
An automated proctoring assistant in online
exams using computer vision

Final Year Project Final Report

A 4th Year Student Name

Nguyen Khanh Luan

Pham Thi Thu Ha

Instructor

Dr. Phan Duy Hung

Bachelor of Computer Science

Hoa Lac campus - FPT University

April 2022

1

2

Acknowledgment
We thank our dedicated, supportive instructor, Dr. Phan Duy Hung, for giving us the best guidance

and lessons to complete our final graduation project.

We would like to thank University FPT, for giving us the environment to learn and grow both
professionally and personally over the years.

We would like to thank all our classmates in Computer Science Major Class, for the collaboration
and the support in periods of struggle and difficulty.

3

Abstract

Cheating or attempting to cheat in education has had the opportunity to
become numerous and complex since the outbreak of the COVID-19
pandemic, with teaching and testing conducted online. The learners have
easier access to prohibited materials, and it is easier to avoid contact with a
human proctor. Such problems raise the need for an automated intelligent
proctoring system to help the teacher supervise students.

Therefore, this work proposes a system that can automatically examine
students' behaviors through two main cameras. The first camera takes
images of a student's frontal face and uses them as input for the facial
landmark model, detecting anomalies in a student’s face movement. The
second camera captures the student’s whole body and the surrounding
environment, and by using a trained pose recognition model, the system
can efficiently classify student actions as suspicious or not. In addition, an
object recognition model is also applied simultaneously to detect people
and objects appearing through the second camera. Results of this research
show good remarks and can be applied in schools, universities
experimentally in the future.

Keywords: Computer Vision, Anomaly Detection, Proctoring.

4

Table of contents

Acknowledgments 3

Abstract 4

Table of contents 5

List of figures 6

1. Introduction 8
1.1. Problem and Motivation 8
1.2. Related works 9
1.3. Contribution 10
1.4. Outline 12

2. Methodology 13
2.1. Problem assumptions 13
2.2. Supervising front camera 13

2.2.1. Eyes tracking 13
2.2.2. Head pose estimation 14
2.2.3. Mouth and hand tracking 14

2.3. Supervising side camera 15
2.3.1. Pose Estimation and detect suspicious behaviors 15
2.3.2. Object detection and people counting 19

3. Experimental results and discussions 20
3.1. Front camera results 20
3.2. Side camera results 21

4. Conclusion and future works 24
4.1. Conclusion 24
4.2. Future works 24

Reference 26

Appendix

5

https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.30j0zll
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.1fob9te
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.1fob9te
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.3znysh7
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.3znysh7
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.lxtcex2lfpy7
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.17dp8vu
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.3rdcrjn
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.lnxbz9
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.35nkun2
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.35nkun2
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.1ksv4uv
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.1ksv4uv
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.dal6h98g2fy8
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.dal6h98g2fy8
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.44sinio
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.z337ya
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.3j2qqm3
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.1y810tw
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.1y810tw
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.2xcytpi
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.3j2qqm3
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.y51jbwsu0xc8
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.3whwml4
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.wcficecn0cxk
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.qsh70q
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.2p2csry
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.2p2csry
https://docs.google.com/document/d/1KjqvVr5SEHtCIw7wMloSmMg74vDgzFlSZJwmSg_sd9s/edit?fbclid=IwAR1nES1qSMHWVrOlyVQjnQw8Sr40dXW50gO3HdtG7l2q7mC8RYuszRQBGbo#heading=h.y426io2qzjci

List of figures

1 Take the remote test on Safe Exam Browser - a secure
browser………………...

8

2 Arrangement of two cameras to capture students’
images.………………………………………………

9

3 ID verification……………………………………………………. 10

4 360 degree camera for supervision...………………………… 11

5 Proposed system……………….………………………………. 12

6 Iris tracking approach………………………………………….. 13

7 Face mesh Mediapipe and PnP OpenCV…………………… 14

8 Angles represented by different axis rotation……………….. 14

9 Mediapipe mouth and hand tracking…………………………. 15

10 Action classifier methodology…………………………………. 15

11 Recording and labeling video dataset………………………... 16

12 Collect pose landmarks using Mediapipe……………………. 16

13 3D landmarks coordinates and student elbow and shoulder
angels extraction………………………………………………..

