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Abstract

Offline signature verification is one of the most challenging tasks
in biometric authentication. Despite recent advances in this field using
image recognition and deep learning, there are many remaining things
to be explored. The most recent technique, which is Siamese
Convolutional Neural Network, has been used a lot in this field and has
achieved great results. In this thesis, we develop an architecture that
combines the power of Siamese Triplet CNN and a stack Fully
connected neural network for binary classification to automatically
verify genuine and forgery signatures even if the forged signature is
highly skilled. In the challenging public dataset for signature
verification BHSig260, our model can achieve a low FAR = 13.66,
which is slightly better than the SigNet model. Once the final model is
trained, the one-shot learning should make it possible to determine if
the input image is genuine or fraudulent just from one base image.
Therefore, our model is expected to be extremely suitable for practical
problems, such as banking systems or mobile authentication
applications..., in which the amount of data for each identity is limited
in quantity and variety.

Keywords: one-shot learning, Offline signature verification,
Siamese Convolutional Neural Network, triplet loss.
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1. Introduction

1.1. Signature verification overview

Biometrics technology is widely used in recent security systems. The aim
for this system is to identify a person based on their physiological traits, such as
fingerprint, face, iris, etc, or behavioral traits like handwritten signature and voice.
Those traits are unique among individuals and very hard to fake or steal.
Therefore, Most security systems nowadays always apply biometrics technology
to enhance the security.

Biometrics system is mainly used in two scenarios: verification and
identification. In the first case, the user of the system claims his or her identity,
then provides the biometric sample. The role of the verification system is to check
if the user is indeed who he or she claims to be. On the other hand, the user
provides the biometric sample for the identification system to identify it among all
other users enrolled in the system.

In recent years, modern methods for identity authentication systems have
become increasingly popular among people. However, the use of documents is still
familiar with many companies and businesses. Therefore, the need for an accurate
handwritten signature verification system of businesses is always a top concern.

A signature is a handwritten depiction of a person's name, nick name or
symbol. The traditional function of signature is to permanently affix to a
document, which plays a role as a physical evidence of the author’s personal
witness and certification of the content. One of the reasons for its widespread use
is that it is simple, fast, non-invasive and people are familiar with it in daily life.

Signature verification system aims to automatically discriminate if a
biometrics sample is indeed of a claimed individual. In other words, it is used to
classify if a signature is genius or fraud.

The fraud signatures, which are called forgeries, are commonly classified in
three types:

® Random (blind) forgery: In this case, the forger has no information about the user’s
name or signature, and uses his or her own signature instead. It is the easiest to recognize
by the clear difference between the overall shape of the forger's and the original's
signature.
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o Simple forgery: In the simple case, the forger knows only the user’s name, and creates
the forgery signature of the user’s name with his or her own style. This second case has
more similarities to the genuine one, particularly if the users sign with their full name.

o Skilled forgery: This case is the hardest to recognize because the forgeries
are made with full knowledge about the user’s name and signature shape.
Most effective verification system should detect this case.

Original Signature Blind Forgery

Skilled Forgery Simple Forgery

Figure 1. Example of different kinds of forgery from CEDAR dataset

Based on the signature acquisition method, most recent signature verification systems are
categorized in two types: online (dynamic) signature verification and offline (static) signature
verification. In the online method, the user's signature is acquired by using an acquisition device
like a digitizing table. The online signatures are collected as a sequence over time and contain
numerous information, such as pen position, pen inclination, pressure, etc. On the other hand,
signatures acquired from the offline method are the digital images of the user’s signatures signed
in the document after the writing process has completed.

The both above mentioned methods are widely used in many studies. When the online
method can contribute more diverse features for the verified process, it requires significant
devices and techniques to acquire data, which makes the system more expensive and
cumbersome. On the other hand, the data from offline methods are easier to obtain, and the image
digital signatures are more suitable for practical problems. However, the lack of informative
features compared to the other method and the quality instability of image data make the
verification process more challenging.



Final report

1.2. Problem and Challenging

A. Problem statement:

The problem of offline signature verification is commonly modeled as follows: given a
set of genuine signatures of users, a model is trained to extract meaningful features from them.
Then, the model is used for verification: a user claims their identity and provides one or some
new signatures, which will be used by the model to classify those signatures as genuine (belong to
the claimed individual) or forgery (created by someone else).

There are two main approaches for this task in literature, which are Writer-Dependent and
Writer-Independent:

e In a Writer-Dependent approach, each user contributes a set of their genuine signatures as
the training data (and, often, some genuine signatures from others or the skilled forgery
signature as negative samples) to extract some identical features from those signatures for
training a binary classification. This approach is very straightforward and usually
performs very well on verifying the signature of the user who has their signature trained
through the system. However, real-world signature verification, the process of setting
new user enrollment is very frequent; and for each new user enrollment, the model must
be trained again to learn the features of them. That leads the system to become more and
more cumbersome and infeasible to maintain, especially when there may be millions of
users in the system.

e On the other hand, Writer-Independent try to learn an efficient representation of
signatures from a set of numerous genuine and forged signatures from a huge amount of
people. This method is expected to extract distant features between genuine and fraud
signatures in general, regardless of signer’s factor. Therefore, it is highly flexible,
scalable and practical compared to the previous approaches. However, with the variety of
linguistic features and style of signatures, it is so rich and challenging to create a
universal discriminative representation of signatures to achieve this goal, and no
particular feature extraction method has been found to solve this problem, according to
[13].

