
1

An effective method for fashion parsing task

Final Year Project Report

4th Year Student Names

Khuc Giang Sinh

Under the supervision of

M.Sc. Do Thai Giang

Bachelor of Computer Science

Hoa Lac campus - FPT University

15 December 2021

2

Copyright by Khuc Giang Sinh

All rights reserved

3

DECLARATION

Project Title: An effective method for fashion parsing task

Authors: Khuc Giang Sinh

Student ID: HE141179

Supervisor: M.Sc Do Thai Giang

I declare that this thesis entitled An effective method for fashion parsing task is the

result of my own work except as cited in the references. The thesis has not been ac-

cepted for any degree and is not concurrently submitted in candidature of any other

degree.

Khuc Giang Sinh

HE141179

Department of Computer Science

Hoa Lac Campus – FPT University

Date: December 15, 2021

4

ACKNOWLEDGEMENT

We would like to express our deep and sincere gratitude to our research

instructor, Mr. Do Thai Giang, for giving us the opportunity to do re-

search and providing invaluable guidance throughout this research. His

dynamism, vision, sincerity, and motivation have deeply inspired us. He

has taught me the methodology to carry out the research and to present

the research works as clearly as possible. It was a great privilege and hon-

our to work and study under his guidance. We would also like to thank

our teacher for his empathy, and immense knowledge.

Besides our instructor, we are extending our thanks to our friends at

FPT University for their support, patience, and friendship. Our sincere

gratitude also goes to FPT University, which created a wonderful environ-

ment for our development during the four years we have studied here.

We also want to send huge love to our caring, loving, and supportive

families. Their encouragement was a great comfort and relief for us during

our hard times. Finally, we would like to thank all the people who have

supported us to complete the project work directly or indirectly.

5

ABSTRACT

Fashion parsing is a fundamental task when deploying applications such

as product images search, recommended, visual try on,..etc. It must first

recognize the human body component of the input image in order to deter-

mine where the clothing area is located and then synthesise clothes in that

location. However, this is quite complicated because the clothes are not

uniform in style: wrinkling, fading overtime or the minor inter-class vari-

ance: The factors that make an image distinguishable from other classes

are quite small (the long skirt image may be mistaken for a slightly shorter

skirt or cross-domain issues: the user domain image is different from the

store domain image.

This thesis presents an approach for a fashion parsing task: detect the

type of clothes and segment on pixel level in the images. We found that

not every feature map is important to pay attention to and conversely

there are feature maps that bring a lot of important information. Previ-

ous works have not focused on using this mechanism for fashion parsing

tasks. Therefore, we tested the attention mechanism on the Mask-RCNN

with modified backbone feature extraction to know how this mechanism

affects model result: Integrated channel attention in backbone to collect

more important features about clothes and suppress less useful features.

Experiments show that applying the channel attention module does not

improve results than the original mask-rcnn and state of the art models.

Keywords: Fashion parsing, Object detection, Segmentation, Channel

attention

6

Contents

1 INTRODUCTION 10

1.1 Motivation . 10

1.2 Related Work . 11

1.3 Objective and Contribution 12

1.4 Outline . 13

2 BACKGROUND 14

2.1 Neural Network . 14

2.1.1 Basic Components 14

2.2 Convolution Neural Network 18

2.3 Object Detection . 20

2.3.1 Region Based Convolutional Neural Network(RCNN) 21

2.4 Image Segmentation . 25

2.5 Mask R-CNN . 25

3 METHODOLOGY 28

3.1 Network Architecture . 28

3.2 Feature extraction . 29

3.2.1 Feature Pyramid Network 29

3.2.2 Channel Attention 30

3.3 Region Proposal Network(RPN) 31

3.4 Generating mask . 34

4 IMPLEMENTATION DETAIL 37

4.1 Dataset . 37

4.2 Implementation . 37

7

4.2.1 Pre-processing . 37

4.2.2 Implementation detail 38

5 EXPERIMENTAL RESULT 40

5.1 Evaluation Metrics . 40

5.2 Qualitative Result . 41

5.3 Quantitative Result . 42

5.4 Comparative with other method 43

6 Conclusion 45

6.1 Conclusion . 45

6.2 Future Work . 45

8

List of Figures

1.1 Example of Fashion parsing task[14] 12

2.1 Simple Neural Network[19] 14

2.2 Layer of Neural Network[20] 15

2.3 The ReLU function[21] . 16

2.4 The sigmoid function[22] 16

2.5 Example basic of CNN architecture[23] 18

2.6 Max pooling: Each pooling operation selects the maximum

value of the current view (Left); Average pooling: Each

pooling operation averages the values of the current view

(Right)[25] . 19

2.7 Example of object detection 21

2.8 Example of RCNN workflow[26] 22

2.9 Example of Fast-RCNN workflow[27] 23

2.10 Example of ROI Pooling[28] 23

2.11 Faster R-CNN architecture[29] 24

2.12 Different between Semantic and Instance segmentation[30] 25

2.13 Mask-R CNN extend Faster-RCNN module[1] 26

2.14 Difference of architecture between R-CNN, Fast R-CNN,

Faster R-CNN and Mask-RCNN[31] 27

3.1 General our Mask-RCNN architecture[32] 28

3.2 FPN architecture[33] . 29

3.3 Top Down Pathway[33] . 29

3.4 SE-Net architecture[17] . 30

3.5 ResNet and SE-ResNet architecture[17] 32

9

3.6 RPN output for each stage 33

3.7 RPN classification for each stage 35

3.8 Target mask of dataset and prediction mask of model . . . 36

3.9 Final prediction of model 36

4.1 Example categories clothes image from our dataset 38

4.2 Statistic sample per categories of training set 38

4.3 Example of our Data Argumentation 39

4.4 Mini mask . 39

5.1 Model results on different image conditions 41

5.2 Model results on multiple human pose 42

6.1 Failure case with detection[10] 46

6.2 Failure case with mask labelling 46

10

Chapter 1

INTRODUCTION

1.1 Motivation

The field of e-commerce is increasingly developing in the current tech-

nology era. Major e-commerce sites like Shopee, Lazada, Alibaba always

try to come up with new features for their systems to help interact with

customers better, typically the feature of searching products by image or

language. To do this, it is necessary to solve the problem of product

identification and zoning. Therefore, the laboratories at corporations are

always trying to improve their models. However, for fashion clothing prod-

ucts, this is relatively complicated and difficult task. Firstly, There are

many clothes/products in one photo, usually a photo of a person wearing

a costume with 2 or more items. Secondly, the large intra-class variance:

external conditions such as lighting, background noise, clothing shape,

distortions and deviations between user domain and store domain images

(shop domain) makes images from domains relatively/absolutely difficult

to parsing. Thirdly, the minor inter-class variance: the factors that make

an image distinguishable from other classes are quite small (the long skirt

may be mistaken for a slightly shorter skirt,...)

