection
https://kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection
https://doi.org/10.1101/2022.11.03.22281923
https://doi.org/10.1101/2022.11.03.22281923
https://doi.org/10.48550/ARXIV.2010.03739
https://doi.org/10.48550/ARXIV.2010.03739
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/https://doi.org/10.1002/jsp2.1204
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1109/NSSMIC.2000.949326

References 44

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

@hagqishen. 1st Place Solution. 2022. URL: https : //www . kaggle . com/
competitions/rsna-2022-cervical - spine- fracture-detection/
discussion/362607.

@harshitsheoran. 8th Place Solution. 2022. URL: https://www .kaggle.
com/competitions/rsna-2022-cervical-spine-fracture-detection/
discussion/362669.

@harshitsheoran. Explaining Data and Submission in detail. 2022. URL:
https://www . kaggle . com/ competitions /rsna- 2022 - cervical -
spine-fracture-detection/discussion/340612.

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 770-778. DOI: 10.1109/CVPR.2016.90.

Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Net-
zen”. In: (Apr. 1991).

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-term Memory”.
In: Neural computation 9 (Dec. 1997), pp. 1735-80. DOI: 10.1162/neco.
1997.9.8.1735.

Jongmin Jeong, Tae Sung Yoon, and Jin Bae Park. “Towards a Mean-
ingful 3D Map Using a 3D Lidar and a Camera”. In: Sensors 18.8 (2018).
ISSN: 1424-8220. DOI: 10.3390/s18082571.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097-1105.

Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows. 2021. DOI: 10.48550/ARXIV.2103.14030.

Zhuang Liu et al. A ConvNet for the 2020s. 2022. DOI: 10.48550/ARXIV.
2201.03545.

Sakib Mostafa and Fang-Xiang Wu. “Chapter 3 - Diagnosis of autism

spectrum disorder with convolutional autoencoder and structural MRI

https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/362607
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/362607
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/362607
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/362669
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/362669
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/362669
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/340612
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/340612
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/s18082571
https://doi.org/10.48550/ARXIV.2103.14030
https://doi.org/10.48550/ARXIV.2201.03545
https://doi.org/10.48550/ARXIV.2201.03545

References 45

images”. In: Neural Engineering Techniques for Autism Spectrum Disorder.
Ed. by Ayman S. El-Baz and Jasjit S. Suri. Academic Press, 2021, pp. 23—
38. ISBN: 978-0-12-822822-7. DOI: https://doi.org/10.1016/B978-0-
12-822822-7.00003-X.

[19] Michael C Mozer. “Induction of Multiscale Temporal Structure”. In:
Advances in Neural Information Processing Systems. Ed. by J. Moody, S.
Hanson, and R.P. Lippmann. Vol. 4. Morgan-Kaufmann, 1991.

[20] Randall C. O'Reilly and Michael J. Frank. “Making Working Memory
Work: A Computational Model of Learning in the Prefrontal Cortex
and Basal Ganglia”. In: Neural Comput. 18.2 (2006), 283-328. 1SSN: 0899-
7667. DOI: 10.1162/089976606775093909.

[21] radiopaedia.org. Radiology Reference Article. 2022. URL: https://radiopaedia.
org/articles/voxel-size-1.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. 2015.

[23] @ryanrong. 2nd Place Solution. 2022. URL: https : //www . kaggle . com/
competitions/rsna-2022- cervical - spine- fracture-detection/
discussion/365115.

[24] Hojjat Salehinejad et al. Deep Sequential Learning for Cervical Spine Frac-
ture Detection on Computed Tomography Imaging. 2020. DOI: 10 . 48550/
ARXIV.2010.13336.

[25] @samuelcortinhas. RSNA Fracture Detection - in-depth EDA. 2022. URL:
https://www.kaggle.com/code/samuelcortinhas/rsna-fracture-
detection-in-depth-eda.

[26] Satya Singh. “3D Deep Learning on Medical Images: A Review”. In:
Sensors 20 (Sept. 2020). DOI: 10.3390/520185097.

[27] Ralf C. Staudemeyer and Eric Rothstein Morris. Understanding LSTM —
a tutorial into Long Short-Term Memory Recurrent Neural Networks. 2019.

DOI: 10.48550/ARXIV.1909.09586.

https://doi.org/https://doi.org/10.1016/B978-0-12-822822-7.00003-X
https://doi.org/https://doi.org/10.1016/B978-0-12-822822-7.00003-X
https://doi.org/10.1162/089976606775093909
https://radiopaedia.org/articles/voxel-size-1
https://radiopaedia.org/articles/voxel-size-1
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/365115
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/365115
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/365115
https://doi.org/10.48550/ARXIV.2010.13336
https://doi.org/10.48550/ARXIV.2010.13336
https://www.kaggle.com/code/samuelcortinhas/rsna-fracture-detection-in-depth-eda
https://www.kaggle.com/code/samuelcortinhas/rsna-fracture-detection-in-depth-eda
https://doi.org/10.3390/s20185097
https://doi.org/10.48550/ARXIV.1909.09586

References 46

[28] Mingxing Tan and Quoc Le. “EfficientNetV2: Smaller Models and Faster
Training”. In: Proceedings of the 38th International Conference on Machine
Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings
of Machine Learning Research. PMLR, 2021, pp. 10096-10106.

[29] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. cite arxiv:1905.11946Comment: Pub-
lished in ICML 2019. 2019.

[30] teachmeanatomy.info. Anatomical Planes.2022. URL: https://teachmeanatomy.
info/the-basics/anatomical-terminology/planes/.

[31] Ashish Vaswani et al. Attention Is All You Need. 2017. DOI: 10 . 48550/
ARXIV.1706.03762.

[32] Y. Wang, C.L. Lin, and]J.D. Miller. “Improved 3D image segmentation
for X-ray tomographic analysis of packed particle beds”. In: Minerals
Engineering 83 (2015), pp. 185-191. 1SSN: 0892-6875. DOI: https://doi.
org/10.1016/j.mineng.2015.09.007.

[33] Yichi Zhang et al. Bridging 2D and 3D Segmentation Networks for Compu-
tation Efficient Volumetric Medical Image Segmentation: An Empirical Study

of 2.5D Solutions. 2020. DOI: 10.48550/ARXIV.2010.06163.

https://teachmeanatomy.info/the-basics/anatomical-terminology/planes/
https://teachmeanatomy.info/the-basics/anatomical-terminology/planes/
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/https://doi.org/10.1016/j.mineng.2015.09.007
https://doi.org/https://doi.org/10.1016/j.mineng.2015.09.007
https://doi.org/10.48550/ARXIV.2010.06163

	Abstract
	Acknowledgements
	Introduction
	Problem & Motivation
	Related Works
	Objectives

	Background
	Image classification
	Convolutional Layer
	Pooling Layer

	3D Image Classification
	3D Convolution Layer and 3D Pooling Layer

	Image Classification Models
	EfficientNet
	EfficientNetV2
	ConvNeXt

	Image Segmentation
	3D vs 2D vs 2.5D segmentation
	3D segmentation
	2D segmentation
	2.5D segmentation
	Differences between 2D, 3D and 2.5D segmentation techniques

	Recurrent Neural Network
	Long short-term memory (LSTM)
	Attention

	Data
	Dataset Discovery and Explanation
	Voxel
	Exploratory Data Analysis

	Implementation and Analysis
	Evaluation Metric
	Data Processing
	3D Classification Model
	2D Classification
	Single-head Model
	Multi-head Model

	2.5D CNN+RNN Model
	Stage 1
	Stage 2

	Results and Discussion
	Results
	Discussion and Future Works

	References