B. Challenges:

In signature verification, one of the most important and familiar challenges for this task is
that handwritten signatures have high intra-class variability, which means there are always
differences between each handwritten signature from the same person. Compared to other
biometric traits like fingerprint, iris or face, handwritten signatures show a large variability
between samples, which can be illustrated in Figure 2. This issue leads to an aggravation when
considering skilled forgeries, especially with the presence of low inter-class variability in the
dataset. In short, when there are large differences between each signature sample (high intra-class
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variability) and the forgéies are very skillful that they are nearly the same with the genuine (low
inter-class variability), the possibility of confusing the forgeries with the genuine is higher.

Figure 2. Superimposed examples of multiple signatures of the same user, which present a high
intra-class variability of the signatures of the user [3].

The second challenge when training an automatic signature verification system comes
from the presence of particle knowledge during training. In the realistic scenario, we have only to
access genuine signatures for users enrolled in the system during the training phase, according to
[3]. During operations, however, we want the system to not only be able to accept the genuine,
but also to reject forgeries. To solve that, the forgery signatures for each user should be required
for a better classification. But in general, it is not reasonable to require users to provide signatures
that forge their own. Even if they can be collected and created from the service provider or from a
third party, it would be a challenge to create a good forgeries data which is good enough to be
absolutely distinguishable from the genuine signatures.

Thirdly, the amount of training data is always being considered. During the enrollment
process in the real application, users are often required to supply only a few samples of their
signatures. In the meantime, some approaches like the Writer-Independent approach need a large
enough amount of data to perform well. That’s why it is hard to make an effective system with the
very limited data collected from enrolled users in a real case scenario. Even if there is a large
number of users supplying their signatures to the system during the training phase, the
performance of the classifier needs to be very good for the new user, for whom supply only few
samples of signatures.

Last but not least, like the face recognition system, an effective real-world signature
verification system should be able to deal with the one-shot learning problem. Which means the
verification application should instantly classify the genuine and fraudulent signatures of a user
from just one genuine signature of that individual. However, deep learning algorithms do not
work well with a very small dataset, especially if you only have one training example.
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1.3. Idea and Motivation

In general, signature verification systems have two phases: feature extraction and
classification. In the first phase, the feature obtained from the extraction must be meaningful
enough to represent the distinctive features of each individual (Writer-Depent approaches) or
show the clear difference between the genuine and forged signatures (Writer-Independent
approaches). Then, based on those features, a classifier will be used to make the final prediction.

Since our task focuses mainly on off-line signature, the feature extractor based on a deep
CNN (Convolutional Neural Network) may perform better in image data, which is shown through
the survey of Hafemann et al. [13].

To overcome the first challenge about high intra-class and low inter-class variability of
handwritten signature, a method to transform the original signature’s representation into a new
one in which the difference between the genuine and the forgeries becomes more obvious can
make a big impact on the system performance. In more detail, if this transformation can make the
representative factor between the genuine and fraudulent signatures become more clear that the
dissimilar representative factor such as feature distance between same genuine signatures is
smaller when this one between the genuine and the forged signatures is larger, this model may
perform well with one-shot learning problem. This idea has been shown in a recent effective
approach for face recognition, FaceNet [9], which will be described later.

One more thing to point out is that in most authentication systems, the ability to
accurately detect fraudulent identities is more important than the ability to identify a visitor's
identity . For example, in an authentication system that uses fingerprints, it is sometimes
acceptable that the system may not recognize the user's fingerprint on the first few attempts, as
long as it is able to recognize and prevent complete access of any fake fingerprints. However, if
there is a possibility that it could misinterpret a fake fingerprint as the real one and grant access to
that forged fingerprint, it would be a really big deal and this system would have to upgrade its
security capabilities.

1.4. Related work

In 2008, Impedovo et al. [1] provided a state of art in automatic signature
verification, with specific attention to most outstanding advancements in machine
learning. Then, Shah et al. [2] presented a survey about the critical evaluation of
15 techniques applied on offline signature verification systems, which classify
each work according to the feature extraction methods, classifiers and overall
strengths and limitations of the systems. However, these reviews do not update to
capture more recent trends, in particular the usage of deep learning methods,
which have demonstrated superior results in multiple benchmarks.

Comprehensive surveys and state of the art reviews of the recent literature
can be found in the works of [3, 4]. According to these reviews, most deep
learning methods for this task can archive results with high accuracy on a large
dataset. Beside, among numerous researchers, a growing number of researchers

10
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have realized that "learning with small datasets" will be a key factor for the
success of signature verification in real practical scenarios. Authors such as
Bouamra et al. [5] try to train the model with a small number of signature samples
through a one-class support vector machine (OC-SVM) classifier. Hafemann et al.

Type Features and algorithm #Refs FRR FARil1ed AER EER
WD [7] Graph Matching 16 7.7 8.2 7.9

WI [38] Morphology (SVM) | 12.39 11.23 11.81 11.59
WI [39] Surroundness (NN) 1 8.33 8.33 8.33
WD [5] Chain code (SVM) 12 0.36 7.84 7.84

WD [25] Curvelet transform (OC-SVM) 12 - - 5.6 -
WD [28]  Feature learning (SVM) 12 - - - 4.63

[6] propose a solution based on a meta-learning approach.