In this thesis, we focus on detecting clothing types and localising them

on input images from different conditions. There are many methods for this

problem, but all are based on the basic instance and semantic segmentation

models such as Mask-RCNN[1], U-Net[2], DeepLab[3],...

11

1.2 Related Work

Fashion parsing, also known as human parsing or clothes parsing, is a

type of semantic segmentation in which labels are created based on cloth-

ing items such as dresses and pants. Figure 1 shows examples of fashion

parsing tasks. Yamaguchi et al. [4] were the first to work on fashion

parsing. By mutually improving two difficulties, they utilised the link be-

tween garment parsing and human posture estimation. In a Conditional

Random Field model, apparel labels for each picture segment were pre-

dicted with regard to body components. The clothing predictions were

then used as extra characteristics for pose estimation. Their research, on

the other hand, was primarily focused on the limited parsing problem,

in which test photographs were processed using user-supplied tags to in-

dicate displayed apparel items. [5, 6] advocated garments parsing using

a retrieval-based strategy to solve this problem. Similar photos from a

parsed dataset were initially collected for a specific image, and then dense

matching was used to transfer the nearest-neighbour parsings to the final

result. Liu et al. [7] presented the fashion parsing task with weak supervi-

sion from colour-category tags instead of pixel-level tags since pixel-level

labels were time-consuming for model training. To create category clas-

sifiers, they integrated the human posture estimation module with the

(super)pixel-level category classifier learning module. They finished the

parsing operation by applying the category tags. In 2019, human parsing

problems were considered using hierarchical graphs. Wang et al. [8] char-

acterised the human body as a hierarchy of multi-level semantic elements

and used three techniques to capture human parsing information for im-

proved parsing performance (direct, top-down, and bottom-up). Gong et

al. [9] used hierarchical graph transfer learning based on the traditional

parsing network to create Graphonomy, a generic human parsing model

that consisted of two processes, to tackle human parsing in many domains

with a single model without retraining on diverse datasets. It learned

and propagated a compact high-level graph representation among labels

within a single dataset before transferring semantic information across sev-

12

eral datasets. The Match R-CNN[10], which based on mask-rcnn method

for both clothes detection and segmentation, landmark detection, fash-

ion retrieve was published as demo in DeepFashion 2[10] dataset paper.

In 2020, DeepFashion2 challenge announcement top winning method for

fashion detection: Aggreation and Finetuning[11], DeepMark[12], Deep-

Mark++[13].

Figure 1.1: Example of Fashion parsing task[14]

1.3 Objective and Contribution

In this thesis, we purpose the approach for fashion parsing on the Deep-

Fashion2 dataset. The task aim to classify accurate diversity clothes cater-

gories, draw the bounding box which all-encompassing object and then

labeling correct pixel. For detection and segmentation, we use the Mask-

RCNN model. In the backbone feature extraction, we use Feature Pyramid

Network[15] with ResNet101[16] at the bottom-up pathway. To enhance

attention on channel to know where important information and how rela-

tionship between feature maps, the Squeeze and Excitation[17] network is

integrated on all ResNet block before shortcut layer. DeepFashion2 is a

dataset with variety of fashion models and data imbalance, so we designed

a training strategy to handle this problem.

13

1.4 Outline

Chapter 1: A general introduction about Fashion parsing, and the

scope of this thesis.

Chapter 2: The basic knowledgement to understand this thesis.

Chapter 3: An overview of all the methods used on this project for

implementation.

Chapter 4: Details implementation of the method introduced in the

previous chapter. We will try to pre-process and extract feature input

images, and then detect bounding boxes and localise pixel

Chapter 5: Perform experimental results from the training model and

evaluation metrics. We also include comparisons of our method to the

baseline and SOTA method of the same task.

Chapter 6: Conclusion about the results of testing our models and

possible future works that could be done for further improvisation.

14

Chapter 2

BACKGROUND

2.1 Neural Network

The Neural Network(NN)[18] is a computer programming paradigm

that mimics the behaviour of human neural networks. Neural networks,

when combined with deep learning(DL), are a flexible tool for solving a

variety of complicated issues, such as image classification, natural language

processing. Artificial intelligence is now a common topic in a variety of

science and technology sectors.

Figure 2.1: Simple Neural Network[19]

2.1.1 Basic Components

Unit

In terms of Neural Network, a unit is a node, also known as a neuron

or a Perceptron, is a computing unit with one or more weighted input

connections, a transfer function that somehow mixes the inputs, and an

15

output connection.

Layer

The Neural Network is made up of three types of layers: The neural

network’s initial data is stored in the input layer. Hidden layers are a

layer that sits between the input and output layers and is where all of the

calculation takes place. Produce a result for supplied inputs in the output

layer.

Figure 2.2: Layer of Neural Network[20]

Activation Function

In a neural network, an activation function specifies how the weighted

sum of the input is turned into an output from a node or nodes in a layer.

A weighted sum of inputs is passed through an activation function and

this output serves as an input to the next layer.

ReLU

The rectified linear activation function (ReLU) is a piecewise linear

function that, if the input is positive, outputs the input directly; else, it

outputs zero(see Figure 2.3). Because a model that utilises it is quicker

to train and generally produces higher performance, it has become the

default activation function for many types of neural networks.