17

14 Landmarks data extraction from all videos………………….. 17

15 LSTM Network architecture…………………………………… 18

16 LSTM network architecture for classifying action……... 19

17 YOLOv4 network structure……………………………….. 20

18 Eyes tracking result……………………………………….. 20

19 Head pose estimation…………………………………….. 21

6

20 Mouth tracking and face occlusion detected……………. 21

21 Model accuracy and loss on training dataset…………… 22

22 Confusion matrix to evaluate model accuracy………….. 22

23 No suspicious action detected……………………………. 23

24 Suspicious action detected……………………………….. 23

25 Results of object detection and person counting………. 23

26 Video logged by the system………………………………. 24

7

1. Introduction

1.1 Problem and Motivation

Amid the COVID-19 pandemic, most schools and colleges have turned to online
learning and testing in response to the long-term quarantine. This form is considered
to have many advantages, and after the pandemic, online and offline teaching and
learning will be expected to be carried out in parallel with appropriate duration and
subjects. Student assessment is an essential part of education. So it requires close
supervision to ensure fair results. Offline exam monitoring relies heavily on proctors,
who directly monitor students' test results, detecting and recording unusual behaviors.
With the online exam, many methods have been implemented, such as monitoring
candidates via Zoom online video and audio [1], studying online and taking the test
offline under the supervision of a proctor, or taking the online exam on a secure
browser [2].

Figure 1. Take the remote test on Safe Exam Browser - a secure browser

Most learners today are capable of equipping personal computers and mobile
phones. Therefore, a reliable method is being implemented by schools that require
students to set up two cameras during the exam: The first camera allows observing the
front of a student, the second camera can show the surrounding environment (Fig. 2)
[3].

8

Figure 2. Arrangement of two cameras to capture students’ images.

However, this method still needs the supervision of the supervisors via the
cameras. The proctor has to monitor two cameras per student, and it consumes a lot of
effort and concentration, which also requires more proctors to observe a larger number
of students. The cost of this problem can be estimated from a specific case of FPT
University in Hanoi, Vietnam. For example, in the Fall 2021 semester of the Hoa Lac
campus, the university organized online exams for 116 subjects. For the JDP113
subject alone, about 1020 students were taking the test. If each online exam room has
at least 20 students, 51 online exam rooms are needed. If each exam room has only
one proctor, each proctor has to simultaneously observe about 40 screens through the
cameras, which does not seem to guarantee the effectiveness of proctoring. So, if two
proctors supervise each online exam room, then 102 proctors are needed for just one
JDP113 subject. Not to mention all three campuses holding this subject exam and
taking other subjects simultaneously, the number of supervisors required will be
massive. As such, organizing online exams will require a massive amount of effort,
time, and money to ensure the fairness of the assessment. Therefore, the need to apply
high technologies and artificial intelligence to solve this problem is critical. This work
implements a computer vision system to observe and record unusual behaviors to
assist online exam proctoring and reduce the proctor's effort.

1.2. Related works

Several methods adopted recently show high guarantees of test integrity. The
following sections discuss some of the anti-cheating solutions to fraudulent attempts.

Søgaard in [4] gives a comprehensive evaluation of Safe Exam Browser as
software that ensures a secured environment during a digital Bring-Your-Own-Device

9

exam. This software will host a user system and shut down unrelated apps or websites.
Only predefined apps and tools are allowed to run. It can also disable screen
recordings and projection, which leads to test information leakage. However, this
method is not as effective as participants can still access outside materials to find
answers.

According to an online survey [5], every 1 in 3 students uses mobile phones to
cheat during online exams. Bedford et al. introduce the technology that detects devices
under usage, searches for similar test contents, and flags certain activities if seen to
ensure that the student does not look for answers online [6]. It can also scan the
internet, block the sites that are browsed for answers and report them. Nevertheless, as
there is no live or auto-proctoring involved, participants can still attempt to cheat by
using offline resources.

To avoid fake exam takers or impersonators, Sahil et al. in [7] have devised a
system that asks students to provide their ID, photo, and personal information during
the registration process. Their data is stored in a database and will then be used to
verify legitimate candidates using face recognition and other tools. Nevertheless, this
method still needs multiple checks such as biometrics, keystroke authentication and
cross-questions to become effective.

Figure 3. ID verification

Record and review proctoring is another method that shows high performance in
capturing malpractice in online exams. Authors in the paper [8] have proposed an
auto-proctoring system that can run by default and generate reports of anomalous
instances. An expert team later uses this to check in detail and verify the integrity of
test-takers. Although this method is cheaper than live proctoring, it can take a lot of
time.