Table 1. State-of-the-art performance on CEDAR dataset in [3].

In recent years, many interesting techniques do not rely on hand-engineered
feature extraction anymore. With the rise of many deep learning approaches, the
ability to execute more meaningful feature representation from raw data (like
pixels, in case of images) by itself can promote faster and efficient learning, which
helps researchers to save significant amounts of work. In this field, Khalajzadeh et
al. [7] applied CNNs for Persian signature verification, but only considered
random forgeries in their tests.

Koch et al. [8] firstly propose an approach about Siamese network and
one-shot learning for image recognition. This approach outperformed many
available methods by previous authors. Moreover, they have argued that this
approach can extend in other domains, especially for image classification.

Method Test
Humans 95.5
Hierarchical Bayesian Program Learning 95.2

Affine model 81.8

Hierarchical Deep 65.2

Deep Boltzmann Machine 62.0
Simple Stroke 35.2

1-Nearest Neighbor 21.7
Siamese Neural Net 58.3
Convolutional Siamese Net 92.0

11
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Table 2. Comparing best one-shot accuracy from each type of network against Convolutional
Siamese Net [8].

Schoff et al. [9] came up with the same idea of applying the Siamese
network, but in a different way. In this research, they propose a new system called
FaceNet, which learns a way to map face images to a compact Euclidean space
where distances directly correspond to a measure of face similarity. They achieved
high accuracy (95.12% =+ 0.39) in their published dataset, and also introduced new
concepts about harmonic embeddings and harmonic triplet loss to deal with the
face classification task.

> | DEEP ARCHITECTURE |0 |L2|o)| ¢ | T:L“;':t
Batch .
Figure 3. Model structure of FaceNet
Negative m
Anchor o LEARNING e
- — —— Negative
—® Anchor g
Positive Positive

Figure 4. Intuition of how Triplet loss work on FaceNet

The above approaches [8, 9] both apply Siamese structure including deep
CNNs for getting a new representation of image feature, which will be used to
classify tasks by comparing them over their distance between each other in new
vector space. Those techniques are very flexible and do not need a dataset with
millions of samples to make them work.

Dey et al. [10] applied Convolutional Siamese network with contrastive
loss function for writer independent offline signature verification and their system
performs very well on cross dataset for this task. In addition, their approach has
surpassed the state-of-the-art result on most of the benchmark Signature datasets,
which is encouraging this technique for further research. However, when
performing evaluation across different datasets, the accuracy of their system
gradually decreases on the datasets which have more distinctive features compared
to the training dataset.

12
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Databases State-of-the-art Methods #Signers Accuracy FAR  FRR

Word Shape (GSC) (Kalera et al. [5]) 55 78.50 19.50 22.45

Zernike moments (Chen and Srihari [22]) 55 83.60 16.30 16.60

. Graph matching (Chen and Srihari [12]) 55 92.10 820 7.70

CEDAR Signawure Database ¢ 0 L tures (Kumar et al, [B) 55 91.67 833 833
Dutta er al. [13] 55 100.00 0.00 0.00

SigNet 55 100.00 0.00  0.00

Ferrer et al. [7] 160 86.65 12.60 14.10

Vargas et al. [23] 160 87.67 14.66 10.01

. Solar et al. [24] 160 84.70 1420 16.40

GPDS 300 Signature Corpus Kumar et al. [8] 300 8624 1376 13.76
Dutta et al. [13] 300 88.79 1121 11.21

SigNet 300 76.83 23.17 23.17

SigNet (unskilled forged) 300 65.36 34.64 34.64

GPDS Synthetic Signature Corpus Duttggl\?i.t (13] iggg 32_6[2 ig;: iggi
Pal et al. [11] 100 66.18 33.82 33.82

Bengali Dutta et al. [13] 100 84.90 15.78 1443

SigNet 100 86.11 13.89 13.89

Pal et al. [11] 100 75.53 24.47 2447

Hindi Dutta ef al. [13] 100 85.90 13.10 15.09

SigNet 100 84.64 15.36 1536

Table 3. Comparison of SigNet with the state-of-the-art methods on various signature databases

in [10].

Chhabra et al. [11] have constructed an interesting method based on the Convolutional
Siamese Net architecture from FaceNet [9] and triplet loss concept to solve the one-shot problem
for off-line signature verification. Their model has high accuracy and generalizability on the
public signature database. However, they do not show the evaluation result in various databases
and the performance comparison with other state-of-the-art methods.

13
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Inspired by the work of Chhabra et al. [11], we use the similar network
architecture of Deep Triplet Ranking CNN Network, which is illustrated in Figure 5, and add
some modifications to try to increase the robustness and the performance.

14
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In our work, we try to improve the above architecture by applying more robust transfer
learning models and more efficient classification methods. We also evaluate it on more different
datasets to see if it is actually generalizative.

Please note that our work focuses mainly on forgery detection in signature verification
systems with one-shot learning strategy, which means our model may not perform well on
recognition identity from signature but to eliminate forgeries as much as possible.