Sigmoid

The sigmoid function is a special form of logistic function and used as an

activation function in a neural network to guarantee that the output of this

16

unit will always be between interval 0 and 1(see Figure 2.4). Because the

sigmoid is a nonlinear function, the output of this unit will be a nonlinear

function of the weighted sum of inputs.

Figure 2.3: The ReLU function[21]

Figure 2.4: The sigmoid function[22]

Softmax

The softmax function calculates the probability of a class occurring

out of the total of all possible classes. This probability is then used to

determine the target class for the inputs. The softmax function turns the

k-dimensional vector of any real values into a real-valued k-dimensional

vector that sums to 1. The input values can be positive, negative, zero,

17

or greater than 1, but the softmax function will always turn them into a

value in the range (0 : 1].

σ(z⃗)i =
ezi∑K
j=1 e

zj

Z⃗ : Input vector value for softmax function, (from z0 to zk)

Zi : All z values are input vector values for softmax function. They can

be any real number, positive, negative or zero. For example, an artificial

neural network might have an output vector value of (−0.62, 8.12, 2.53).

This is not a correct probability distribution. That’s why we need the

softmax function.

ezi : The standard exponentiation function is applied to each input

value. It will return a positive value greater than 0 . This value will be

very small if the input is negative, and very large if the input is positive.∑K
j=1 e

zj : The bottom line of the formula is a normalised cluster. It

guarantees that the sum of the outputs will always be 1 and be in the

range (0 : 1]. Thus, an exact probability distribution will appear.∑K
j=1 e

zj : Number of classes in a multi-class classification.

Weight

In a neural network, the weight parameter changes input data within

the network’s hidden layers. A neural network is built up from nodes and

a weight, a bias value are all contained within each node.

Loss function

Loss is a prediction error of the Neural Network. The Loss Function is

a component to calculate the loss, or gradient. And gradients are used to

update the weights of the Neural Network.

• Cross-Entropy loss:

loss(x, y) = −
∑

x log y

To understand the probability distribution of the data, cross-entropy

is employed as a loss function. While other loss functions, such as

squared loss, punish inaccurate predictions, cross entropy penalizes

18

incorrect predictions even more when they are anticipated with high

confidence. Cross entropy differs from negative log loss in that it

penalizes both incorrect but confident predictions and accurate but

less confident predictions, whereas negative log loss does not penalize

according to prediction confidence.

• Loss Smooth L1(Huber loss):

loss(x, y) =

0.5(x− y)2, if |x− y| < 1

|x− y| − 0.5, otherwise

If the absolute error is less than 1, it uses a squared term; otherwise,

it uses an absolute term. It is less susceptible to outliers than the

mean square error loss, and it can avoid explosive gradients in some

instances. We square the difference in mean square error loss, result-

ing in a value that is substantially bigger than the initial number.

Gradients explode as a result of these high values. This is avoided in

this case because integers bigger than one are not squared.

2.2 Convolution Neural Network

Figure 2.5: Example basic of CNN architecture[23]

A Convolutional Neural Network (ConvNet/CNN)[24] is a Deep Learn-

ing system that can take an input image, assign parameters (learnable

19

weights and biases) to various aspects/objects in the image, and distin-

guish between them. When compared to other classification methods, the

amount of pre-processing required by a ConvNet is significantly less. While

basic approaches need hand-engineering of filters, ConvNets can learn these

filters/characteristics with enough training.

The design of a ConvNet is inspired by the organisation of the Visual

Cortex and is akin to the connection pattern of Neurons in the Human

Brain. Individual neurons can only respond to stimuli in a small area of

the visual field called the Receptive Field. A number of similar fields can

be stacked on top of each other to span the full visual field.

Pooling layer

The Pooling layer, like the Convolutional Layer, is responsible for shrink-

ing the Convolved Features spatial size. Through dimensionality reduction,

the computer power required to process the data is reduced. It’s also bene-

ficial for extracting rotational and positional invariant dominating features,

which helps keep the model’s training process running smoothly.

Pooling may be divided into two types: max pooling and average pool-

ing. The largest value from the part of the picture covered by the Kernel

is returned by Max Pooling. Average Pooling, on the other hand, returns

the average of all the values from the Kernel’s section of the picture.

Figure 2.6: Max pooling: Each pooling operation selects the maximum value of the

current view (Left); Average pooling: Each pooling operation averages the values of

the current view (Right)[25]

20

Max Pooling works as a Noise Suppressant as well. It removes all noisy

activations and conducts de-noising and dimensionality reduction at the

same time. Average Pooling, on the other hand, just reduces dimension-

ality as a noise-suppressing strategy. As a result, we may conclude that

Max Pooling is better than Average Pooling.

Fully Connected Layer(FCN)

Adding a Fully-Connected layer is a (typically) low-cost approach of

learning non-linear combinations of high-level information represented by

the convolution layer’s output. In such an area, the Fully-Connected layer

is learning a possibly non-linear function.

We’ll flatten the image into a column vector now that we’ve turned it

into a format suited for our Multi-Level Perceptron. Every round of train-

ing uses backpropagation to send the flattened output to a feed-forward

neural network. The model can discriminate between dominant and cer-

tain low-level characteristics in pictures across a number of epochs and

categorise them using the Softmax Classification technique.

2.3 Object Detection

Object detection is a critical computer vision problem that involves

recognizing things of a certain class in digital photos and movies, such as

birds, people, and cars. Face detection, facial identification, object track-

ing, and video surveillance are some of the other uses of object detection.

Instead of limiting our focus to classify an image, we should broaden it to

accurately estimate the positions of items in a digital image to acquire a

thorough comprehension of it. The input for this task will be an image

with one or more objects, and the output will be an image with bounding

boxes around those different objects and a label specifying the object’s

class in the bounding box. Image Segmentation can help boost the object

detection process even further.

