
Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

1

TURNING PROGRAMMING INTO A RELEVANT TOPIC FOR
NON-PROGRAMMING ENGINEERS

Erik Berglund, Dennis Persson

Department of Computer and Information Science, Linköping University, Sweden

ABSTRACT

In this paper we present an introductory course on programming for about 190 mechanical
engineering, design, and product-development engineering students. These students use
3D-modeling software to develop physical products. Programming is one of the tools in their
toolbox, and writing algorithms can both improve the efficiency of their work and transform
their work process.

At the heart of the course, in line with CDIO Standard4, is a focus on real-world applications
in an introductory programming course. Understanding why and how programming is a
useful tool is considered to be of equal importance to learning fundamental programming
concepts.

Here we present and discuss the course and how we plan to change it in the future. We
report the results of student evaluations and our own experiences. Our results, thus far, show
that the applied approach has been instrumental in turning programming into a relevant topic
for these non-programming engineering students. Currently, however, there is also a
relatively long period of frustration and students experience an inability to use documentation
and online resources. Moving forward, we plan to add a crash course with a traditional focus
to the first week of the class, before starting on the applied work. It is our belief that this will
make students feel more secure, and as a result allow them to be more self-sufficient in
overcoming the practical challenges they face in the course.

KEYWORDS

Introduction to programming, CDIO Standard 4, Blender 3D, Python.

INTRODUCTION

Finding ways to connect the real world for to introductory courses and to allow students to
use fundamental concepts to build “real” things is central to the CDIO standards. The
standards highlight the applicability of knowledge, even at an introductory level. For non-
programming engineering students, programming can often be seen as theoretical, abstract
and complicated. This can be discouraging, and the real-world applicability of basic
programming concepts can be hard for students to see.

When tasked with constructing a new introductory programming course for 190 mechanical
engineering and design and product development engineering students, this was an obvious
challenge. These students are not computer-science engineers and thus are not motivated
by the subject matter, and few have prior knowledge of programming. A show of hands
during the introductory lecture in 2017 showed that less than 10% had done programming
exercises before.

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

2

Our goal was, and continues to be, to construct a course that would teach the basics of
programming while still being directly relevant to the students’ future career. We wanted to
find ways where each student could complete a project on their own at the end of the course
that, in their mind, would represent a real task, while still maintaining the basic and abstract
building blocks of programming at the center of the activity. Also, for many students, using
code in 3D modeling and simulation software for the construction of physical products
constitutes a new perspective on the work process. Thus, one goal of the course is to
introduce how code can enable creativity in an engineer’s work.

CDIO Standard 4 in particular is relevant to the design of this course. For example, Standard
4 emphasizes that introductory classes should “strengthen [students’] motivation for the field
of engineering by focusing on the application of relevant core engineering disciplines”. (CDIO
Standards 2018). Using Blender 3D (www.blender.org), which is free and open source
software for 3D modeling and simulation, we address programming in the domain of
constructing physical products and using code as one of the tools available to achieve such
goals. Students use Blender 3D in subsequent courses, and it is well-documented by a large
community of YouTubers. The scripting language for Blender 3D is Python (www.python.org),
which is one of the world’s most used programming languages and also a common first
language at universities.

The course also address aspects of Standards 5 and 7 in ways that are natural to the course.
Standard 5 states that courses should emphasize “…engineering activities central to the
process of developing new products and systems.” And Standard 7 states “… students might
consider the analysis of a product, the design of the product, and the social responsibility of
the designer of the product, all in one exercise.” (CDIO Standards 2018). For these students,
programming is a new tool that enables efficient workflows, but it also changes the potential
work process from solving engineering challenges to using code to control the computer, and
allowing the computer to solve certain engineering challenges for them. There are also more
sophisticated applications which lie beyond the scope of this course, such as the use of
machine learning and artificial intelligence for generative algorithms that search for optimal
physical constructions. Standard 7 also addresses the issue of engineering and its impact on
the world. This course has a natural connection here, where one logical application of
generative design is minimizing the use of materials while maintaining constructional
requirements.