The rest of this thesis is organized as follows: In Section 2, we will give a detailed
overview of the public datasets used and present our methods for preprocessing. Section 3
describes our network architecture and some relative methods. Section 4 is where our
results on the evaluation process will be shown and compared with other approaches. Finally in
Section 5, we conclude our result and define the future work.

2. Dataset and Preprocessing

2.1. Dataset overview

For comparison purposes, we decided to use some well-known public dataset from many
other studies in this task. There are 3 public datasets used in our thesis: CEDAR signature dataset,
SigComp 2009-2012 signature dataset and BHSig260 signature dataset. The reason we choose
those dataset is that they are public, free to access, and contain skilled forgeries.

2.1.1. CEDAR

15
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CEDAR Signature is a dataset of off-line handwritten signatures. In this, each of 55
individuals contributed 24 signatures thereby creating 1,320 genuine signatures. Some were asked
to forge three other writers’ signatures, eight times per subject, thus creating 1,320 forgeries. Each
signature was scanned at 300 dpi gray-scale and binarized using a gray-scale histogram. The
database has 24 genuines and 24 forgeries available for each writer.

N2 2

\ y
/ o \ 2
i 4 \ -

a) genuine signatures

b) forged signatures

Figure 6. Examples of CEDAR signatures.

In this dataset, salt pepper noise has been added and the signatures are skewed in different
directions.

2.1.2. BHSig260

BHSig260 dataset contains the offline signatures of 260 persons, in which 100 persons
were signed in Bengali and the remaining were signed in Hindi. For each of the signers, 24
genuine and 30 forged signatures are available. This results in 2400 genuine signatures and 3000
forged signatures in Bengali, and 3840 genuine and 4800 forged signatures in Hindi. Our
experiment is only in the Bengali signatures datas from this dataset.

Even though these signatures are already in binary (black and white) form, they still
contain salt pepper noise with sparse density compared to CEDAR.

16
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Figure 7. An example of signature in BHSig260 with inverted index value. We can see that there
are some white small dots (salt noise) in the background of the image.

2.1.3 SigComp2013

SigComp is the public dataset used in the ICDAR Signature Verification Competition.
This competition always updates the dataset every year the competition is held. Therefore, there
are some versions of the available dataset from this competition in various languages and styles.
Here, we use SigComp2013, which is a combination of SigComp2009 and SigComp2011, for the
training phase and evaluate it on the test set from SigComp 2010 [15]. However, in those datasets,
we only use the offline Dutch signatures of SigComp2011.

Number of Genuine Forgeries for
Dataset Name Signature for 9
Users each user
each user
SigComp2009 12 5 150
SigComp2011 54 12 24

Table 4. SigComp2013 breakdown.

2.2. Preprocessing

First, we can see that color factor is not important when comparing the dissimilarity of
genuine and fraudulent signatures. That is why we convert all signatures to grayscale.

As mentioned earlier, our dataset contains salt pepper noise in most signature images.
However, the noise density in each image is quite sparse. By using a Median filter with kernel
size 3x3, most salt and pepper noise are easily eliminated.

ml7lalslz3lz3]l2]2 2 | min

38fl22flwo|l7l4]3]3]2 ’ 22
10

73leo|20]13]7|5]3]2 ]

6o |eo|s2]20]12]7]4]3 22 | median

29 =
62|66 |66 |59 )27 |11 ]| 7 | 3 S |

66 |60 |60 |66 | 62|25 8 | 4 60

58 |54 |56 |62]|74)42|13] 6 3 | max

4914951 |54 |58 )50]|25] 9

Original image Sort and rank Median image
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Figure 8. Median filter illustration.

After removing noise, we use Otsu threshold method to convert the gray images to be the
black and white (only including the pixel value of 0 or 255). In addition, we invert the image to
make the background become zero and only the signature’s area has pixel value 255.

Finally, we resize all signature images to a fixed size for feeding into the network. With
the signature of CEDAR and SigComp, we decide to use the shape 128x128 as the work on [11].
However, most images do not have square size, and some of them have a very long width
compared to the height. To ensure that the overall shape of the signature in the image is not
deformed after resizing, we add the zero-padding (black padding) to change the shape of the
rectangular image into square shape before resizing it into the shape 128x128 like the other
dataset.

Figure 9. An example of BHSig260 that has a long width.

(b)

Figure 10. Resizing image with (a) and without padding (b).

18
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3. Methodology

3.1. Deep triplet ranking CNN architecture
3.1.1. Siamese Network with image

The Siamese nets were first introduced in the early 1990s by Bromley and LeCun to solve
signature verification as an image matching problem [16]. Siamese network is a class of neutral
network architectures that contain two or more identical subnetworks. The “identical” here means
each subnetwork has the same configuration with the same parameters and weights. Parameter
updating is mirrored across all subnetworks.

Input Hidden Distance Output
layer layer layer layer

Figure 11. A simple 2 hidden layer siamese network for binary classification with logistic
regression p. The structure of the network is replicated across the top and bottom sections to form
twin networks, with shared weight matrices at each layer [8].

19
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The idea behind this architecture is that with the sysmetric architecture, each subnetwork
can compute a higher feature representation of multiple inputs at the same time. Then, those
feature representations go through a distance layer to compute the similarity between them and an
energy function at the top will make the prediction from that similarity (Figure 11). By sharing
weight between identical subnetworks, this technique guarantees that two extremely similar input
images could not be possibly mapped by their respective network to very different locations in
feature space. Meanwhile, the network is symmetric, so that whenever we present two distinct
images to the twin networks, the top conjoining layer will compute the same metric as if we
present the same two images but to the opposite twins. With these characteristics, the Siamese
architecture is very effective for computing the similarity between data with different classes.