21

Figure 2.7: Example of object detection

2.3.1 Region Based Convolutional Neural Network(RCNN)

Convolution Neural Network (CNN) with a fully connected layer is not

able to deal with the frequency of occurrence and multi objects. So, one

way could be that we use a sliding window brute force search to select a

region and apply the CNN model on that, but the problem of this approach

is that the same object can be represented in an image with different sizes

and different aspect ratio. While considering these factors we have a lot of

region proposals and if we apply deep learning (CNN) on all those regions

that would be computationally very expensive.

Ross Girshick et al.in 2013[26] proposed an architecture called R-CNN

(Region-based CNN) to deal with this challenge of object detection. This

R-CNN architecture uses the selective search algorithm that generates ap-

proximately 2000 region proposals. These 2000 region proposals are then

provided to CNN architecture that computes CNN features. These fea-

tures are then passed in an SVM model to classify the object present in

the region proposal. An extra step is to perform a bounding box regressor

to localize the objects present in the image more precisely.

22

Figure 2.8: Example of RCNN workflow[26]

Region Proposals: Region proposals are simply the smaller regions

of the image that possibly contain the objects we are searching for in the

input image. To reduce the region proposals in the R-CNN uses a greedy

algorithm called selective search.

Selective Search: Selective search is a greedy algorithm that combines

smaller segmented regions to generate region proposals. This algorithm

takes an image as input and output generates region proposals on it. This

algorithm has the advantage over random proposal generation is that it

limits the number of proposals to approximately 2000 and these region

proposals have a high recall.

Selective search algorithm:

Step 1: Generate initial sub-segmentation of input image.

Step 2: Combine similar bounding boxes into larger ones recursively.

Step 3: Use these larger boxes to generate region proposals for object

detection.

Fast RCNN

To speed up R-CNN, Girshick[27] improved the training process by

merging 3 independent models into a common training framework and in-

creasing computational sharing. This model is called Fast R-CNN. Instead

of extracting CNN feature vectors for each region proposal, this model ag-

gregates them into a CNN forward across the entire image and region

proposals that share feature matrices. Then, the same feature matrices

will be branched to be used for classification as bounding-box regression.

23

Figure 2.9: Example of Fast-RCNN workflow[27]

ROI Pooling: This is a type of max pooling used to convert features

in the projected region of the image of any size (h x w) into a window

with a fixed size (H x W). The input region will be divided into H x W

grids, approximately for each subwindow of size h/H x w/W. Then use

max-pooling for each grid.

Figure 2.10: Example of ROI Pooling[28]

Faster R-CNN

One solution to speed up the Fast RCNN algorithm is to integrate the

region recommendation algorithm into the CNN model. Faster RCNN [29]

is doing exactly this: building a single model consisting of an RPN (region

proposal network) and a Fast RCNN with a shared CNN.

Faster RCNN Workflows

Step 1: Using CNN pre-train on image classification

Step 2: Fine-tune RPN (region proposal network) for the region pro-

posal task, initialised by pre-train image classifier. Positive examples have

IoU ¿ 0.7, negative examples have IoU ¡ 0.3

24

Figure 2.11: Faster R-CNN architecture[29]

+ Slide a small window of size n x n over the entire CNN feature of the

image

+ At the centre of each window, we predict multiple regions with differ-

ent scales and ratios at the same time. Anchor is a combination of sliding

window centre, cal and ratio. For example, 3 scales + 3 ratios =¿ k = 9

anchors at each slip position.

Step 3: Train the Fast R-CNN model using proposals region generated

from the current RPN -

Step 4: Then use Fast R-CNN network to initialise RPN training. While

keeping the convolution layers shared, just fine-tune the specific RPN lay-

ers. At this stage, RPN and detection networks have shared convolution

layers! -

Step 5: Finally, we will fine-tune the separate layers of Fast R-CNN.

Step 6: Steps 4-5 can be repeated to train the RPN and Fast R-CNN

if needed.

Loss Function of Faster-RCNN: is a combination of classification loss

and bounding-box regression loss:

25

L = Lcls + Lbox

L ({pi} , {ti}) =
1

Ncls

∑
i

Lcls (pi, p
∗
i) +

λ

Nbox

∑
i

p∗i · Lsmooth
1 (ti − t∗i)

where loss classification defined as

Lcls (pi, p
∗
i) = −p∗i log pi − (1− p∗i) log (1− pi)

2.4 Image Segmentation

Image Segmentation means that the problem will divide an image into

many different image regions. Image Segmentation also has the same goal

as object detection, which is to detect areas of an image containing objects

and assign appropriate labels to them. However, the standard of accuracy

of Image Segmentation is higher than that of Object Detection when it

requires accurate prediction labels to every pixel. Although Image Seg-

mentation requires a higher level of detail, in return the algorithm helps

us to understand the content of an image at a deeper level when we know

at the same time: The position of the object in the image, the shape of

the object and which individual pixel belongs to the object.

Figure 2.12: Different between Semantic and Instance segmentation[30]

2.5 Mask R-CNN

Mask R-CNN is an extended version of Faster R-CNN in pixel-level

image segmentation. The key point is to separate the task of classification

26

and mask prediction at the pixel level. Based on Faster R-CNN, Mask

RCNN adds a brand to predict the object’s mask parallel with the bound-

ing box branch. Mask detection is a fully-connected network applied to

each RoI.

Figure 2.13: Mask-R CNN extend Faster-RCNN module[1]

Since pixel-level segmentation requires much smoother alignment than

bounding-box, Mark R-CNN improves the RoI Pooling layer so that RoI

can be mapped more accurately to regions of the original image.

ROI Align: RoIAlign is designed to find misplaced errors caused in

RoI pooling. RoIAlign eliminates hash quantization, for example, by using

x/16 instead of [x/16], so that the extracted features can be exactly aligned

with the input pixels. Bilinear interpolation is used to calculate floating

point position values in the input.