In this paper we discuss our course on the fundamentals of Python programming, in which
we teach our non-programming engineering students how to use Python, in conjunction with
the 3D modeling system Blender 3D, for the construction of physical products. We present
an evaluation of the students’ perceived attitudes and discuss how to change the course in
the future to improve this applied introductory course. A main component of this plan is the
addition of a crash course on more traditional discipline training right at the beginning, to
ensure that the students have enough basic knowledge to become more self-sufficient in
using online resources and search results that are not adapted to a more applied approach
to learning to program.

THE ROLE OF PROGRAMMING IN PHYSICAL PRODUCT CONSTRUCTION

The construction of physical products using 3D modeling and simulation software, like
Blender 3D, includes programming as one tool in the toolbox. Much like manipulating the
model using a mouse and keyboard, engineers can write code that can create, manipulate,
and analyze models, and moreover can automatically repeat such a process until a sufficient

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

3

solution has been reached. A significant new aspect of product design is algorithmic or
generative design; see for instance Krish (2011). Currently, machine learning and artificial
intelligence in relation to the construction of physical products is also very relevant.

Creating and evaluating parameterized 3D models, manipulating, deleting and minimizing
materials, and running physical simulations – all of these things involve designers using code
to search for physical constructions. This changes not only the efficiency of development but
also has an impact on the creative process.

At the same time, a process that is a hybrid of hand-made and code-driven design may
ultimately be more time-efficient than a fully-automated process. Real applications may
include very few lines of code and yet may still be representative of real use-cases in
industry.

RELATED WORK

Other work that relates to ours includes efforts to change standard approaches to how
introductory programming courses are taught, and work on increasing integration of elements
of the CDIO Standards and pedagogical elements like constructive alignment to achieve
more or deeper learning outcomes, or to encourage more efficient teaching methods for
better learning outcomes. A general approach to learning to program is to place a substantial
amount of emphasis on practical work, “… on practice, practice and practice” as reported by
Winslow (1996).

Prost (2016) reports positive motivational effects from adding degrees of freedom that allow
students to make choices about parts of their tasks, but also notes that this challenges the
teachers, making it harder and more time-consuming to prepare for this openness. Phae et al.
(2014) and Martínex and Muñoz (2014) reported positive findings from organizing
introductory programming classes into larger teams of up to 5 people, saying that it was both
good for learning and more motivational. Here the assessment process was also changed in
order to support students teaching each other. More social and reflective assessments were
required. An alternative position was presented by Gaspar and Langevin (2012), in which
traditional pair programming was replaced by a process of initial individual preparation
followed by pair programming. Also, utilizing automated test systems, Gaspar and Langevin
used an exchange of tests among student pairs as a means of getting students to generalize
their solutions beyond “what works”. Reng and Kofoed (2012) also reported on how
inspirational events, field trips, and tasks related to image processing have been instrumental
in changing the degree of motivation and quality of work produced by non-programming
artists and creative professionals that need to have more programming skill for their future
careers in the interactive media and games industry. Vo et al. (2017) identify issues
associated with using applied and practical work in courses, including that (a) students and
teachers may confuse a working system as equivalent with knowledge, (b) a good technical
solution doesn’t necessarily represent a real learning outcome and (c) there is a risk that
failure in the task could be perceived as failure in learning.

Lots of practical work would seem to be a central feature of introductory classes, but it is also
important to find good ways of encouraging students to become more oriented towards deep
learning. We have initially worked very hard to find the balance between applied challenges
and keeping the focus on programming fundamentals. In the future, we want to change
activities and assessment methods to avoid shallow learning, and to address the emotional
experience of being introduced to programming.

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

4

PEDAGOGICAL APPROACH AND COURSE DESIGN

Constructive alignment means finding alignment between learning goals, learning activities
and assessment. As a consequence, a student-focused process is needed, in which
teachers are part of the supporting environment (Biggs & Tang, 2007). Practical work has
been identified as the key activity in enabling novices to become competent in programming
(Winslow, 1996). Furthermore, Gagné and Deci (2005) argue that autonomy is an important
motivational factor in the learning process.