From that idea, the combination of the Siamese net structure with an efficient deep neural
network for image features extraction, such as CNN, is very suitable for computing the similarity
and dissimilarity between images. Computing the ‘distance’ between different samples in the high
level feature representation with this technique does not require a huge amount of data but still
performs well.

11 % 11 Convolutional Layer + ReLU 3 % 3 Convolutional Layer + ReLU Fully Connected Layer + ReLU
5 x & Convolutional Layer + ReLU F.C. Layer + ReLU + Dropout Local Response Normalisation
2 % 2 Max Pooling Layer

Dropout

A

Figure 12. Example of Siamese CNN model for computing signature similarity in SigNet. [10]

20



3.1.2. Architecture breakdown
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Like the architecture introduced by Chhabra et al. [11], our system uses 3 sysmetrics deep
Convolutional Neural Networks played as the subnetworks in the Siamese architecture. Instead of
building a new deep CNNs and training it from scratch, we will use the Xception model [12], of
which overviewed architecture is illustrated in Figure 13.

Because the Xception model has been pre-trained in ImageNet, we perform a
transfer-learning strategy to reduce time for the training process: first we update the model with
the weight trained on ImageNet dataset and remove the fully-connected layers on top, then we
freeze all layers except the exit flow for train on our dataset. This strategy helps our model have
the ability to extract the high feature representation of the image (from the freezed layers) while
still being able to learn the important feature from the signature image in our dataset.

Entry flow

Middle flow

Exit flow

299x299x3 images

]
Conv 32, 3x3, stride=2x2

19x19x728 feature maps

]

ReLU

|
Conv 64, 3x3

ReLU

SeparableConv 728, 3x3

19x19x728 feature maps

ReLU

]
|SeparableConv 128, 3x3 |
|
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ReLU
SeparableConv 128, 3x3

1
|MaxPooling 3x3, stride=2x2 |

Q

RelU
SeparableConv 256, 3x3
|
Conv 1x1 ReLU
stride=2x2| | SeparableConv 256, 3x3
I
[MaxPooling 3x3, stride=2x2 |
+
ReLU
SeparableConv 728, 3x3
1
Conv 1x1 ReLU
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SeparableConv 728, 3x3

1
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+
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ReLU

SeparableConv 728, 3x3

Conv 1x1
stride=2x2

ReLU

SeparableConv 728, 3x3

-

19x19x728 feature maps

Repeated 8 times

RelLU

SeparableConv 728, 3x3
1

ReLU
SeparableConv 1824, 3x3

I
[MaxPocling 3x3, stride=2x2 |

+

SeparableConv 1536, 3x3
RelLU

|
SeparableConv 2848, 3x3

RelLU

I
GlobalAveragePooling |

2048-dimensional vectors

Optional fully-connected
layer(s)
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Figure 13. Xception architecture overview.
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The reason we choose Xception is that it outperformed some most popular recent
networks like VGG-16, ResNet and Inception V3 (Table 5). Moreover, it has fewer parameters
than Inception V3, which can save more time on the training process (Table 6).

Top-1 accuracy Top-5 accuracy

VGG-16 0.715 0.901
ResNet-152 0.770 0.933
Inception V3 0.782 0.941
Xception 0.790 0.945

Table 5. Classification performance comparison of Xception with the other.

Parameter count Steps/second
Inception V3 23,626,728 31
Xception 22,855,952 28

Table 6. Size and training speed comparison

Given the architecture details for the extraction model (see Figure 14), our model accepts
the input which has a form of three signature images categorized as: anchor (an individual’s
genuine signature), positive (another genuine signature of the same individual) and negative (a
forged signature of the same individual). After the preprocessing, those triplet images are fed
through the triple subnetworks in which each is constructed by transfer-learning Xception top up
with a stack of BatchNormalization layer and a fully-connected neural network with ReLU
activation function.

When the model gets the new feature representation (embedding) of each image in the
triplet, a Global max pooling layer is used to reduce the shape of them to 1 x n matrix. After
being concatenated, our network uses a Lambda layer to perform both the distance computing
process and triplet loss calculating process.

22
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Positive Anchor Negative

embedding embedding embedding
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Figure 14. Our Deep triplet ranking CNN architecture with Xception.
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For the optimization phase, we use Adam Optimizer with the learning rate equal to le-5
and mean absolute error for backpropagation to get the final encoding.