Loss Function of Mask-RCNN: is a combination of 3 losses: classifica-

tion, localization and segmentation mask:

L = Lcls + Lbox + Lmask

where: loss box and loss classification are the same as Faster-RCNN. Loss

mask defined as:

Lmask = − 1

m2

∑
1≤i,j≤m

[
yij log ŷ

k
ij + (1− yij) log

(
1− ŷkij

)]
where: yij is the label of cell (i, j) ŷ

k
ij is predict value of pixel (i, j) for each

class k

27

Mark RCNN generates a mask of size m×m for each RoI and each class

(K classes). Therefore, the output is of size K ·m2. Because the model is

trying to learn one mask for each layer, there is no competition between

layers to create the mask.

Figure 2.14: Difference of architecture between R-CNN, Fast R-CNN, Faster R-CNN

and Mask-RCNN[31]

28

Chapter 3

METHODOLOGY

3.1 Network Architecture

Figure 3.1: General our Mask-RCNN architecture[32]

Model workflow

1. The image input to backbone to feature extraction

2. Mask R-CNN has an additional Binary mask classifier block along

with the RPN stage as in Faster R-CNN. This block generates masks

for every class in the image, and the RPN will give the bounding box

details.

3. Every image then goes through a CNN to generate multiple RoI using

the mask classifier to obtain the feature maps.

29

4. The RPN block uses Non-Max suppression to get the nine anchors’

highest object scores.

5. Mask R-CNN uses an RoI aligned network to get multiple bounding

boxes around an object and warps it to a single dimension.

6. As in Faster R-CNN, these warped features are fed to an FC network

to obtain the object class and the bounding box from Softmax and

regressor blocks, respectively.

7. Along with the FC network, the warped features are fed to the Mask

Classifier block, which uses multiple CNNs to generate the masks

around every class’s objects.

3.2 Feature extraction

The first step prediction model is feature extraction. In this step, we

use backbone with Feature pyramid network and Resnet101 as bottom-up

of this network.

3.2.1 Feature Pyramid Network

Figure 3.2: FPN architecture[33] Figure 3.3: Top Down Pathway[33]

Object detection using multi-scale images for a small object is difficult.

We can address this difficulty by detecting the item with a pyramid of

the same picture, however it takes a long time. When speed is not a

30

concern, we can utilise this method. Feature Pyramid Network (FPN) is

designed to address the accuracy and speed limitation issues. FPN can be

replaced with the traditional feature extractors to obtain multiple feature

maps, which provide better quality feature information. FPN has both

bottom-up and top-down pathways. The dataflow looks as figure 3.2

The spatial resolution of the image grows as we progress from the top

to the bottom levels, while the semantic value declines (figure 3.3]). The

usual feature extractors used in CNNs are the bottom-up route.

Mask R-CNN follows a top-down approach. It combines semantically

resilient low-resolution characteristics with semantically weak high-resolution

features. FPN collects all semantic characteristics from a single scale, elim-

inating issues such as power consumption and memory use.

3.2.2 Channel Attention

To allow our model to emphasise important information features and

suppress less useful features, we using Squeeze and Excitation Network(SE-

Net) integrate bottom-up backbone ResNet101. The general architecture

of SE-Net show in figure 3.4 and the SE-ResNet show in figure 3.5. he

architectural unit is designed to improve the representational power of a

network by enabling it to perform dynamic channel-wise feature recalibra-

tion.

Figure 3.4: SE-Net architecture[17]

Ftr : X → U,X ∈ RH ′×W ′×C ′
,U ∈ RH×W×C

31

where: Ftr is the convolutional operator for transformation of X to U.

This Ftr is the residual block. U be defined as:

uc = vc ∗X =
C ′∑
s=1

vs
c ∗Xs

where V = [v1, v2, . . . , vc] is the learnt set of filter kernels.

Squeeze: Produce a channel descriptor by aggregating feature maps

across their spatial dimension (HxW)

zc = Fsq (uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j)

The result of the transformation U can be thought of as a grouping of

local descriptors whose statistics are representative of the entire image. It

is suggested that global spatial information be crammed into a channel

descriptor. This is accomplished by generating channel-specific data via

global average pooling.

Excitation: Produce a collection of per-channel modulation weight

s = Fex(z,W) = σ(g(z,W)) = σ (W2δ (W1z))

where δ is ReLU function

The workflow of this unit is:

Step 1: The block has a convolutional block as an input.

Step 2: Each channel is ”squeezed” into a single numeric value using

average pooling.

Step 3: A dense layer followed by a ReLU adds non-linearity and output

channel complexity is reduced by a ratio.

Step 4: Another dense layer[34] followed by a sigmoid gives each channel

a smooth gating function.

Step 5: Finally, we use the side network to weight each feature map of

the convolutional block; this is called ”excitation.”

3.3 Region Proposal Network(RPN)

The Region Proposal Network(RPN)[1] applies a lightweight binary

classifier to a large number of boxes (anchors) over the image and pro-

32

Figure 3.5: ResNet and SE-ResNet architecture[17]

duces object/no-object scores. Anchors with a high objectivity score (pos-

itive anchors) advance to the second stage of classification. Even positive

anchors don’t always completely cover objects. As a result, the RPN re-

gresses a refinement (a delta in location and size) to be applied to the

anchors in order to shift and resize it to the correct object boundaries.

The RPN targets are the RPN’s training values. To create the targets,

we start with a grid of anchors that span the entire image at various sizes,

and then use a ground truth object to compute the anchors IoU. Positive

anchors are those that have an IoU >= 0.7 with any ground truth object,

and negative anchors are those that don’t cover any object by more than

0.3 IoU. Anchors in between (i.e. cover an object by IoU >= 0.3 but

< 0.7) are considered neutral and excluded from training. We compute

the shift and resizing needed to have the anchor entirely cover the ground

truth object when training the RPN regressor. The top ten highest anchor

scores are shown in the figure below

Non-Maximum Suppression[35]: Object detection models typically

provide a large number of bounding boxes as a result of their output. When

such data is produced, there will be multiple bounding boxes for the same

33

Figure 3.6: RPN output for each stage

object, resulting in information redundancy when our goal is to have only

one bounding box per object. The Non-Maximum Suppression algorithm

was created to solve this problem by removing redundant bounding boxes

of the same object in the image.