Turani et al. propose a proctoring system using a 360-degree security camera that
can flexibly capture images in the surrounding environment [9]. These cameras can be
attached to a computer screen or headgear to track a candidate's gaze and actions in a
room using machine learning algorithms. This device provides excellent audio and

10

video qualities but is expensive and might be cumbersome for some students to wear
on the head.

Figure 4. 360-degree camera for supervision

Coming up with solutions against online exam cheating during the COVID-19
pandemic is currently a hot field of research. However, existing methodologies still
exhibit several limits. Although some approaches show remarkable performance to
deceitful behavior, as in the case of mobile phone prevention or online ID
authentication, they are not anti-cheating stand-alone solutions and do not have any
auto-proctoring process. Others are too expensive or too time-consuming such as
using 360 cameras and record-review methods. Research in this area is expanding, and
researchers are continuously experimenting and proposing solutions to resolve it.

1.3. Contribution

Figure 5. Proposed system.

11

Upon reviewing the above solutions and analyzing the constraints, this study
proposes an automated AI-based proctoring system to help teachers monitor and
supervise students while taking online exams using computer vision (Fig. 5). The
input images are fed from two cameras. With the front camera, the work uses a face
landmark model [10] to track suspicious head, eyes, lips movement and, after that,
detect abnormality. A pose recognition model based on a long short-term memory
(LSTM) [11] to classify malpractice behavior with the side camera . In addition, this
study uses object detection to prevent the use of prohibited materials such as phones,
electronic devices and books. This research is being experimented for online exams in
the university.

1.4. Outline

In this thesis, we address the problem of remote proctoring, specifically:

Section 1 gives an introduction about the problem, motivation, and related works
about remote proctoring.

Section 2 presents our proposed model for remote proctoring through two
cameras with specific assumptions as well as methodologies to detect facial
gestures and behavior along with the model to recognize people and objects.

Section 3 showed some experimental results and evaluation of each model in
detecting facial gestures, behaviors, and objects.

Section 4 concludes the thesis and then makes some future work on the
subject.

The final section is the list of all reference works helping to create this thesis.

2. Methodology

In this thesis, an automated proctoring assistant is proposed to aid official proctors
in supervising students during an online exam.

2.1. Problem assumptions

In this research, certain assumptions are made for taking examination:
● Students need to sit in front of the computer during the test-taking; other

moving or cheating behavior are not allowed.

12

● Cameras are set up to clearly see the faces of test-takers, their bodies, and the
surrounding environments.

● Students are not allowed to bring electronic devices that can receive or transmit
information, such as mobile phones, USBs, and memory cards.

● Students can only use pens, white paper, or material approved by the official
proctor.

● Other than the test taker, no one is allowed to enter the room, including friends
or family members.

2.2. Supervising front camera

This work uses Mediapipe, a fast and accurate framework that offers machine
learning solutions like facial landmarks detection, hand detection, and pose estimation
[12].

2.2.1. Eyes tracking

Using landmarks coordinates output from Mediapipe Iris detection model [13],
eye ratio is calculated as the distance from the iris to the right outermost eyes on the
other. A suspicious glance is counted as the ratio is greater than one-third, suggesting
that the student is peeking to the far right or far left from the front camera.

Figure 6. Iris tracking approach

From extracted eye landmark coordinates, eye width and distance from the iris to
the eye edge are calculated to determine the relative position of an iris.

2.2.2. Head pose estimation

Using a combination of Mediapipe 3D face mesh [10] and OpenCV
Perspective-n-Point (PnP) [14] is to estimate head direction from 2D image feeds.
Given a set of 3D points in the world and their corresponding 2D projections in the
image, PnP can estimate the pose of a calibrated camera. The output of the PnP

13

solution is a rotation matrix, which is then converted to angles to catch the student's
head movement, such as turning right, left, or down.

Figure 7. Face mesh Mediapipe and PnP OpenCV

Because the Mediapipe Face Mesh can give 3D landmarks coordinates, namely
the width, height, and depth of a landmark point in an image frame. Feed this input to
the OpenCV PnP method can produce accurate head pose angles.