The goals of our course are to:

• Understand how programming can be used in the production of physical products as
one of the available tools in 3D modelling software

• Understand basic concepts in programming like variables, lists, loops, conditions and
functions

Additional goals, in the current embodiment of the course, include:

• Working partly by hand and partly in code to see how code, as a tool, compares to
other tools

• Using random generation and physical simulation as tools for construction to
experience the potential of algorithms for solving problems or generating candidates
for a creative process

• Visualizing the algorithmic process so that students can see what the code can do
• Running large numbers of experiments on models, and then validating and sorting

the models to see the scope of the algorithmic potential

To achieve balance between autonomy and a tutoring-based style of education, the course is
based on the students working on a series of construction challenges in a supporting
environment. This includes:

• Labs, with detailed step-by-step instructions about both how to solve the challenge
and how to write the code. The labs vary in complexity, but the final lab is as complex
as the project. These are like interactive lectures.

• Tasks, with detailed instructions about how to solve the challenge, but not how to
code the individual steps. Knowledge about coding, learned in the labs, is applied and
repeated here.

• A project, where the students are given only a high-level challenge and must both
break down the challenge and code it.

Students work in pairs and are primarily assessed by demonstrating their solution in person.
Examination is oriented around being able to explain how the solution works, and grading is
based on approving solutions that are adequate in principle. Formative feedback is also
provided on how to improve for the next challenge. The project is presented at a closing
seminar with a slide-show presentation. Essentially, if a student can demonstrate sufficient
ability for the last lab, the tasks, or the project, then they have learned the basics of
programming. To address the goal of understanding when and why to write code, we tailor
the challenges to illustrate how code can help students achieve things they cannot practically
do by hand.

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

5

We aim to provide alignment between real-world applications and programming
fundamentals by generating, evaluating and comparing large numbers of models. This leads
to the need to run loops, evaluate conditions, sort and check data variables, and to keep
track of candidates over several steps in the process.

A supportive environment is provided, which consists of lectures, flipped-classroom lectures,
tailored material, online support forums, screencast videos, and links to online material.
Multiple weekly sessions with assistants in computer labs are also provided, which is very
common in our courses at the department. This is currently the most important but also the
most troublesome supporting activity. Students are allowed to work on their own time and
simply demonstrate their abilities if they are able.

Project 2017: searching for legs

In 2017, the project in the course was to focus on finding leg positions for an asymmetrical
tabletop that the students themselves create following a screencast video of a manual
process in Blender 3D. Valid leg positions (3 or 4) are positions such that the table doesn’t
fall over even with weights placed at strategic positions. Figure 1 shows screenshots of such
a project.

The goal is to identify possible portions of the model for 3 or 4 legs:

• Locate and randomly select possible leg positions on the tabletop
• Add legs and simulate to see if the table is stable
• Simulate with strategic weights and test for stability
• Iterate and find 10 working leg-combinations, often generating more than 100

tables to find solutions that work
• Compare tables that are stable in terms of their leg positions and sort them for

a human decision-maker (e.g., eliminate very similar solutions)

Figure 1. The legs of the tables are generated and validated by code in the search for stable
leg-positions for a man-made asymmetrical table. Physical simulation and validation of

hundreds of possible candidates are often needed to achieve 10 working tables.

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

6

The students work partly by hand, to create the asymmetric tabletop and to find positions for
weights that fit the table. They then write code to run the process of generating, evaluating
and comparing tables that use random selections of legs. The process requires a minimum
of about 160 lines of code, so this assignment is not overwhelming.

Using Blender 3D and Python as a platform

In our opinion, Blender 3D is a very good platform for introductory programming in general,
but it is particularly good for this group. Blender 3D is a massive system, but the subset of
data and functions we needed is very limited, and we find that the code written in our
challenges is very much focused on the fundamentals of Python programming, rather than
specific Blender concepts. Also, there is a strong conception of general algebraic and 3D
concepts like vectors, locations, dimensions, and normals, as well as to physics and physical
simulation with forces and torques, which our engineering students learn about in other
courses. Other programming concepts such as algorithms, data variables, and flow of
execution are also clearly represented.

One of the really interesting possibilities with Blender is that we can visualize an algorithm as
it generates and manipulates the 3D scene to show how the algorithm works. The developer
has fine-grained control over how the scene updates, and Python can easily be paused if the
process runs too fast to be visible.