- Input: An array of bounding boxes, each of which will have the form

(x1, y1, x2, y2, c), where: (x1, y1), (x2y2) are the top-left and bottom-right

coordinates of the bounding box, respectively.

c is the confidence score corresponding to that box, returned from the

object detection model.

- Output: An array of bounding boxes after the redundant bounding

34

boxes have been removed.

Following the preceding phase, all bounding boxes have been sent to

the Proposal categorization stage. This stage takes the RPN’s regional

proposals and categorizes them. The output of this stage show in figure

3.7

3.4 Generating mask

This step takes the detections from the previous layer (fined bounding

boxes and class IDs) and runs the mask head to build segmentation masks

for each instance. We crop the mask pixel from image. The target mask

is the truth localize pixel form dataset annotation and prediction mask is

the predict localize pixel of model.

35

Figure 3.7: RPN classification for each stage

36

Figure 3.8: Target mask of dataset and prediction mask of model

Figure 3.9: Final prediction of model

37

Chapter 4

IMPLEMENTATION DETAIL

4.1 Dataset

To training and testing model, we use DeepFashion2 dataset. It is a

large fashion database, contain 491K photos from both commercial retail-

ers and consumers of 13 popular clothing categories. The dataset is split

into a training set (391K images), a validation set (34k images), and a

test set (67k images). Visualise and statistic of DeepFashion2 are shown

in Figure 4.2

4.2 Implementation

4.2.1 Pre-processing

Data Argumentation

We use Data Argumentation[36] to rotate images by 25 degrees and add

noise to generate more data in classes with small sample sizes.

Mini mask

We need quite a bit of memory to save the masks. Numpy uses 1

byte to store 1 bit value. Therefore, with an image size of 1024x1024, we

need 1MB of ram memory to store it. If we have a dataset of about 1000

images, it requires 1GB of memory, which is quite large. In addition to

consuming memory, they also slow down the training speed of the model.

For improvement, instead of saving the entire mask of the whole image,

Mini Mask[37] will only save the pixels of the mask in the bounding box.

38

Figure 4.1: Example categories clothes image from our dataset

Figure 4.2: Statistic sample per categories of training set

Using this way, we will save the main memory.

4.2.2 Implementation detail

We implemented our Mask-RCNN model in Tensorflow and Keras .

Because of changing architecture, we can not use the available pre-trained

model weight to transfer learning. So firstly of the training step we use

Common Object in Context(COCO)[38] dataset version minimal 2014 have

39

Figure 4.3: Example of our Data Argumentation

Figure 4.4: Mini mask

35k images to pre-training. Then we load weight and use DeepFashion2 to

fine-tuning models, excluding the weight of fully connected layers because

2 dataset have different number classes. We limit 10000 samples for each

class. All experiments were performed on an NVIDIA T4 GPU. We use

SGD[39] optimizer algorithm with a weight decay of 0.0001 and momentum

of 0.9, learning rate of 0.001 for 200 epochs of network head layer, 200

epoch of layer 4+ with same learning rate and 100 epoch to fine tuning

all layer with learning rate 0.00025. Each epoch has 400 iterations. The

training time is 20 days.

40

Chapter 5

EXPERIMENTAL RESULT

5.1 Evaluation Metrics

In this thesis, we evaluate Mask R-CNN’s performance on various datasets

by using Average Precision (AP). In general, precision is defined as

Precision =
True Positive

True Positive + False Positive
=

True Positive

Total detections

Where,

True Positive = A correct prediction of a positive class

False Positive = An incorrect prediction of a positive class

False Negative = An incorrect prediction of negative class

True Negative = A correct prediction of a negative class

For COCO datasets or COCO type datasets, mean average precision

(mAP) is often referred to as Average Precision. To better understand

AP, we need Recall along with Precision. A recall is defined as

Recall =
True Positive

True Positive + False Negative
=

True Positive

Total Ground truths

AP is given by calculating the area under the Precision-Recall curve.

APT =

∫ 1

0

P (r)dr

Where, P(r) = Precision as a function of Recall T = IoU threshold (For

AP50, T = 50% and for AP75, T = 70 AP for a class:

AP [class] =
1

Different Thresholds

∑
AP (class, IoU)

41

AP for all classes:

AP =
1

All Classes

∑
AP (class)

Therefore, AP50 = AP at IoU @0.5 and AP75 = AP at IoU @0.75.

5.2 Qualitative Result

Figure 5.1: Model results on different image conditions

In Figure 5.1 are the model results under different conditions. We can

see that the model is well recognized in normal conditions: the image has

no noise and the viewing angle is not too narrow. In addition, for cases

42

where the object is influenced by multiple human pose(figure 5.2), the

model still give good results. However, in the case of the person wearing

the outwears, the model still cannot identify the shirt inside. With the

segmentation results of both image conditions and human pose, we see

that the model has not yet correctly localized the pixels at the edge of the

garment. In fact, this is difficult task and unnecessary, because for appli-

cations of detection and segmentation problems, we only need to localize

the pixels relatively.

Figure 5.2: Model results on multiple human pose

5.3 Quantitative Result

We have table 5.1 is the results of different IoU threshold: 0.5 and

0.75. Consider this table, the results range from 0.6 to 0.74. The area

be calculated in height x width of object. The AP of small and medium

object give low results, show that these object is difficult to detect.

43

APbox APmask

AP 63.395 64.207

AP(IoU=0.50) 74.340 74.304

AP(IoU=0.75) 71.164 72.028

APsmall 30.050 26.386

APmedium 44.432 37.941

APlarge 63.613 64.531

Table 5.1: AP for bounding box and mask of difference IoU and area(HxW)

5.4 Comparative with other method

We can see that the experimental results are inferior to other exist-

ing methods. Compared with aggregation and fine tuning, deepmark

and deepmark++, these methods in turn use main models such as hy-

brid task cascade (this model is a new variant of mask-rcnn, has a large

number of parameters and computational complexity. This is much larger

than the other methods), centermark(this model has the smallest compu-

tational complexity when compared but gives quite good results). The

match-rcnn and our model are both based on the mask-rcnn model with

the same region proposal network and loss function, but different back-

bone(ResNet101+Channel attention of our model vs Resnet50 of original

paper) and training strategy(learning rate and weight decay). Our method

give lower result because we not have stronger computational power to fine

tuning long schedule(original paper have 8 gpus for experiment but we only

have 1 gpu) and the attention module require stronger weight to recogni-

tion what feature is important so it has omitted important information,

making the extracted feature backbone becomes poor, so the model’s re-

sults not as expected.