Figure 8. Angles are represented by different axis rotation

2.2.3. Mouth and hand tracking

To prevent talking or efforts trying to talk, this work suggests a fusion of the
hands landmarks [15] and the mouth landmarks. A student is considered talking when
the distance between his or her lips is greater than a predefined distance and over a
period of time. Efforts to occlude the mouth using hands are also dealt with by making
sure mouth coordinates do not fall into hand area coordinates.

14

Figure 9 . Mediapipe mouth and hand tracking

2.3. Supervising side camera

This thesis proposes a binary classifier for student action and uses the YOLOv4
object detector [16] to detect the cheating attempts of a student, such as reaching for
prohibited materials, using a mobile phone, or receiving help from other people.

2.3.1. Pose tracking and detecting suspicious actions

a. Methodology

This research makes use of a sequential model to efficiently classify student
activities during the exam. Specifically, an LSTM model is utilized as it will predict
based on 30 continuous image frames (1-second duration) which record student
movement, not just from a single frame. With vast numbers of these sequence data,
the model will quickly learn the pattern and classify student actions as suspicious or
non-suspicious.

Figure 10. The action classifier methodology

15

uses a pose detector on the video to get landmarks coordinates for each frame, then
feeds this landmarks data to the LSTM network to predict the behavior of a student.

b. Data collection

To make the pose detector learn to classify a student’s action, an extensive amount
of data needs to be collected. Fortunately, OpenCV helps automate this process of
recording and labeling in this work. Since the model calculates the probability of
student action as cheating or not, this research records instances when a student is
performing suspicious actions and when a student is doing the test. A batch of 720
videos of 1 second long is then cut and labeled as cheating and also with the other 720
videos which are labeled as non-cheating.

Figure 11. Recording and labeling video dataset

Next, this work extracts student pose landmarks from these videos using
Mediapipe Pose [17]. These pose landmarks are the width, height, and depth of
corresponding points in camera frame coordinates and are lightweight enough to store
in the computer memory. They are ready to be used as a training dataset for our pose
recognition model but to increase model robustness, this work also adds calculated
joint angles of the student's shoulders and elbows to detect any suspicious actions.

16

Figure 12. An example of the pose landmarks

Because the model heavily relies on pose landmark coordinates, without
considering color information in the environment. An extensive extraction of
landmark coordinates will be needed. This work extracts 25 upper body landmarks,
each landmark contains 4 fields of information namely x, y, z, visibility corresponding
to width, height, depth and probability of the landmark in the camera frame. The
Mediapipe pose can also return the mimic of 3D real-world coordinates that represent
the relative position of a landmark to one another. To increase model robustness, this
work also calculates 4 angles that represent a student’s left and right shoulder and
elbow using simple 2d width and height landmark coordinates. Total extraction gives
204 fields of landmark data per frame.

Figure 13. 3D landmarks coordinates and angles extractions of student's elbow and shoulder

The last step in data collection is to pull these 204 landmark data out of 1440
videos (30 frames duration) and use them for the action classifier. Simply iterating
through all videos and extracting mentioned landmarks gives a final dataset of shape
(1440, 30, 204) NumPy array.

17

Figure 14. Landmarks data extraction from video dataset

c. Pose recognition model

An LSTM neural network is designed specifically for data sequences as it takes
into consideration all previous inputs to generalize an output. Because an LSTM cell
can remember the context for long input sequences, this network is capable of solving
problems involving sequential data like language translation, music composition, or
action recognition.

Figure 15. LSTM Network architecture

The LSTM network architecture used in this work comprises 3 LSTM connected
layers and 3 dense layers (Fig 16), the activation function for this network is a

18

rectified linear unit. With the data input shape of (30, 204), meaning 30 continuous
frames of 204 landmarks data, the model will predict the output of shape (2,) which is
the probability of cheating and non-cheating labels.

Figure 16. LSTM network architecture for classifying action.

2.3.2. Object detection and people counting

YOLOv4 is applied to this work for the purpose of identifying people and objects.
It is a CNN network model created from the combination of convolutional layers and
connected layers. In which the convolutional layers will extract the features of the
image, and the full-connected layers will predict the probability and the coordinates of
the object. As a result, the model can detect and count the number of people and
objects allowed to appear through the camera.

YOLOv4 mainly consists of 3 parts: backbone, neck and head. The authors used
CSPDarknet53 for the model's backbone, which augments the learning capacity of
CNN. The neck part is used for SPP and PAN, YOLOv3 is the head of the model. In
addition, Bag of Freebies and Bag of Specials are also added as backbone and detector
to improve performance such as cost function, and accuracy.

