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We use a method developed in Carmona et al. (2003) [2] to study the fractional geometric
mean-reversion processes. Our obtained results hold for any H ∈ ( 1

4 ,1).
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1. Introduction

It is known that, for commodities, interest rates and exchange rates, a financial mean-reversion model has more economic
logic than the geometric Brownian model. The basic geometric mean-reversion model is of the following form

dXt = k(μ − ln Xt)Xt dt + σ Xt dBt, (1.1)

where μ is the long-run equilibrium level (of a stock price Xt, say), k is the speed of reversion, and Bt is a standard
Brownian motion.

However, many observations show that an asset price or an interest rate is not always a Markov process since it has
long-range aftereffects. And in this context, it is suitable to express it as a dynamics driven by a fractional Brownian motion.

In this paper, we study a class of fractional geometric mean reversion processes expressed by a fractional stochastic
differential equation (SDE) of the form{

dXt = (μt − kt ln Xt)Xt dt + σt Xt dW H
t , 0 � t � T ,

X0 = x > 0,
(1.2)

where W H
t is a fractional Brownian motion of the Liouville form. This can be considered as a generalization of many

important financial models such as that of Black–Scholes, and of (1.1) which was used by Tvedt [11] to model spot freight
in shipping.

The fractional Brownian motion (fBm) of the Liouville form with Hurst index H ∈ (0,1) is a centered Gaussian process
defined by

W H
t =

t∫
0

K (t, s)dBs, (1.3)

where B is a standard Brownian motion and the kernel K (t, s) = (t − s)α , α = H − 1
2 .
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In the case where H = 1
2 , W H is a standard Brownian motion and for H �= 1

2 , W H is neither a semimartingale nor a
Markov process. Hence, the stochastic calculus developed by Itô cannot be applied.

In this paper we use an approximate approach introduced by Tran Hung Thao and Christine Thomas-Agnan [8] with
the fundamental result saying that a fBm can be L2-approximated by semimartingales. This approach was used by Thao to
study the fractional Ornstein–Uhlenbeck process and fractional Black–Scholes model [8–10] and then by N.T. Dung [4] to
solve a class of fractional SDE’s with polynomial drift. In those papers, authors used the definition of the fractional stochastic
integral as a limit in L2(Ω) of stochastic integral with respect to semimartingale, if it exists and their results hold only when
H > 1

2 .

In [2], Carmona, Coutin and Montseny have given a sufficient condition (see hypothesis (H) below) for existence of limit
in L2(Ω) and so the fractional stochastic integral can be explicitly represented via the Skorohod integral and the Malliavin
derivative.

Our paper follows Carmona, Coutin and Montseny’s work and is organized as follows: In Section 2, we restate some
basic facts about a semimartingale approximation of fractional processes and the definition of fractional integral. Section 3
contains main result of this paper that the explicit solution of (1.2) is found. Section 4 contains some comments.

2. Preliminaries

Theorem 2.1. The fractional Brownian motion {W H
t ,0 � t � T } can be approximated uniformly in t in L2(Ω) by the processes

W H,ε
t =

t∫
0

K (t + ε, s)dBs, ε > 0.

W H,ε
t is Ft -semimartingale with following decomposition

W H,ε
t =

t∫
0

K (s + ε, s)dBs +
t∫

0

ϕε
s ds = εα Bt +

t∫
0

ϕε
s ds, (2.1)

where (Ft ,0 � t � T ) is the natural filtration associated to B or W H and

ϕε
s =

s∫
0

∂1 K (s + ε, u)dBu, ∂1 K (t, s) = α(t − s)α−1.

Proof. A detail proof of this theorem can be found in [10]. �
From now we denote by (H) the space of stochastic processes satisfying the following hypothesis:

Hypothesis (H). Assume that f is an adapted process belonging to the space D1,2
B and that there exists β fulfilling β + H >

1/2 and p > 1/H such that

(i) ‖ f ‖2
L1,2
β

:= sup0<s<u<T
E[( fu− f s)

2+∫ T
0 (D B

r fu−D B
r fs)

2 dr]
|u−s|2β is finite,

(ii) sup0<s<T fs belongs to L p(Ω).