Layer (type) Output Shape Param # Connected to

anchor (Imputlayer)  [(Nome, 128, 128, 3o
positive (InputLayer) [(None, 128, 128, 3) ©

negative (InputLayer) [(None, 128, 128, 3) ©

sequential (Sequential) (None, 4, 4, 1024) 22967848 anchor[@][e]

positive[@][@]
negative[@][0]

Global_anchor (GlobalMaxPooling (None, 1024) [} sequential[e][@]
Global_positive (GlobalMaxPooli (None, 1824) 5} sequential[1][@e]
Global_negative (GlobalMaxPooli (None, 1824) 2} sequential[2][e]
concatenate (Concatenate) (None, 3072) 2} Global_anchor[@][@]

Global_positive[e][®]
Global_negative[e][@]

lambda (Lambda) Q) 5} concatenate[@][8]

Total params: 22,967,848
Trainable params: 6,851,072
Non-trainable params: 16,116,776

Figure 15. Structure and layer configuration of our triplet CNN architecture

3.1.3. Triplet loss

The triplet loss using for this architecture is similar to the triplet loss using in FaceNet
[10], which is formulated as:

N :
L, 2, 5, ) = £ Y max { DS, f68) ) = D), f()) + 0, 0} (1)

where,

f(x) refers to an embedding of the image x

a p n . .. . . . .
x, x, x are the anchor image, positive image and negative image, respectively
D(f(x"), f(x)) is the Euclidean distance between the f(x")and f(x")

a is a constant (or margin) used to make sure that the network does not try to optimize towards

the case D(f(x,), f(x})) = D(f(x), f(x)) = 0.

3.1.4 Triplet selection (triplet mining) method
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In FaceNet, the authors announced that the triplet selection method is crucial for the
model to ensure that it can convergence fase. Looking at the triplet loss equation above (1), let us
call the L2 distance between the anchor and the positive is positive distance ( d(a,p) ) and
between the anchor and the negative is negative distance ( d(a,n) ). There are some possibility
when forming a triple image input, which can be categorized into:

e easy triplets: triplets which have a loss of 0, because:
d(a,p) + margin < d(a,n)
e hard triplets: triplets where the negative is closer to the anchor than the positive:
d(a,n) < d(a,p)

e semi-hard triplets: triplets where the negative is not closer to the anchor than the
positive, but which still have positive loss:

d(a,p) < d(an) < d(a,p)+ margin

Easy
negatives

Semi-hard negatives

Hard negatives

Figure 16. Regions of embedding space for negatives.

According to the authors of FaceNet, avoiding selecting easy triplets can help a lot since
the model would not learn anything from them. Therefore, with our dataset, we decide to generate
all triplets before training instead of doing online mining like the original authors. However, our
datasets contain almost skilled forged signatures and are categorized by each user. That’s why we
select each triplet such that all of them come from the same user to decrease the chance of getting
an easy triplet.
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3.2. Classification model

From the triplet net, we only use the Sequential part (see Figure 14). The purpose of
doing triplet loss in this architecture is to update the weight of the sequential part so that the
embedding images have adjusted distance to become closer if they are genuine, or become further
away from the forgeries.

Instead of using the embedding to classify, the authors in [11] have the idea to detect
forgeries and genuine by calculating the vector difference between those embedding and treat
them as the feature set for classification. According to their methods, they first use the Sequential
part as an encoder to get the embedding of all genuine and forgeries. After that, they arrange
those embeddings in a pairwise manner where each observation is a pair of images, either both of
a person’s genuine signature, or one of the person's genuine signature, and the other as a forged
signature of that person. These will have labels (class) genuine or fraud (0 or 1) assigned to them
respectively. They use cross validation to get to the final classifier model taking the
corresponding differences between the embeddings of each of the pairs (1024 length difference
vector of embeddings) as the feature set and the class labels (genuine/ fraud) as the dependent
variable y.

Other Genuine
Embedding Label 0
- 1024 length vector of differences |——
Genuine Forged?
Embeddin Classifier [———>
g Label 1 Genuine?
—> 1024 length vector of differences
Forgery
Embedding

Figure 17. Classification flow illustration.

The authors in [11] use logistic regression as the classification for this phase. However,
we construct a new binary classification with Fully-connected Layer and ReLU activation
function, which is top-up with sigmoid function to calculate the probability that a signature is
forged or genuine.
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Figure 18. Our Binary Classification model structure.

We optimize this classification with Adam optimizer and use binary cross entropy for
computing loss value.

3.3. Final model architecture

After training Deep Triplet CNNs model and the classification, we only use the weight of
the Sequential part in the Deep Triplet model (see Figure 14) for constructing the final model, as
discussed in [11]. The idea is that the Sequential part in the Deep Triplet model will be an encoder
to encode every image that goes through the encoder and return the embedding version of them.
After that, we create pairwise with the strategy mentioned above and feed them to the
classification.

With the evaluated data, first we need to perform preprocessing for them. Then we create
pairs like when we train the classifier and label them. Finally, the new feature from pairs set and
label sets go through the classifier to get the final result.

In addition, when this model is used in real applications, they do need more data to train
anymore if they have already performed well in training and evaluated phase. The ideal model
constructed from our architecture requires only one genuine signature image for each new user.
This image should perform exactly the same preprocessing method and feed through the encoder
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to get the embedding. Then this embedding will be stored in the database and be marked by an id
or any key to query in future. Moreover, we will call them the base signature for each user.