The custom model applies a pre-trained model with Alex's Darknet to recognize 8
types of objects for this specific case - 8 classes including: person, tv monitor, laptop,
mouse, remote, keyboard, cell phone, book. The model will detect, draw predicted
bounding boxes and count the number of objects of each class with confidence.

19

Figure 17. YOLOv4 network structure

3. Experimental results and discussions

An efficient system which can detect anomaly action during an online exam such
as looking to the side, talking and using the phone. A suspicious movement is only
logged when it lasts more than 3 seconds to avoid random model falsity.

3.1. Front camera results

This work can detect if a student is peeking abnormally to the right or to the left.

Figure 18. Eyes tracking result

Fig. 18 shows the result of the student's eyes tracking. Attempts to peek
abnormally and exceed the predefined eye ratio will be flagged with corresponding
eyes direction.

20

Abnormal head-turning of a student to the right, left or down can also be detected
with a precise angle degree.

Figure 19. Head pose estimation

Fig. 19 shows the head pose estimation result. Using vertical and horizontal angles
returned by the PnP method, the model can track which direction a student's head is
turning and to what extent.

This work can also detect if a student is talking to others or hiding his face in
trying to cheat.

Figure 20. Mouth tracking and face occlusion detected

Fig. 20 shows tracking results of student mouth and hands. Flags are raised here
because the model detects the increase of distances between lips and covering of hand
coordinates in lips coordinate, suggesting the test taker's attempt to talk during the
exam.

3.2. Side camera results

After 50 epochs, the pose recognition model gives 93.6 percent accuracy and 0.16
loss on training sets. The below graph depicts the total training process.

21

Figure 21 . Model loss and accuracy on training dataset

On the test set, the model generalizes with an accuracy of 95.8% in which 1
example is misclassified as cheating and 5 examples are misclassified as not cheating.

Figure 22. Confusion matrix to evaluate model accuracy

The test accuracy gives the confidence to apply in real-life scenarios, below
graphs show instances predicted by this work’s model.

22

Figure 23. No suspicious action was detected

Figure 24. Suspicious action detected

Fig. 23 and Fig. 24 show the output of the trained pose recognition model. With
suspicious action, the model gives high confidence in cheating behavior. The same
happens as the model predicts non-cheating behavior when a student is focused on
doing the test.

Figure 25. Results of object detection and person counting

The object detector used has high reliable accuracy. The detector can identify and
count recognizes 8 types of objects for this specific case - 8 classes include: person,

23

tv-monitor, laptop, mouse, remote, keyboard, cell phone, book. The accuracy of the
model is approximately 90 percent with the pre-trained network.

As a student is flagged with any suspicious action, this system automatically logs
them back for a 10-second long duration with a corresponding name. Official proctors
can then check-in details with log notifications.

Figure 26. Video logged by the system

4. Conclusion and future works

4.1. Conclusion

This study proposes a proctor assistant system that can detect students’ anomaly
actions through cameras and record them using computer vision. This system shows
promising results and can be used to aid teachers and proctors when monitoring the
examination. The system saves a lot of time and effort for the organization.

4.2. Future work

Due to the present covid 19 circumstances, there is an urgent need to apply an
intelligent system to monitor test-takers during online exams and stop many
preventable cheating attempts. Many improvements can be made based on the

24

proposed model including automatic identification of student identities based on the
university's face database; customizing object recognition to the specific requirements
of the various exams.

The results continue to be improved as more new real-life situations are added.
Machine learning architecture can also be tuned, and the system is aimed at ease of
installation on many different hardware platforms and operating systems.

25

References

1. University of Melbourne: Zoom-supervised exams.
https://students.unimelb.edu.au/your-course/manage-your-course/exams-assess
ments-and-results/exams/how-do-i-take-my-exam/formats/Zoom-supervised-ex
ams. Accessed: 2022/03/01.

2. Government College University Faisalabad: Instructions for Online Exam.
https://gcuf.edu.pk/notification-single?news=323. Access: 2022/03/01.

