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Introduction



Main Problem
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Cost Computation
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Synchronous Problem
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Decision Making
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Our purpose

• Build End-to-End Perception Network for Multi-tasks.

• Our work focus on Autonomous Driving Perception.
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Literature Review
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The Survey

• The base feature extractor is made of a series of convolutional layers

which are shared between all tasks, and the extracted features are

used as input to task-specific output heads.

1Zhanpeng Zhang et al., Facial landmark detection by deep multi-task learning,

ECCV 2014
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The Survey

• Each task has a separate network, but cross-stitch units combine

information from parallel layers of the different task networks with a

linear combination is called Share Tunk problem.

1Ishan Misra et al., FCross-stitch networks for multi-task learning, IEEE Conference

on Computer Vision and Pattern Recognition 2016 14



The Survey

• Instead of combining information from different task networks with a

linear combination of parallel features (as in Cross-Stitch networks

(Misra et al., 2016)), NDDR-CNN uses concatenation and a 1x1

convolution to fuse features from separate task networks.

1Gao et al., Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural

discriminative dimensionality reduction, IEEE Conference on Computer Vision and

Pattern Recognition 2019
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The Survey

• Preliminary predictions are made for four tasks, then these

predictions are re-combined and used to compute final, refined

predictions for two output tasks.

1Xu et al., Pad-net: Multi-tasks guided prediction-and-distillation network for

simultaneous depth estimation and scene parsing, IEEE Conference on Computer

Vision and Pattern Recognition 2018
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MultiNet

• Limitation: Fixed input size due to cell-based method.

1Marvin Teichmann et al., MultiNet: Real-time Joint Semantic Reasoning for

Autonomous Driving, IEEE Intelligent Vehicles Symposium 2018
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DLT-Net

• Limitation: Shared context tensor from drivable area to other

decoders, making finetuning of specific tasks harder.

1Yeqiang Qian, John M. Dolan, Ming Yang, DLT-Net: Joint Detection of Drivable

Areas, Lane Lines, and Traffic Object, IEEE Transactions on Intelligent Transportation

Systems 2020
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YOLOP

• Limitation: Two different segmentation heads for drivable area and

lane line.

1Dong Wu et al., YOLOP: You Only Look Once for Panoptic Driving Perception,

arXiv 2021
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Proposed Methods



HybridNets Architecture
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Backbone Network
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EfficientNet

1Mingxing Tan, Quoc V. Le, EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks, ICML 2019
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Neck Network

1Mingxing Tan, Ruoming Pang, Quoc V. Le, EfficientDet: Scalable and Efficient

Object Detection, CVPR 2020
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Feature Network Design

1Mingxing Tan, Ruoming Pang, Quoc V. Le, EfficientDet: Scalable and Efficient

Object Detection, CVPR 2020
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Neck Network
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Neck Network
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Neck Network
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HybridNets Architecture Overview
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Detection Head
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Anchor Boxes Calculation
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Anchor Boxes Visualization

• This method work wells with small and huge objects.

• Become a good base to help network convergence fast.
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Segmentation Head

• Why our work up scale on P2 Level and add P2 feature map from

backbone into output feature map?
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Object Detection Loss Function
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Segmentation Loss Function
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Phase 1
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Phase 2
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Phase 3
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Training Strategy Overview
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Experiments



Dataset

• Dataset: BDD100K.

• Merge four classes: Car, truck, bus, train into a single class (vehicle).

• Merge two drivable area {direct, alternative} into drivable,

re-labelled two lane line annotations into a central one line.

• Basic augmentation techniques: rotating, flipping, HSV shifiting,

Mosaic, Mixup.
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HybridNets Training Details

• Data augmentation:

• Training stats:

• Training time: 750 hours (1 GPU 3090 RTX)

• GPU memory usage: 24 GB

• Batch size: 16
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Evaluation metrics

• Precision and Recall
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Evaluation metrics

• IoU metric for Drivable Area Segmentation and Lane Line

Segmentation.

42



Evaluation metrics

• AP =
∑k=n−1

k=0 [Recalls(k)− Recalls(k+1)] ∗ Precisions(k).
• Recalls(n) = 0, Precisions(n) = 1 where n = Number of thresholds.
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Evaluation metrics

• mAP50 is used for Traffic Object Detection task.
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Cost computation
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Inference Time
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Depthwise Separable Convolutions

• In depth-wise convolution, we use each filter channel only at one

input channel.

• Point-wise Convolution is a type of convolution that uses a 1x1

kernel: a kernel that iterates through every single point.
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Traffic Object Detection Task
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Traffic Object Detection Visualization
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Lane Segmentation Task
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Lane Segmentation Visualization
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Drivable Segmentation Task
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Drivable Segmentation Visualization
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Comparison Between HybridNets and Prior SOTA YOLOP
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https://www.youtube.com/watch?v=0YAiKXne1pQ


Discussion



Our Contribution

Research

• Show once again that

multi-tasking is an

underexplored field with

untapped potential in

autonomous driving.

• Currently, the preprint on arXiv

have yet to receive a citation.

Production

• Create a scalable network on a

wide range of embedded

systems, from industrial-grade

edge computing to off-the-shelf

mobile phones.

• Porting to TensorRT, allowing

streamlined user experience.
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Community Interaction

Github statistics as of April 10th
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Community Contribution

• Github.com/PINTO0309

• Provided a script to convert model to TFLite, ONNX, OpenVINO,

CoreML, TFJS.

• Stress-tested on a foggy video clip with real-time performance

(ONNX 384x512, Input 720x1280, FP16).
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Community Contribution

• Github.com/iwatake2222

• Created a demo environment entirely in C++, using ported model

from PINTO0309.

• Stress-tested on Pixel 4a, only achieved 6 FPS maximum (TFLite

384x640, Input 720x1280, FP16).
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Community Contribution

• Github.com/ibaiGorordo

• Created a Python script to infer Youtube videos with customizable

bird eye view, using ported model from PINTO0309.
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Advantages

• Vehicle’s perception in a single pass.

• Scalable thanks to EfficientNet backbone.

• Switchable backbone.

60



Limitations

• Fixed to 2 heads for 2 specific tasks of object detection and

segmentation.

• Lack of ablation studies.
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Conclusion



Future Work

• Perform various tasks related to perception.
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Future Work

• Perform various tasks related to perception.

• Improve parameters and FLOPs of network for edge devices.

• Build a decoder network detecting 3D Object Detection with only

one input.
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The End

Questions?
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