When a new signature image is attempted on the system, if the owner of the new
signature claims to be anyone in the system by promoting the id, the system will use that id to
track and query the base embedding out for comparison. The system then uses the encoder to get
the embedding of the new signature image, and get the vector’s difference between the
embedding of the base signature and the new signature. Lastly, the classifier will use this vector;s
difference as an input to predict the probability if the new image is a forged signature or not. The
higher the value of this predicted result, the higher the probability that the new signature is a fake
one.

embedding | frages embedding |

. embedding | s embedding

1024 length vector of differences 1024 length vector of differences

classifier classifier

Figure 19. Testing process of determining whether signature is genuine or fraud

3.4. Evaluation methods

In the Triplet CNN model, we try to minimize the triplet loss as close to zero as possible.
Therefore, our model will achieve its best effect when all the triplet embeddings attained through
it (which we call valid triplet) can satisfy:

d(a,p) < d(a,n)

To know if our model can satisfy the above condition, we define a simple accuracy
equation for our model as:

number of valid triplets (2)

Accuracy = total number of triplet
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As we mentioned earlier, our model focuses mainly on detecting forgery signatures
instead of identifying the user’s identity. With that mindset, there is a class that is more important
than the other, making the accuracy metric and the normal error rate computation not really
suitable for our problem. Instead, we use F-beta Score and Precision - Recall Curve to evaluate
our classification model.

To use two above evaluate metrics, we need to form a confusion matrix (Figure 20),
which is calculated as follow:

Predicted
Megative Positive
-% True False
% Negative Positive
= (TN) (FP)
™
5
T
=
w False True
= Negative Positive
=]
a (FN) (TP)

Figure 20. Illustration of Confusion matrix of sklearn.metrics in python libraries.

e F-beta Score: From confusion matrix (see Figure 20), we can calculate the F-beta Score
as:

precision x recall

Fro = (146%)— —
beta = (1459 )Bz*preC@szon+?”€Cﬁtll

where,

precision = TP / (TP + FP) recall = TP/ (TP + FN)

The more we care about precision, the lower beta should be. Vice versa, the more we care
about recall, the higher beta should be.
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Because we care more about the precision (also called positive predictive value), which is
the ratio between the number of correct positive predictions and the total number of
positive predictions, using 0 < beta < 1 may be good. However, we still use
Precision-Recall Curve for evaluating and F1 Score for finding the best threshold.

e Precision - Recall Curve:

According to the sklearn library in python, “The precision-recall curve shows the tradeoff
between precision and recall for different thresholds. A high area under the curve
represents both high recall and high precision, where high precision relates to a low false
positive rate, and high recall relates to a low false negative rate. High scores for both
show that the classifier is returning accurate results (high precision), as well as returning
a majority of all positive results (high recall)”. Using this curve, we can see the trace-off
flow between precision and recall when we change the threshold many times. From that,
we can even decide the best threshold to use instead of the default threshold (0.5).
Moreover, we will use the Area Under the Curve (AUC) metric instead of the accuracy
metric.

We use the basic evaluation index like False Positive Rate (FPR), which is calculated as
the number of incorrect positive predictions divided by the total number of negatives (the same as
the definition of FRR). Similarly, the False Negative Rate (FNR) is calculated as the number of
incorrect negative predictions divided by the total number of positives (the same as the definition
of FAR). In summarize, we have the following formula:

FAR

FNR = FN/(FN+TP) = 1 - recall

FRR = FPR = FP/(FP+ TN)

Note that in our model, the positive class is the forged signature and the negative class is
the genuine signature. In addition, we choose FAR as the most important evaluate model to
consider like other studies in this field.

4. Experiment

4.1. Experimental Setup

First of all, we create our dataset by splitting 20% of users and get all signatures of that
20% to form a hold-out test set. That makes our test set disjoint identities with the data from the
training set.

When forming the triplet combinations to training the Triplet net, we do the same as the
method in [11], which is done by taking an anchor image (genuine signature of a person) and
placing it in conjunction with both a positive sample (another genuine signature of the same
person) and a negative sample (a forged signature by someone else of the same person). By that
strategy, from datasets that have around 648 to 3000 signatures for each class, we can create
hundreds of thousands of triplet combinations for training (7able 7).
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Dataset Name Number of triplet combinations
SigComp2011 Dutch 33 580
CEDAR 284 832
BHSig260 Bengali 654 120

Table 7. Number of training triplet combinations among various datasets.

The training pairs for the classification are formed after we get the embedding of all
signatures using the train triplet net. Then we create the pairs, label them (see Table 8) and feed
them to the classifier.

With the workflow of the final model (shown in Figure 19.), we have to create the test
set different from the train set for classification. Because our model should deal with a one-shot
problem, for each user in the dataset, we create a dictionary to store only one of this user's
genuine signature embedding (called base embedding) and set their id as the key. After that, we
create the pairwise manner by letting each base embed pairing with all genuine and forged
signatures of that user and labeling them as 0 and 1, respectively. This pairing method ensures
that the test case of our model only lay on the skilled forgeries.

Set(Train/Test) Pair Label

Genuine - Genuine 0

Train Users
Genuine - Forgery 1
Base Genuine - Genuine 0

Test Users
Base Genuine - Forgery 1

Table 8. Pairs labeling method for train and test
4.2. Results

In work, we train our triplet on each dataset with the same margin = 0.2 on the triplet loss
with the learning rate of Adam Optimizer = le-5 and using only MAE loss value to validate. The
triplet combination is randomly split into a train set and validation set with ratio 2:1, respectively.
We use the eq. (2) to calculate the accuracy of our model, which is shown in the Table 9:

Table 9. Deep Triplet CNN model performance.
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Dataset Accuracy on training Accuracy on Accuracy on test set
set (%) validation set (%) (%)
SigComp2011 95.3 95 80
CEDAR 67.85 67.92 72.84
Bengali 96.46 96.36 81.8

The classifier is trained on a labeled feature set, which is constructed as mentioned in the
Section 3.2 and is randomly splitted into a train set and validation set with ratio 2:1 . The Table
10 and Table 11 show the performance of our model on detecting forgery and genuine signatures.