3. FPT University: Exam software announcement and preparation for the exam on
EOS software (in Vietnamese)

https://docs.google.com/document/d/1SZgQL5WQRL7VznXKpb6t369AqD8v
YqlW/edit. Accessed: 2022/03/01

4. Søgaard, T.M.: Mitigation of cheating threats in digital BYOD exams. Master's
thesis, NTNU (2016). https://dx.doi.org/11250/2310735

5. Kanchan, R.: 7 Online Proctoring Technologies That Guarantee High Test
Integrity. https://blog.mettl.com/prevent-cheating-in-online-exams/ Accessed:
2022/03/01.

6. Bedford, D.W., Gregg, J.R., Clinton, M.S.: Preventing online cheating with
technology: A pilot study of remote proctor and an update of its use. Journal of
Higher Education Theory and Practice 11, no. 2, 41-59 (2011)

7. Motwani, S., Nagpal, C., Motwani, M., Nagdev, N., Yeole, A.: AI-Based
Proctoring System for Online Tests. In: Proceedings of the 4th International
Conference on Advances in Science & Technology (ICAST2021), Available at
SSRN: https://ssrn.com/abstract=3866446 or
http://dx.doi.org/10.2139/ssrn.3866446 (2021)

8. Atoum, Y., Chen, L., Liu, A.X., Hsu, S.D., Liu, X.: Automated online exam
proctoring. IEEE Transactions on Multimedia 19, no. 7, 1609-1624 (2017)

9. Turani, A.A., Alkhateeb, J.H., Alsewari, A.A.: Students Online Exam
Proctoring: A Case Study Using 360 Degree Security Cameras. In: Proceedings
of the Emerging Technology in Computing, Communication and Electronics
(ETCCE), pp. 1-5, doi: 10.1109/ETCCE51779.2020.9350872 (2020)

26

https://students.unimelb.edu.au/your-course/manage-your-course/exams-assessments-and-results/exams/how-do-i-take-my-exam/formats/Zoom-supervised-exams
https://students.unimelb.edu.au/your-course/manage-your-course/exams-assessments-and-results/exams/how-do-i-take-my-exam/formats/Zoom-supervised-exams
https://students.unimelb.edu.au/your-course/manage-your-course/exams-assessments-and-results/exams/how-do-i-take-my-exam/formats/Zoom-supervised-exams
https://students.unimelb.edu.au/your-course/manage-your-course/exams-assessments-and-results/exams/how-do-i-take-my-exam/formats/Zoom-supervised-exams
https://gcuf.edu.pk/notification-single?news=323
https://gcuf.edu.pk/notification-single?news=323
http://dx.doi.org/10.2139/ssrn.3866446
http://dx.doi.org/10.2139/ssrn.3866446

10. Kartynnik, Y., Ablavatski, A., Grishchenko, I., Grundmann, M.: Real-time
facial surface geometry from monocular video on mobile GPUs.
arXiv:1907.06724 (2019)

11. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput
1997; 9 (8): 1735–1780. doi: https://doi.org/10.1162/neco.1997.9.8.1735.

12. Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M.,
Zhang, F., Chang, C-L., Yong, M.G., Chang, W-T., Hua, W., Georg, M.,
Grundmann, M.: Mediapipe: A framework for building perception pipelines.
arXiv:1906.08172 (2019)

13. Ablavatski, A., Vakunov, A., Grishchenko, I., Raveendran, K., Zhdanovich, M.:
Real-time Pupil Tracking from Monocular Video for Digital Puppetry.
arXiv:2006.11341 (2020)

14. Rocca, F., Matei M., Bernard, G.: Head pose estimation by perspective-n-point
solution based on 2d markerless face tracking. In: Proceedings of the
International Conference on Intelligent Technologies for Interactive
Entertainment. Springer, Cham (2014)

15. Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C-L.,
Crundmann, M.: Mediapipe hands: On-device real-time hand tracking.
arXiv:2006.10214 (2020)

16. Bochkovskiy, W., Wang, C-Y., Liao, H-Y.M.: YOLOv4: Optimal Speed and
Accuracy of Object Detection. arXiv:2004.10934v1 (2020)

17. Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F.,
Grundmann, M.: Blazepose: On-device real-time body pose tracking.
arXiv:2006.10204 (2020)

Appendix

Demo code

Below are some of the code demonstrating the approach presented in this
thesis.