44

Method APbox

Match R-CNN 0.667

Aggreation and Finetuning 0.764

DeepMark 0.723

DeepMark++ 0.737

Our 0.633

Table 5.2: Compare APbox with other method

Aggreation and Finetuning DeepMark++ Our

Short sleeve shirt 0.867 0.804 0.703

Long sleeve shirt 0.814 0.724 0.673

Short sleeve outwear 0.54 0.347 0.417

Long sleeve outwear 0.823 0.724 0.721

Vest 0.761 0.679 0.656

Sling 0.656 0.422 0.449

Shorts 0.784 0.721 0.629

Trousers 0.81 0.739 0.658

Skirt 0.818 0.74 0.752

Short sleeve dress 0.807 0.721 0.659

Long sleeve dress 0.659 0.542 0.54

Vest dress 0.812 0.71 0.704

Sling dress 0.773 0.605 0.675

Table 5.3: Compare APbox of each class with other method

45

Chapter 6

Conclusion

6.1 Conclusion

This thesis proposes a lightweight method for fashion parsing tasks.

Mean Average Precision is used as our evaluation metric to compare the

predicted bounding box and mask with the ground truth in the image of

the dataset. The methodology we choose can be integrated into any fea-

ture extraction backbone of detection and segmentation model for fashion

parsing tasks by paying attention to important and less important features.

6.2 Future Work

All figures below show failure cases with clothes detection(Figure 6.1)

and mask labelling(Figure 6.2). We can see that, with images that are too

low quality or objects with too narrow an angle of view, are obscured or

with clothing underneath is superimposed by a jacket, the model will not

be recognisable. Our work is also limited by the resolution of the training

data, because training high resolution images require a large amount of

computing power that currently is not available. The mask-rcnn model

through our testing also shows that it does not give good results with the

studied problem and we believe that the above results can be improved by

simpler methods and less computational resources.

46

Figure 6.1: Failure case with detection[10]

Figure 6.2: Failure case with mask labelling

47

Bibliography

[1] He, Kaiming & Gkioxari, Georgia & Dollar, Piotr & Girshick, Ross.

(2017). Mask R-CNN. 2017 IEEE International Conference on Com-

puter Vision (ICCV) 2980-2988. 10.1109/ICCV.2017.322.

[2] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolu-

tional Networks for Biomedical Image Segmentation. ArXiv preprint

arXiv:1505.04597

[3] L. -C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille.

(2018) DeepLab: Semantic Image Segmentation with Deep Convolu-

tional Nets, Atrous Convolution, and Fully Connected CRFs. ArXiv

preprint arXiv:1606.00915

[4] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg (2012)

Parsing clothing in fashion photographs. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 3570–3577.

[5] K. Yamaguchi, M. H. Kiapour, and T. L. Berg. (2013) Paper doll Pars-

ing: Retrieving similar styles to parse clothing items. In Proc. IEEE

International Conference on Computer Vision (ICCV). 3519–3526.

[6] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg. (2014) Re-

trieving similar styles to parse clothing. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) 37, 5, 1028–1040.

[7] S. Liu, J. Feng, C. Domokos, H. Xu, J. Huang, Z. Hu, and S. Yan.

(2014) Fashion parsing with weak colour-category labels. IEEE Trans-

actions on Multimedia 16, 1, 253–265.

48

[8] K. Gong, Y. Gao, X. Liang, X. Shen, M. Wang, and L. Lin. (2019)

Graphonomy: Universal human parsing via graph transfer learning. In

Proc. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 7450–7459.

[9] W. Wang, Z. Zhang, S. Qi, J. Shen, Y. Pang, and L. Shao. (2020)

Learning compositional neural information fusion for human parsing.

In Proc. IEEE International Conference on Computer Vision (ICCV).

5703–5713.

[10] Ge, Yuying & Zhang, Ruimao & Lingyun, Wu & Wang, Xiaogang

& Tang, Xiaoou & Luo, Ping. (2019). DeepFashion2: A Versatile

Benchmark for Detection, Pose Estimation, Segmentation and Re-

Identification of Clothing Images. In Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR).

[11] Tzu-Heng Lin. Aggregation and Finetuning for Clothes Landmark

Detection. ArXiv preprint arXiv: 2005.00419

[12] Sidnev, Alexey & Trushkov, Alexey & Kazakov, Maxim & Korolev,

Ivan & Sorokin, Vladislav. (2019). DeepMark: One-Shot Clothing De-

tection. ArXiv preprint arXiv:1910.01225

[13] Sidnev, Alexey & Krapivin, Alexander & Trushkov, Alexey &

Krasikova, Ekaterina & Kazakov, Maxim & Viryasov, Mikhail. (2020).

DeepMark++: Real-time Clothing Detection at the Edge. ArXiv

preprint arXiv: 2006.00710

[14] Tangseng, Pongsate & Wu, Zhipeng & Yamaguchi, Kota. (2017).

Looking at Outfit to Parse Clothing. ArXiv preprint arXiv:1703.01386

[15] Lin, Tsung-Yi & Dollár, Piotr & Girshick, Ross & He, Kaiming &

Hariharan, Bharath & Belongie, Serge. (2016). Feature Pyramid Net-

works for Object Detection.

[16] He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian.

(2016). Deep Residual Learning for Image Recognition. In Proc. IEEE

49

Conference on Computer Vision and Pattern Recognition, 770-778.

10.1109/CVPR.2016.90.

[17] J. Hu, L. Shen and G. Sun. (2018) Squeeze-and-Excitation Networks,

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 7132-7141, doi: 10.1109/CVPR.2018.00745.