Remark 2.1. The space D1,2
B is defined as follows:

For h ∈ L2([0, T ],R), we denote by B(h) the Wiener integral

B(h) =
T∫

0

h(t)dBt .

Let S denote the dense subset of L2(Ω, F , P ) consisting of those classes of random variables of the form

F = f
(

B(h1), . . . , B(hn)
)
, (2.2)

where n ∈ N, f ∈ C∞
b (Rn, L2([0, T ],R)), h1, . . . ,hn ∈ L2([0, T ],R). If F has the form (2.2), we define its derivative as the

process D B F := {D B
t F , t ∈ [0, T ]} given by

D B
t F =

n∑ ∂ f

∂xk

(
B(h1), . . . , B(hn)

)
hk(t).
k=1
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We shall denote by D1,2
B the closure of S with respect to the norm

‖F‖1,2 := [
E|F |2] 1

2 + E

[ T∫
0

∣∣D B
u F

∣∣2
du

] 1
2

.

It is well known from [2] that for an adapted process f belonging to the space D1,2
B we have

t∫
0

f s dW H,ε
s =

t∫
0

f s K (s + ε, s)dBs +
t∫

0

f sϕ
ε
s ds

=
t∫

0

f s K (t + ε, s)dBs +
t∫

0

t∫
s

( fu − f s)∂1 K (u + ε, s)du δBs

+
t∫

0

s∫
0

D B
u fs∂1 K (s + ε, u)du ds, (2.3)

where the second integral in the right-hand side is a Skorohod integral (we refer to [7] for more detail about the Skorohod
integral). For f ∈ (H),

∫ t
0 f s dW H,ε

s converges in L2(Ω) as ε → 0. Each term in the right-hand side of (2.3) converges to the
same term where ε = 0. Then, it is “natural” to define

Definition 2.1. Let f ∈ (H). The fractional stochastic integral of f with respect to W H is defined by

t∫
0

f s dW H
s =

t∫
0

f s K (t, s)dBs +
t∫

0

t∫
s

( fu − f s)∂1 K (u, s)du δBs +
t∫

0

du

u∫
0

D B
s fu∂1 K (u, s)ds. (2.4)

3. The main result

Our main contribution here is to introduce an approximation equation for the fractional geometric mean reversion pro-
cess Xt, to find its solution Xε

t and to prove the uniqueness of this solution. Also the solution of the initial problem is
shown to be exactly the L2-limit of Xε

t when ε → 0.

Let us consider the semilinear differential equation in a complete probability space (Ω, F , P )

dXt = (μt − kt ln Xt)Xt dt + σt Xt dW H
t , t ∈ [0, T ], (3.1)

where the coefficients μt , kt , σt are the deterministic functions and the initial condition X0 = x is a positive constant.
Since the Malliavin derivative D B

u fs = 0 for any deterministic function f s we have the following definition:

Definition 3.1. The solution of (3.1) is a stochastic process belonging to the space (H) and that has a form

Xt = X0 +
t∫

0

(μs − ks ln Xs)Xs ds +
t∫

0

σs Xs K (t, s)dBs

+
t∫

0

t∫
s

(σu Xu − σs Xs)∂1 K (u, s)du δBs +
t∫

0

s∫
0

σs D B
u Xs∂1 K (s, u)du ds. (3.2)

Since Eq. (3.2) contains the Skorohod integral and the Malliavin derivative, we cannot apply standard methods (for
instance, Picard iteration procedure) to prove the existence and uniqueness of the solution. However, the fact that W H

t

can be approximated uniformly in t ∈ [0, T ] by semimartingales W H,ε
t leads us to consider the approximation equation

corresponding to (3.2)