Table 10. Performance on validation set

Dataset AUC (%) ERR FAR PRR
SigComp2011 100 0.00 0.00 0.00
CEDAR 99.86 1.64 2.09 1.15
Bengali 99.99 0.13 0.00 0.00
Table 11. Performance on test set

Dataset AUC (%) ERR FAR FRR
SigComp2011 65.11 50 70.39 18.82
CEDAR 68.21 34.55 52.09 16.15
Bengali 86.16 22.75 18.57 27.97

Beside, we test the performance of our test in the case that the pair Base Genuine -
Forgeries is no longer depend on identity anymore, which means we construct the pair from the

base genuine signature with all forgery signature in the dataset to get more positive label (the
forged signature) for test (Table 12)

Table 12. Performance on test set with random forgeries by other user forged signatures

Dataset

AUC (%)

ERR

FAR

FRR

SigComp2011

98.41

75

75.75

13.73
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CEDAR 96.69 42.84 45 16

Bengali 99.34 14.18 13.66 27.97

However, when we add the case when the genuine signature of the rest joins in to create
pairs with the base signature of each user, the performance of our model decreases dramatically.

Table 13. Performance on test set with random forgeries by other user genuine signatures

Dataset AUC (%) ERR FAR FRR
SigComp2011 98 79.98 81.14 18.83
CEDAR 97.73 54.09 55.73 16.32
Bengali 99.32 30.9 30..96 27.97

4.3 Comparison

First, we create a simple Logistic Regression model which is used by the authors in [11]
to compare with our classifier model. We draw the Precision-Recall curve for both classifiers on
the test set from each dataset in Figure 21, 22 and 23.
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Figure 21. PR Curve on SigComp2011 test set.
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Figure 22. PR Curve on CEDAR test set.
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Figure 23. PR Curve on BHSig260 test set.

From the above PR Curves, we can see that our classifier always has higher AUC
compared to the logistic regression, which means it is more efficient in our task when the positive
class (forgery) is more important.

Moreover, the best result from Table 11, 12, 13 can be used to compare with some
state-of-the-art and the recent studies with Siamese Network in the following table:

Table 14. State-of-the-art performance on CEDAR dataset (WD = Writer Dependent, WI = Writer
Independent).

Type Features & algorithm FRR FAR AER ERR
WI [20] Morphology 12.39 11.23 11.81 11.59
(SVM)
WI [21] Surroundness - 8.33 8.33 8.33
(NN)
WD [22] Curvelet transform - - 5.6 -
(OCSVM)
WD [23] Chain code 9.36 7.84 7.84 -
(SVM)
WD [18] Feature learning (SVM) - - - 4.63
WD [19] Graph Matching 7.7 8.2 7.9 -
- Our model 16 45 - 42.84
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Table 15. State-of-the-art performance on BHSig260 Dataset (WD = Writer Dependent, WI =
Writer Independent).

Features &
Language Type algorithm FRR FAR
WI [24] SigNet 13.89 13.89
WI [25] Dutta et al 14.43 15.78
Bengali
WI [26] Pal et al. 33.82 33.82
- Our model 27.97 13.66

5. Conclusion

From the result, it is so disappointing to say that our work is not efficient for various
datasets. All the FAR, FRR, ERR on two easier dataset, CEDAR and SigComp, is too bad to be
used. Somehow, we can achieve a good FAR result on the BHSig260 dataset which is slightly
better than SigNet [24].

When we look at the AUC of PR Curve, our model is still stable in BHSig and two
others. The increase of performance on the strategy of choosing which kind of random forgeries
to feed on have shown that our model works well on detecting simple and skill forgeries, but may
not fall behind when dealing with various kinds of random forgery signatures.

The difference between the accuracy (2) in the output of the Deep Triplet Ranking model
can show that our selection method is not efficient enough. And the low accuracy and high FAR
and FRR on CEDAR and SigComp dataset show that the strategy of processing from our dataset
can not be the same for this task and need more improvement to work well.

With the above analysis, there are two things to summarize: firstly, our model has the
ability to perform well on the dataset which is clean and not too small. Moreover , with the result
slightly better than some studies in this field on the BHSig260, our method in preprocessing and
pairing may be considered to be used in other studies.

Secondly, the bad results on CEDAR and SigComp show that the issue of our model is
that it can not perform well on other datasets which have different characteristics compared to the
train dataset. Our experiment on this structure also raises the question about the practicality of
this Deep Triplet Ranking CNN architecture on other significant signature verification problems.

In the future, we need to find more suitable preprocessing methods for different kinds of
datasets. We also need to focus on tuning hyperparameters of more powerful triplet ranking loss,
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and may need to apply triplet online mining techniques to let the learning process of our model be

better.

Despite the bad performance in two of three dataset, the results from the BHSig260

dataset make it possible to use our architecture on the problem which has the same dataset as the
BHSig260 dataset.
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