[18] AGGARWAL, C. Neural Networks and Deep Learning: A Textbook,

1st ed. 2018 ed. Springer, 2018.

[19] J.Garbade, M. (2018) How to Create a Simple Neu-

ral Network in Python. KDnuggets. Available at

https://www.kdnuggets.com/2018/10/simple-neural-network-

python.html [October 2018]

[20] VERMA, Y. (2021) A Complete Understanding of Dense Lay-

ers in Neural Networks. DEVELOPERS CORNER. Available at

https://analyticsindiamag.com/a-complete-understanding-of-dense-

layers-in-neural-networks/ [19 September 2021]

[21] Zhukovyts’kyy, Ihor & Pakhomova, Victoria & Domanskay, Halyna

& Nechaiev, Andrew. (2019). Distribution of information flows in the

advanced network of MPLS of railway transport by means of a neu-

ral model. MATEC Web of Conferences. 294. 04007. 10.1051/matec-

conf/201929404007.

[22] Wikipedia Contributors (2021). Sigmoid Function. [online] Wikipedia.

Available at: https://en.wikipedia.org/wiki/Sigmoid function [Ac-

cessed 24 Dec. 2021].

[23] Elhamraoui, Z. (2020). Introduction to convolutional neural network.

Available at https://medium.com/analytics-vidhya/introduction-to-

convolutional-neural-network-6942c189a723. [28 May 2020]

[24] ALBAWI, S., MOHAMMED, T. A., AND AL-ZAWI, S. Understand-

ing of a convolutional neural network. In 2017 International Confer-

ence on Engineering and Technology (ICET) (2017), pp. 1–6.

50

[25] Yani, Muhamad & Irawan, S, & Setianingsih, Casi. (2019). Ap-

plication of Transfer Learning Using Convolutional Neural Network

Method for Early Detection of Terry’s Nail. Journal of Physics: Con-

ference Series. 1201. 012052. 10.1088/1742-6596/1201/1/012052.

[26] Girshick, Ross & Donahue, Jeff & Darrell, Trevor & Malik, Jiten-

dra. (2013). Rich Feature Hierarchies for Accurate Object Detec-

tion and Semantic Segmentation. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition.

10.1109/CVPR.2014.81.

[27] Girshick, Ross B.. Fast R-CNN. (2015). IEEE International Confer-

ence on Computer Vision (ICCV) , 1440-1448.

[28] Weng, L. (2017). Object Detection for Dummies Part 3:

R-CNN Family. Available at https://lilianweng.github.io/lil-

log/2017/12/31/object-recognition-for-dummies-part-3.html. [31

December 2017]

[29] Ren, Shaoqing & He, Kaiming & Girshick, Ross & Sun, Jian. (2015).

Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence. 39. 10.1109/TPAMI.2016.2577031.

[30] Varatharasan, Vinorth & Shin, Hyo-Sang & Tsourdos, Antonios &

Colosimo, Nick. (2019). Improving Learning Effectiveness For Ob-

ject Detection and Classification in Cluttered Backgrounds. 78-85.

10.1109/REDUAS47371.2019.8999695.

[31] Ayanzadeh, Aydin. (2019). A Study Review: Semantic segmentation

with Deep Neural Networks. ArXiv preprint arXiv: 1704.06857

[32] Hui, J (2018) Image segmentation with Mask R-CNN. Avail-

able at https://jonathan-hui.medium.com/image-segmentation-with-

mask-r-cnn-ebe6d793272 [19 April 2018].

51

[33] Abdulla, W (2018) Splash of Color: Instance Segmen-

tation with Mask R-CNN and TensorFlow. Available at

https://engineering.matterport.com/splash-of-color-instance-

segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46. [20

March 2018]

[34] Rothe, Rasmus & Guillaumin, Matthieu & Van Gool, Luc. (2015).

Non-Maximum Suppression for Object Detection by Passing Messages

between Windows. In LNCS. 9003. 10.1007/978-3-319-16865-419.

[35] Huang, G., Liu, Z., and Weinberger, K.Q. (2017). Densely Connected

Convolutional Networks. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2261-2269.

[36] Jung, A., Wada, K., Crall, J., Tanaka, S., Graving, J., Rein-

ders, C., Yadav, S., Banerjee, J., Vecsei, G., Kraft, A., Rui, Z.,

Borovec, J., Vallentin, C., Zhydenko, S., Pfeiffer, K., Cook, B.,

Fernández, I., De Rainville, F., Weng, C., Ayala-Acevedo, A., Meudec,

R., Laporte, M. & Others(2020). imgaug. GitHub. Available at

https://github.com/aleju/imgaug.

[37] Abdulla, W. (2017) Mask R-CNN for object detection and in-

stance segmentation on Keras and TensorFlow. GitHub. Available at

https://github.com/matterport/Mask-RCNN

[38] Lin, Tsung-Yi & Maire, Michael & Belongie, Serge & Hays, James &

Perona, Pietro & Ramanan, Deva & Dollár, Piotr & Zitnick, C.(2014).

Microsoft COCO: Common Objects in Context. ArXiv preprint arXiv:

1405.0312

[39] Desai, Chitra. (2020). Comparative Analysis of Optimizers in Deep

Neural Networks. International Journal of Innovative Science and Re-

search Technology. ISSN No:-2456-2165

	INTRODUCTION
	Motivation
	Related Work
	Objective and Contribution
	Outline

	BACKGROUND
	Neural Network
	Basic Components

	Convolution Neural Network
	Object Detection
	Region Based Convolutional Neural Network(RCNN)

	Image Segmentation
	Mask R-CNN

	METHODOLOGY
	Network Architecture
	Feature extraction
	Feature Pyramid Network
	Channel Attention

	Region Proposal Network(RPN)
	Generating mask

	IMPLEMENTATION DETAIL
	Dataset
	Implementation
	Pre-processing
	Implementation detail

	EXPERIMENTAL RESULT
	Evaluation Metrics
	Qualitative Result
	Quantitative Result
	Comparative with other method

	Conclusion
	Conclusion
	Future Work