Blender also has a built-in Python editor, and code can be run directly inside Blender with the
click of a button, making it easy to use without setting up the coding environment. One
problem is that the editor doesn’t autosave, so students may lose code if they are not careful.

We experienced memory-related problems, leading to Blender crashing, that were caused by
the students but were too hard for them to understand. Data needs to be deleted in a
particular way, and storing data has already been deleted can lead to severe problems.
Because of how the Blender data model works, there can be an invisible build-up of memory
usage, causing execution to become increasingly slower over time. This can be avoided in
the future by changing our challenges so that deletion is not part of the process, and an initial
clean-up can be copied-and-pasted into the students’ programs at the start of execution.

Course Evaluation

In 2017 we evaluated the course using a questionnaire, and the students also evaluated the
course in class workshops (5 classes). Our interest was in their attitudes towards
programming in general and towards programming as a tool for them specifically. We are
well aware of their actual abilities based on their work, and this is also presented here as an
Examiner’s reflection.

Student enquiry and evaluation

Out of the 190 students that took the course, 120 students participated in a questionnaire
with 19 questions about their attitudes towards programming, their ability to code before and
after the course, and their attitudes regarding the subject matter in relation to their future
careers. The questionnaire didn’t ask about sex or age, but for this student group (190
students of which 120 answered), about 30% were women, and the age range was 19-23.
Questions where formulated to evaluate the student’s opinions about their abilities before

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

7

and after the course and their attitudes towards programming as a subject and their opinion
about its relevance for their future career. Questions were of the type,

“Did you think programming was hard before the course”,

“Is programming relevant in your future career?” and

“Would you be able to correct simple errors on your own?”

Students were asked to answer each question with one of the following:

(a) Yes, agree strongly (b) Yes, to some extent (c) No, not at all (d) Don’t know

On average, the data showed that they had little previous experience and thought
programming was hard before the course. They learned a lot and felt they would be able to
write simple programs and fix simple errors, but were less confident about their ability to write
error-free code at the level required by the project completely on their own. They still felt that
programming was hard, but they thought it was relevant to them and wanted to learn more.

From the students’ own workshops, the students expressed a general appreciation for the
subject matter, and for the applied, open and adaptive nature of the course. They felt that the
course was very relevant for the program, and that the level of difficulty was reasonable.
They complained about not getting enough direct assistance, needing more concrete
lecturing and material, and feeling lost and uncertain about requirements. They also raised
the problem of not knowing enough about how to use documentation, online resources and
search results. They stated that it was hard to appreciate lectures at the beginning of the
course due to a lack of basic understanding of programming fundamentals.

The Examiner’s reflection

During the two years in which we’ve run this applied introductory course, the course has
successfully provided relevant learning outcomes with both of our goals in mind. In our
opinion, the students learn about the same amount as other student groups that take non-
applied courses. In 2017 (unlike 2016) our challenges also clearly demonstrate the ability to
use algorithms to transform work processes. Students have learned basic programming for
real tasks, writing small programs on their own and independently fixing normal introductory
code errors.

Also in 2017, we feel that we have achieved better alignment between applied real-world
tasks and maintaining focus on fundamental programming models. The generation of
multiple models that are simulated physically, evaluated for validity, and ultimately compared
with one another with regards to physical criteria, leads to code that is full of fundamental
loops, conditions and variable management, and even sorting and development of non-trivial
sorting functions. In fact, by allowing the students to manually manufacture the components
we can spend more time focusing on programming fundamentals. In 2016 we worked more
with managing the camera, adding and changing materials, printing images, and so forth, but
this led to code with a large number of Blender-specific function calls stacked on top of one
another, and emphasis on algorithmic work was sacrificed.

By adding more challenges related to finding a working candidate with minimal material, we
both increase the focus on algorithms and address environmental aspects in engineering, as
stressed in CDI Standard 7 (CDIO Standards 2018).

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

8

The students complain about needing more concrete and direct help, about not being able to
work on their own, and about feeling frustrated and insecure. This has led to increased
pressure on assistants and long waiting times in the computer labs, which in itself creates
more frustration. While they receive a great deal of support, more so than many computer-
science engineers, the students have an insatiable appetite for direct help, which may
indicate that we have another problem. Helping them with their challenges in computer labs,
as we do at our department in most of our courses, does not seem reduce this appetite. It
seems that we have a trial-and-error situation in which students tend to “shake the box” until
it works, as Gaspar and Langevin (2012) put it. Perhaps we achieve our learning goals
because the students shake the box the same way many times. But the experience that
programming is frustrating and hard is a real problem.

