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● Fundamental analysis and technical analysis 
are the most prominent methods.

● Nonetheless, they have significant 
shortcomings.

● Researchers have started to explore more 
sophisticated approaches

Introduction: Background



● Krauss et al. [1] create a profitable trading 
strategy by using an ensemble of different 
models to predict trends.

● Zhang et al. [2] proposed deep and wide area 
network (DWNN), a new type of neural network 
that employ a combination of convolutional 
neural network (CNN) and recurrent neural 
network (RNN).

Introduction: Literature Review



● Makrehchi et al. [3] use labelled social media text as 

inputs.

● In Vietnam, researchers have also started to show 

interest in using deep-learning to predict the local 

stock market [4-7]. 

● Lim et al. [8] create an automated trading strategy 

based on the Ichimoku Cloud for both Japan and the 

USA stock markets.

 

Introduction: Literature Review



● The Ichimoku Cloud, for the most part, is only used 
as an automated trading strategy

● Studies in Vietnam are still lacking
● Most studies conducted in this field use accuracy as 

the main criteria for their proposed models

 

Introduction: Motivation



● Demonstrate how the Ichimoku Cloud trading 
strategy can be implemented in an effective 
deep-neural network

● We propose a combination of a model and a 
practical, profitable trading strategy specialized for 
a niche stock market

● Finally, in this paper we follow a traditional scientific 
framework while evaluating the performance by the 
standards of the modern financial world

 

Introduction: Objectives and contribution
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Weaknesses:  Exploding and Vanishing Gradients

Recurrent Neural Network



LSTM



Ichimoku Cloud: Candlestick 



Ichimoku Cloud: Visualization



Root Mean Square Propagation (RMSprop)
Resilient backpropagation (Rprop)

● Address the wide difference in 
gradients’ magnitudes

● Requires large batch size
● Slow when randomness in stochastic 

gradients descent is big

Rprop to RMSprop
● Adopting the use of the sign 

of gradient from Rprop along 
with the efficiency of 
mini-batches update and 
averaging over mini-batches



Categorical cross-entropy and Robust Scaler

Categorical cross-entropy
Loss function for multi-class 
classification tasks with discrete 
values

Robust Scaler
Standardization is biased to outlier 
values. Robust data scaling 
addresses this.



Procedures
03



Procedure: Data sample, baselines and technology

Data sample: VN30-index constituents
Baseline:The Experiment is carried on 
Google Colab, with the assistance of the 
following libraries:

● Market indexes, safe investments
● Same model but without the Ichimoku 

Cloud
The Experiment is carried on Google 
Colab, with the assistance of the 
following libraries:

● Pandas
● Numpy
● Tensorflow
● Warnings



Methodology: Dataset Division



Methodology: Features and target variable

Features: 240 timesteps and 5 accompanying features with 
each timestep:

● Current Closing Price / 10th Last Day Closing Price – 1
● Conversion line / Base line
● Conversion line / Closing price
● Leading Span A / Leading Span B
● Leading Span A / Closing Price

Target variable
Define the cross-sectional median at time t+10. Split the dataset 
into 2 categories:

● Class 1 (if the corresponding stock return after 10 days is 
bigger than the cross-sectional median value of all stocks 
at time t)

● Class 0 (if the corresponding stock return after 10 days is 
smaller than the cross-sectional median value of all stocks 
at time t)



Methodology: Model specification

● 2 layers of 25 LSTM cells each that 
precede a dropout layer of 0.1 and a 
dense layer with 2 output nodes.

● Loss function: categorical cross-entropy
● Optimization: RMSprop
● Batch size: 64 with epochs=200
● Early stop: patience of 10 epochs, 

monitoring the validation loss
● Train- validation ratio: 0.2



Methodology: 
Trading strategy



Results
04



Experimental Results: Training Performance



Experimental Results: Financial Performance
With Ichimoku Without Ichimoku

Year Sub-investment 1 Sub-investment 2 Sub-investment 3 Average Sub-investment 1 Sub-investment 1 Sub-investment 1 Average

2015 +33.21% +16.35%) +46.0% +31.849% -22.59% -30.24% -10.89% -21.239%

2016 +17.24% +6.89% +22.12% +15.418% -19.96% -18.3% +3.14 - 11.708%

2017 +21.41% +27.46% +16.74% +21.87% +24.85% +58.4% +62.07% + 48.436%

2018 -23.56% -22.86% +4.78% -13.878% -19.42% -27.83% -12.9% -20.049%

2019 +10.56% +22.31% +4.11% +12.328% +8.65% +5.82% -0.88%) +4.529%

2020 +25.12% +14.32% +14.97% +18.134% -2.72% -25.34% -23.44% -17.168%



Experimental Results: Financial Performance

This paper’s 
strategy

VN30-Index VN-Index Vietnam 1-year 
saving

Gold Vietnam 10-year 
Treasury Bond

2015 +31.849% -1.01% +6.12% +6.2% -11.59% +6.43%

2016 +15.418% +5.48% +14.82% +6.5% +8.63% +7.03%

2017 +21.87% +55.29% +48.03% +6.5% +12.57% +6.01%

2018 -13.878% -2.36% -9.32% +6.3% -1.15% +4.09%

2019 +12.328% +2.82% +7.67% +6.8% +18.83% +4.88%

2020 +18.134% +21.81% +14.87% +4.9% +24.43% +3.15%

Average +14.287% +12.01% +13.7% +6.2% +8.62% +5.31%
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