#Return landmarks data from Mediapipe
def mediapipe_detection(image, model):

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

27

image.flags.writeable = False
results = model.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
return image, results

#Return scaled landmark because the Mediapipe range is (0,1)
def get_scaled_landmarks(landmarks, dimension):

landmarks_2d = []
landmarks_3d = []
if dimension == '2d':

for landmark in landmarks:
x, y = int(landmark.x*1280), int(landmark.y*720)
landmarks_2d.append([x, y])

return landmarks_2d
if dimension == 'both':

for landmark in landmarks:
x, y = int(landmark.x*1280), int(landmark.y*720)
landmarks_2d.append([x, y])
landmarks_3d.append([x, y, landmark.z])

return landmarks_2d, landmarks_3d

#Get current eyes position
def get_eyes_movement(eyes_landmarks):

eyes_landmarks = get_scaled_landmarks(eyes_landmarks, '2d')
right_most, right_iris, right_inner, left_inner, left_iris, left_most = eyes_landmarks
try:

right_ratio = abs(right_iris[0]-right_most[0]) / abs(right_most[0]-right_inner[0])
left_ratio = abs(left_iris[0]-left_inner[0]) / abs(left_inner[0]-left_most[0])

except:
return 0

#look right
if right_ratio < 0.35 and left_ratio < 0.35:

return "peeking right"
#look left
elif right_ratio > 0.65 and left_ratio > 0.65:

return "peeking left"
else:

return ""

#Get current head movement
def get_head_movement(image, face_keypoints):

face_2d, face_3d = get_scaled_landmarks(face_keypoints, 'both')
nose_2d = face_2d[0]
face_2d = np.array(face_2d, dtype=np.float64)[1:]
face_3d = np.array(face_3d, dtype=np.float64)[1:]
focal_length = 1*iw
cam_matrix = np.array([[focal_length, 0, ih/2],

28

[0, focal_length, iw/2],
[0, 0, 1]])

dist_matrix = np.zeros((4,1), dtype=np.float64)
_, rot_vec, _ = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix)
rmat, _ = cv2.Rodrigues(rot_vec)
angles, _, _, _, _, _ = cv2.RQDecomp3x3(rmat)
x = angles[0] * 360
y = angles[1] * 360
if y < -15:

text = "turning left"
elif y > 15:

text = "turning right"
elif x <-10:

text = "turning down"
else:

text = ""
return text

#Check if student is talking
def get_mouth_movement(upper_mouth, bottom_mouth):

distance = abs(int(upper_mouth.y*ih) - int(bottom_mouth.y*ih))
if distance > 15:

return "talking"
else:

return ""

#Check if student is using hand to hide face
def get_hand_movement(face_hands, hand_limit):

x_min, x_max, y_min, y_max = hand_limit
face_hands = get_scaled_landmarks(face_hands, '2d')
warning = ""
for lm in face_hands:

if lm[0] > x_min and lm[0] < x_max and lm[1] > y_min and lm[1] < y_max:
warning = "face occlusion"
break

return warning

#Main of first camera
cap = cv2.VideoCapture(0)
eyes_movements, head_movements, mouth_movements, hand_movements= [], [], [], []
warnings = [""]
with mp_hands.Hands(model_complexity=0) as hands:

with mp_face_mesh.FaceMesh(max_num_faces=1, refine_landmarks=True) as face_mesh:
while cap.isOpened():

success, image = cap.read()
if not success:

print('Ignore empty camera frame!')
break

29

image = cv2.flip(image, 1)
image, results = mediapipe_detection(image, face_mesh)
image, hand_results = mediapipe_detection(image, hands)
face_hands = []
if results.multi_face_landmarks:

for face_landmarks in results.multi_face_landmarks:
lmks = face_landmarks.landmark
eyes_landmarks = [lmks[263], lmks[473], lmks[362], lmks[133], lmks[468], lmks[33]]
eyes_movement = get_eyes_movement(eyes_landmarks)
eyes_movements.append(eyes_movement)
eyes_movements = eyes_movements[-60:]
face_keypoints = [lmks[1], lmks[33], lmks[263], lmks[61], lmks[291], lmks[199]]
head_movement = get_head_movement(image, face_keypoints)
head_movements.append(head_movement)
head_movements = head_movements[-60:]
mouth_movement = get_mouth_movement(lmks[13], lmks[14])
mouth_movements.append(mouth_movement)
mouth_movements = mouth_movements[-60:]
if len(eyes_movements) == 60:

warn_eyes = warning_3s(eyes_movements)
warn_head = warning_3s(head_movements)
warn_mouth = warning_3s(mouth_movements)
warnings.extend([warn_eyes, warn_head, warn_mouth])

draw_face_landmarks(image, face_landmarks)
face_occlusion_points = [lmks[13], lmks[8]]
if hand_results.multi_hand_landmarks:

for hand_landmarks in hand_results.multi_hand_landmarks:
hand_lmks = hand_landmarks.landmark
hand_limit = get_limit_hand_coordinate(hand_lmks)
hand_movement = get_hand_movement(face_occlusion_points, hand_limit)
hand_movements.append(hand_movement)
hand_movements = hand_movements[-60:]
if len(hand_movements) == 60:

warn_hand = warning_3s(hand_movements)
warnings.append(warn_hand)

draw_hand_landmarks(image, hand_landmarks)
else:

hand_movements.append("")
hand_movements = hand_movements[-60:]

warning_info, warnings = warning_display(warnings)
cv2.putText(image, warning_info, (7, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (45, 255,

255), 2, cv2.LINE_AA)
cv2.imshow(" Output feed", image)
if cv2.waitKey(1) & 0xFF == ord('q'):

cv2.imwrite("hand.jpg", image)
break

#Calculate angles from 3 landmarks

30

def get_joint_angle(a, b, c):
angle = np.abs(np.arctan2(c.y-b.y, c.x-b.x) - np.arctan2(a.y-b.y, a.x-b.x))
if angle > np.pi:

angle = 2*np.pi-angle
return angle

#Get angles represent student elbow and shoulder
def get_all_angles(landmarks):

nose = landmarks[mp_pose.PoseLandmark.NOSE.value]
right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value]
right_elbow = landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value]
right_wrist = landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value]
left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value]
left_elbow = landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value]
left_wrist = landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value]
right_elbow_angle = get_joint_angle(right_shoulder, right_elbow, right_wrist)
righ_shoulders_angle = get_joint_angle(right_elbow, right_shoulder, left_shoulder)
left_elbow_angle = get_joint_angle(left_shoulder, left_elbow, left_wrist)
left_shoulders_angle = get_joint_angle(left_elbow, left_shoulder, right_shoulder)
angles = [right_elbow_angle, righ_shoulders_angle, left_elbow_angle, left_shoulders_angle]
return angles

#Extract all 204 landmarks data
def get_frame_landmarks(results):

size_landmarks = np.array([[res.x, res.y, res.z, res.visibility] for res in
results.pose_landmarks.landmark[:23]]).flatten() if results.pose_landmarks else np.zeros(4*25)

world_landmarks = np.array([[res.x, res.y, res.z, res.visibility] for res in
results.pose_world_landmarks.landmark[:23]]).flatten() if results.pose_world_landmarks else
np.zeros(4*25)

angles = np.array(get_all_angles(results.pose_landmarks.landmark)) if results.pose_landmarks else
np.zeros(4)

landmarks = np.concatenate([size_landmarks, world_landmarks, angles])
return landmarks

#Main of second camera
input_sequence = []
cap = cv2.VideoCapture(1)
frame_num = 0
with mp_pose.Pose() as pose:

while cap.isOpened():
Read feed
ret, frame = cap.read()
if not ret:

print("Can't get frame!")
break

frame_num += 1
Make detections
image, results = mediapipe_detection(frame, pose)

31

#Draw landmarks
if results.pose_landmarks:

draw_landmarks(image, results)
frame_landmarks = get_frame_landmarks(results)
input_sequence.append(frame_landmarks)
input_sequence = input_sequence[-30:]
if len(input_sequence) == 30:

res = model.predict(np.expand_dims(input_sequence, axis=0))[0]
cheating_prob = round(res[1], 2)
cv2.putText(image, "Cheating probs: "+str(cheating_prob), (0, 200),

cv2.FONT_HERSHEY_SIMPLEX, 1.5, ((255, 0, 0)), 2, cv2.LINE_AA)
if cheating_prob > 0.8:

cv2.putText(image, "Warning: suspicious behavior", (7, 60),
cv2.FONT_HERSHEY_SIMPLEX, 2, (45, 255, 255), 2, cv2.LINE_AA)

#Show image feed
cv2.imshow('OpenCV Feed', image)
if cv2.waitKey(1) & 0xFF == ord('q'):

break
cap.release()
cv2.destroyAllWindows()

32