Xε
t = X0 +

t∫
0

(
μs − ks ln Xε

s

)
Xε

s ds +
t∫

0

σs Xε
s K (t + ε, s)dBs

+
t∫ t∫ (

σu Xε
u − σs Xε

s

)
∂1 K (u + ε, s)du δBs +

t∫ s∫
σs D B

u Xε
s ∂1 K (s + ε, u)du ds. (3.3)
0 s 0 0
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Noting that in (H), the solution Xε
t of (3.3) converges in L2(Ω) to the solution Xt of (3.2). Thus, we can find the solution

of (3.2) by solving the approximation equation (3.3) in (H) and then taking limit in L2(Ω) as ε → 0.

Now we can rewrite the approximation equation (3.3) as follows

dXε
t = (

μt − kt ln Xε
t

)
Xε

t dt + σt Xε
t dW H,ε

t

or

dXε
t = (

μt + σtϕ
ε
t − kt ln Xε

t

)
Xε

t dt + σtε
α Xε

t dBt . (3.4)

In reversion, it follows from (2.3) that the solution Xε
t of (3.4) will solve (3.3) if it belongs to D1,2

B .

In the remain of this paper, we always assume that the coefficients μt , kt are continuous functions and σt is a continu-
ously differentiable function in [0, T ].

The stochastic process ϕε
t is not bounded. However, the existence of the solution of (3.4) can be proved as in Theorem 3.1

below and we can establish the uniqueness of the solution of Eq. (3.4) by introducing the sequence of stopping times

τM = inf

{
t ∈ [0, T ]:

t∫
0

(
ϕε

s

)2
ds > M

}
∧ T ,

and considering the sequence of corresponding stopped equations

dXε
t∧τM

= (
μt∧τM + σt∧τM ϕε

t∧τM
− kt∧τM ln Xε

t∧τM

)
Xε

t∧τM
dt + σt∧τM εα Xε

t∧τM
dBt . (3.5)

We can verify that the coefficients of (3.5) satisfy the local Lipschitz condition. Hence, the uniqueness of the solution is
assured (see, for instance [6]).

Theorem 3.1. The solution of (3.4) is given by

Xε
t = exp

(
e− ∫ t

0 ku du ln X0 +
t∫

0

(
μs − 1

2
σ 2

s ε2α

)
e− ∫ t

s ku du ds +
t∫

0

σse− ∫ t
s ku du dW H,ε

s

)
. (3.6)

Moreover, if the Hurst index H > 1
4 then Xε

t ∈ (H) ⊂ D1,2
B .

Proof. Put Y ε
t = ln Xε

t . The Itô differential formula yields

dY ε
t =

(
μt + σtϕ

ε
t − 1

2
σ 2

t ε2α − kt Y ε
t

)
dt + σtε

α dBt . (3.7)

Using a method similar to [5, Proposition 4.2], we can find the explicit solution of (3.7) by

Y ε
t = e− ∫ t

0 ku du

(
Y0 +

t∫
0

(
μs − 1

2
σ 2

s ε2α

)
e
∫ s

0 ku du ds +
t∫

0

σse
∫ s

0 ku du dW H,ε
s

)
.

Consequently, (3.6) is proved. Next, we prove that any order moment of Xε
t to be finite. We have

E
∣∣Xε

t

∣∣n = EenY ε
t = enaε

t Eenmtbε
t , (3.8)

where mt = e− ∫ t
0 ku du, aε

t = mt(ln X0 + ∫ t
0 (μs − 1

2 σ 2
s ε2α)m−1

s ds), bε
t = ∫ t

0 σsm−1
s dW H,ε

s .

Since σsm−1
s ∈ C1[0, T ], the stochastic integral bε

t can be understood as Riemann–Stieltjes and as a consequence bε
t is a

centered Gaussian process. We can prove its variance is finite and then E|Xε
t |n so does for every fixed ε > 0. Indeed,

E
∣∣bε

t

∣∣2 = E

∣∣∣∣∣
t∫

0

σse
∫ s

0 ku du(
ϕε

s ds + εα dBs
)∣∣∣∣∣

2

� 2M E

∣∣∣∣∣
t∫

0

ϕε
s ds

∣∣∣∣∣
2

+ 2M

t∫
0

ε2α ds = 2M

(
E
∣∣W H,ε

t − εα Bt
∣∣2 +

t∫
0

ε2α ds

)
,

where M = sup0�s�t σ
2
s e2

∫ s
0 ku du .