For 2017 we created a much larger amount of specially tailored documentation and online
material on the course home page, including screencast videos. This did not really improve
the situation. In fact, I suspect that the problem cannot be fixed by providing more
documentation, more precise and concrete instructions, or even more screencasts (though I
have more hope for screencasts). I think this needs to be managed with less direct help and
more social, reflective, deep-learning activities on programming in Blender 3D, rather than
focusing exclusively on solving suitable challenges.

One student team expressed that:

Since we were often late to the computer labs we would frequently not get a seat, and
this lack of help was the reason that we understood so much at the end of the course.

A few students expressed that they were able to complete the project in a day, because they
had really acquired the necessary skills. This is our desired result, but for many others it took
much more time and was still frustrating on a fundamental programming level. It’s clear that
many students had not achieved the level of understanding that we would like them to have
by the time they started the project.

Ultimately the students came out with about the same knowledge in 2017 as in 2016, at the
intended level of the course. In my personal opinion (having taught programming courses
since 1997) they achieved about the same level as many other students. But the students
are frustrated, require a lot of direct support, and have a troublesome journey, which reduces
their opinion of programming as an enabling technology. There is also cause for concern that
this could negatively impact their future efforts and achievements, as Lishinsky et al. (2017)
show that negative associations with performance in the past can lead to negative
performance and emotions in the future.

Also, one thing that was optimal in 2017 was doing serial physical simulation, see for
instance the project description in section 0. This led to the need to delete objects (to clean
up before the next iteration) and results being removed and only stored as data. Nothing was
visible to students if they didn’t actively code for that visibility. In 2018, we should work with
parallel simulation and avoid deleting objects during the script execution, which means that
the students will come out at the other end with a sea of models that have all been simulated,
and with the ability to see all of it over and over again, even to publish it as a video. This is
an easily fixed problem that will make a big difference for the course, and for these non-
programming engineering students, by giving them a better sense of the value of code.

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

9

In terms of working partly by hand and partly in code, we still find that students tend to use
more code than necessary, and that they get focused on solving problems only using
algorithms. Several challenges in 2017 were more easily solved by using more modelling,
and the challenges also illustrated the use of components to support the programming and to
create conditions. We believe that changing the structure of some of the learning activities
and making them more reflective will help the students to see the whole problem and not just
the programming aspects. Here, we also see potential to increase the autonomy by directing
students towards creating more steps manually and then running code to address the
challenges.

DISCUSSION AND FUTURE COURSE DESIGN

For the future, we want to introduce a crash-course in the first week of the course to get
everyone up and running very, very quickly. Not because the students don’t learn what they
need to learn, but because the students feel frustrated for too long. That feeling needs to be
avoided by actually learning a large volume of information quickly in the beginning, which is
in line with the findings of Lishinsky et al. (2017) that negative experiences in programming
have a negative impact on students’ future learning.

We plan to do this in seminars with relatively small groups, with scheduled activities that
require active participation, in which the purpose is to experiment, discuss and understand.
Also, we are inspired by the findings of Phae et al. (2014) and Martínez and Muñoz (2014)
that teams of up to 5 could provide better learning outcomes than individual and pair work, so
we want to try larger student groups.

A potential outcome of a traditionally-focused crash course is being able to give the real-
world challenges with less specific instructions and more open-ended requirements.
Currently we have highly specific instructions with many details that students can
misinterpret.

The second thing we want to do is introduce more time between asking for help and
receiving help. Deep-learning-oriented help takes time to create, and in the computer lab
there is too much pressure on assistants to help quickly and move on. If assistants have
more time to answer, the quality should go up and students should get more value out of the
help. This, we believe, is more easily done via an online forum than in personal meetings in
computer labs. Personal meetings are still needed, but we are planning for flipped-classroom
sessions where the students’ problems are discussed rather than offering them direct
assistance during programming.