E
∣∣bε

t

∣∣2 � 2M
(
2E

∣∣W H,ε
t

∣∣2 + 3ε2αt
)
� 2M

[
(T + ε)2H

+ 3ε2αT

]
.

H
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Finally, we will show that Xε
t satisfies hypothesis (H). By the Lagrange’s theorem and the Hölder’s inequality we have

E
∣∣Xε

t − Xε
s

∣∣2 = E
∣∣eY ε

t − eY ε
s
∣∣2

� E
∣∣Aε(t, s)

(
Y ε

t − Y ε
s

)∣∣2 �
[

E
∣∣Aε(t, s)

∣∣4] 1
2
[

E
∣∣Y ε

t − Y ε
s

∣∣4] 1
2 ,

where Aε(t, s) = supmin(Y ε
t ,Y ε

s )�x�max(Y ε
t ,Y ε

s ) ex that has fourth moment being finite because Aε(t, s) � e|Y ε
t |+|Y ε

s |.
By the inequality (a + b)p � 2p−1(ap + bp) for any p � 1 we have

E
∣∣Y ε

t − Y ε
s

∣∣4 � 8
(

E
∣∣aε

t − aε
s

∣∣4 + E
∣∣mtbε

t − msbε
s

∣∣4)
.

It is obvious that |aε
t − aε

s | + |mt − ms| � Mε|t − s| with some finite positive constant Mε. We put cs = σsm−1
s = σse

∫ s
0 ku du

then cs is a deterministic function fulfilling hypothesis (H) with β = 1
2 and bε

t can be represented as

bε
t =

t∫
0

cs K (t + ε, s)dBs +
t∫

0

t∫
s

(cu − cs)∂1 K (u + ε, s)du δBs

=
t∫

0

ct K (t + ε, v)dB v +
t∫

0

t∫
v

K (u + ε, v)c′
u du dB v

= ct W H,ε
t +

t∫
0

u∫
0

K (u + ε, v)c′
u dB v du = ct W H,ε

t +
t∫

0

W H,ε
u c′

u du. (3.9)

Hence,

E
∣∣bε

t − bε
s

∣∣4 � E
∣∣ct W H,ε

t − cs W H,ε
s

∣∣4 +
t∫

s

E
∣∣W H,ε

u c′
u

∣∣4
du � Mε|t − s|,

where Mε is some finite positive constant. Thus, for s, t ∈ [0, T ] then

E
∣∣Xε

t − Xε
s

∣∣2 � Mε|t − s| 1
2 . (3.10)

We have from the chain rule for Malliavin derivative and the expression (3.9) for any 0 � r � t

D B
r Xε

t = Xε
t D B

r Y ε
t = Xε

t mt D B
r bε

t = Xε
t mt

(
ct K (t + ε, r) +

t∫
0

K (u + ε, r)c′
u du

)

and

T∫
0

E
∣∣D B

r Xε
t − D B

r Xε
s

∣∣2
dr � 2

t∧s∫
0

E
∣∣Xε

t mtct K (t + ε, r) − Xε
s mscs K (s + ε, r)

∣∣2
dr

+ 2

t∧s∫
0

E

∣∣∣∣∣Xε
t mt

t∫
0

K (u + ε, r)c′
u du − Xε

s ms

s∫
0

K (u + ε, r)c′
u du

∣∣∣∣∣
2

dr

� Mε|t − s|min( 1
2 ,2H), (3.11)

where, in above estimates, we used an elementary result that

t∧s∫
0

∣∣K (t + ε, r) − K (s + ε, r)
∣∣2

dr � E
∣∣W H

t+ε − W H
s+ε

∣∣2 = |t − s|2H .

Combining (3.10) and (3.11) we get∥∥Xε
∥∥2

L1,2
β

= Mε sup |t − s|min( 1
2 ,2H)−2β,
0<s<u<T
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which means that Xε satisfies the condition (i) in (H) for any 1
2 − H < β � min( 1

4 , H), provided that H > 1
4 . The condi-

tion (ii) in (H) is proved as follows:(
sup

0�t�T
Xε

t

)p
� sup

0�t�T
epaε

t exp
(

sup
0�t�T

pmtbε
t

)
.

Noting that aε
t , mt are deterministic functions and bε

t is a Gaussian process with finite variance. Therefore, {Zt = pmt bε
t

λ
,

0 � t � T } is a pre-Gaussian process for any λ > 0. By the results in [1, Corollary 1.1, p. 79 and Lemma 3.1, p. 140] we have
sup0�t�T Xε

t ∈ L p(Ω) for any p � 1
H > 1.

The proof of theorem is thus complete. �
Now taking the limit in L2(Ω) as ε → 0 we obtain the following theorem.

Theorem 3.2. Consider the fractional stochastic geometric mean reversion equation (1.2). If H > 1
2 , its solution is unique and given by

Xt = exp

(
e− ∫ t

0 ku du ln X0 +
t∫

0

μse− ∫ t
s ku du ds +

t∫
0

σse− ∫ t
s ku du dW H

s

)
.

If H = 1
2 , the solution is a well-known classical lognormal process

Xt = exp

(
e− ∫ t

0 ku du ln X0 +
t∫

0

(
μs − 1

2
σ 2

s

)
e− ∫ t

s ku du ds +
t∫

0

σse− ∫ t
s ku du dBs

)
.

If 1
4 < H < 1

2 , (1.2) has no solution.

Proof. In the case, H = 1
2 , the proof is trivial. When H > 1

2 , using similar estimates as above we can prove that Xt satisfy
the hypothesis (H) and so it solves (1.2). Eq. (1.2) has no solution when 1

4 < H < 1
2 since L2-limε→0 Xε

t = 0. �
Remark. In the case H > 1

2 , the solution Xt is also a lognormal process because the fractional stochastic integral∫ t
0 σse− ∫ t

s ku du dW H
s is a L2-limit of the Gaussian process

∫ t
0 σse− ∫ t

s ku du dW H,ε
s . This significant property make Xt as a nat-

ural candidate not only to model spot freight rate in shipping but also to model stock price in mathematical finance. We
refer to [3] for an excellent application of fBm to finance.

4. Conclusion and possible extension

The semimartingale approximate method presented in this paper can be used to study a wider class of the fractional
stochastic differential equations of the form

dXt = b(t, Xt)dt + σt Xt dW H
t , 0 � t � T . (4.1)

From practical point of view, it is important to find the explicit expression for the solution of each specific model. The
present paper show again that the semimartingale approximate method has more advantages for this.

It is well known that in the special case H = 1
2 , the anticipate differential equation (4.1) is the widest class that it can

be explicitly solved. In our context, (4.1) can be approximated by a classical stochastic differential equation with the same
initial condition

dXε
t = [

b
(
t, Xε

t

) + σtϕ
ε
t Xε

t

]
dt + εασt Xε

t dBt, 0 � t � T . (4.2)

The explicit solution of (4.2) is given by

Xε
t = Zε

t

Y ε
t

,

where Y ε
t = exp( 1

2

∫ t
0 σ 2

s ε2α ds − ∫ t
0 σs dW H,ε

s ) and Zε
t is the solution of the ordinary differential equation

dZε
t = Y ε

t b

(
t,

Zε
t

Y ε
t

)
dt, Zε

0 = Xε
0 = X0.

For a suitable function b(t, x), the solution of (4.1) will be a L2-limit of Xε
t as ε → 0.
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