To keep our applied approach, we can also develop challenges that include more hybrid
development with more hand-made parts. This means that we can have real tasks and more
autonomy, without affecting the amount of code required, and even find challenges where
very, very small amounts of code still constitute a real application of programming for the
student group.

CONCLUSION

We have applied a very real and practical approach to an introductory course in
programming to a group of non-programming engineering students, as is stated as a goal in
CDIO Standard 4, and which is related to many other CDIO standards such as 5, 6 and 7.
Our experiences are very positive, and so is our student group, but learning programming

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

10

fundamentals comes late in the course, which has led to feelings of frustration and an
inability to use documentation, online resources and search results.

As a result, we want to shift the focus from application to discipline in an early segment of the
course, with deep-learning activities such as experimentation and discussion in seminar
groups, before turning to more applied programming exercises. Though we find that the
applied approach works very well to motivate and teach programming to non-programming
engineers, it should be supplemented by an initial, quick infusion of traditional teaching to
avoid a prolonged sense of frustration.

REFERENCES

Biggs, J. & Tang, C. (2007) Teaching for Quality Learning at University Maidenhead: Open University
Press/McGraw Hill.

CDIO Standards (2018, Jan), The CDIO Standards 2.0, http://www.cdio.org/implementing-
cdio/standards/12-cdio-standards
Gagné, M., & Deci, E. L. (2005). Self‐determination theory and work motivation. Journal of
Organizational behavior, 26(4), 331-362.

Gaspar, A., & Langevin, S. (2012). An experience report on improving constructive alignment in an
introduction to programming. Journal of Computing Sciences in Colleges, 28(2), 132-140.
Krish, S. (2011). A practical generative design method. Computer-Aided Design, 43(1), 88-100.

Lishinski, A., Yadav, A., & Enbody, R. (2017, August). Students' Emotional Reactions to Programming
Projects in Introduction to Programming: Measurement Approach and Influence on Learning
Outcomes. In Proceedings of the 2017 ACM Conference on International Computing Education
Research (pp. 30-38). ACM.
Martínez, C., & Muñoz, M. (2014). ADPT: AN ACTIVE LEARNING METHOD FOR A PROGRAMMING
LAB COURSE. In Proceedings of the 10th International CDIO Conference, Universitat Politècnica de
Catalunya, Barcelona, Spain.
Phuong, A. P., D NGUYEN, M., NGUYEN, L. Q., NGUYEN, T. M., & Bao, N. L. E. LEARNING
COMPUTER PROGRAMMING IN CDIO’S TEAM SETTINGS. In Proceedings of the 10th International
CDIO Conference (CDIO 2014), June (pp. 15-19).

Probst, C. W. (2016) ADDING CDIO-COMPONENTS TO (NON-)CDIO COURSES
Proceedings of the 12th International CDIO Conference, Turku, Finland, June 12-16
Reng, L., & Kofoed, L. B. ENHANCE STUDENTS’MOTIVATION TO LEARN PROGRAMMING THE
DEVELOPING PROCESS OF COURSE DESIGN. In Proceedings of the 8th International CDIO
Conference.(Queensland University of Technology, Brisbane, Australia.

Vo, Nhan-Van, Duc-Man Nguyen, and Nhu-Hang Ha. (2017) A CASE STUDY OF CDIO
IMPLEMENTATION IN THE COURSE OF HACKING EXPOSED AT DUY TAN UNIVERSITY.
Proceedings of the 13th International CDIO Conference, Calgary, Canada, 90-100.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM Sigcse
Bulletin, 28(3), 17-22.

Proceedings of the 14th International CDIO Conference, Kanazawa Institute of Technology,
Kanazawa, Japan, June 28 – July 2, 2018.

11

BIOGRAPHICAL INFORMATION

Erik Berglund, Ph.D. in computer science and an Associate Professor at the Department of
Computer and Information Science and has taught programming in applied courses since
1997 at the university of Linköping.

Dennis Person, Ms. C. is a Teaching assistant at Department of information and computer
science and instrumental in the development of the course discussed in the paper.

Corresponding author

Dr. Erik Berglund
erik.berglund@liu.se
Linköping university
Department of Computer and Information
Sceince
SE-581 83 Linköping
+46 28 10 00

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivs 4.0 International License.

