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Abstract— This paper presents an implementation of a 

LEON3-based System-on-Chip (SoC) testbed, which is aimed at 

experimentally evaluating and validating the H.264/AVC video 

encoding Integrated Circuit (IC) developed by SIS Laboratory at 

VNU University of Engineering and Technology. In addition, the 

paper also presents a methodology for verifying the design of 

H264/AVC video encoder in the Hardware/Software co-

emulating fashion. The design is implemented on the DE2 

development board from Altera Corporation. The testbed can 

help us to evaluate effectively many aspects of the developed 

H.264/AVC video encoder. 

Keywords— SoC testbed, Harware/Software co-verification, 

LEON3 processor, H.264 encoder 

 

I.  INTRODUCTION 

Because of the high mask set cost for fabricating ASIC 
(Application-specific Integrated Circuit), it is necessary to 
verify and evaluate carefully the design at all design phases in 
order to ensure the fabricated chip is without bug. Prototyping 
an ASIC design, which has large integration level and high 
complexity, using FPGA (Field Programmable Gate Array) is 
indispensable in the design process.  

ASIC design is more and more complex. The major 
challenge the designer must be confronted to design such an IC 
(Integrated Circuit) is verification. In general, verification 
consumes at least 50%~80% of the design effort [1]. Verifying 
the design correctness is considered to be the key barrier 
against designing more complex VLSIs (Very Large Scale 
Integration), as well as exploiting leading-edge process 
technologies. There is not any single design tool that can solve 
the problem. Instead, a complex chain of tools and techniques, 
including classical simulation, directed and random 
verification, and formal techniques, etc., is required to reduce 
the number of design errors to an acceptable minimum. In this 
paper, we developed a LEON3-based System-on-Chip (SoC) 
testbed and the platform-based verification method, which is 
aimed at experimentally evaluating and validating the 
H.264/AVC video encoding IC designed by SIS Laboratory at 
the University of Engineering and Technology, Vietnam 
National University, Hanoi. This testbed can help us to 
evaluate effectively many aspects of the designed H.264/AVC 
video encoder. 

The goal of verification is to ensure that the design meets 
the functional requirements as defined in the functional 
specification. In the top-down method for ASIC design and 
verification, the designers first develops a system-level model 
of the design from the functional specification. The system-
level model is normally the high-level behavioral abstraction 
that is written in a high-level programming language such as 
C/C++. Alternatively, this model may also be created using the 
hardware description language (HDL) such as Verilog or 
VHDL. The behavioral model should be simulated in order to 
verify that it meets the required functionalities completely and 
correctly. The behavioral model is then used as a reference to 
refine and create a synthesizable RTL (Register Transfer 
Level) model. 

Before being synthesized to a structural model (or gate-
level model), the RTL model is verified again to ensure that it 
exactly provides the required functionality and performance. 
The functional verification of the design at this step must be as 
complete and thorough as possible. This requires that the test 
vectors employed during simulation should provide the 
necessary coverage to ensure the design will meet 
specifications without bug. Unfortunately, the verification by 
simulation is difficult to test all cases. While the size of design 
increases, it might be unfeasible to run the full test-bench on a 
RTL model because of the huge simulating time. In this case, it 
is necessary to speed up the simulation using emulator, rapid 
prototype system, or hardware accelerators or to partition the 
design into several functional blocks. The modules are 
extracted from an abstract model of the design, and then 
individual modules can be verified independently with their 
associated test-bench. Afterwards, system-level emulation can 
run in a mixed mode where most modules are simulated with 
high-level abstract models, while one or some modules are 
substituted by hardware accelerator(s).   

The rest of the paper is organized as follows. The hardware 
architecture of H.264/AVC video encoder is firstly introduced 
in Section II. Next, the design and implementation of the SoC 
testbed are presented in Section III. Section IV presents the 
methodology for verifying a hardware design by using the 
proposed SoC testbed. The details of validating the 
H.264/AVC video encoder and experimental results are 
presented and discussed in Section V. In Section VI, some 
conclusions are drawn.  
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II. INTRODUCTION TO THE H.264/AVC VIDEO ENCODER 

A. Basic concepts of H.264/AVC video encoding 

The H.264/AVC video encoding standard is known as an 
efficient video encoding standard providing high quality at a 
very low bitrate in comparison with the previous standards 
such as MPEG-2 and MPEG-4. 

 The general architecture of the H.264/AVC encoder, 
composed of different functional blocks, is depicted in Fig. 1. 
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Fig. 1 Functional diagram of the H.264/AVC encoder. 

In order to achieve high compression ratio, the H.264/AVC 
standard has adopted several advances in coding technology to 
remove spatial and temporal redundancies. These prominent 
techniques are as follows: 

• A new way to handle the quantized transform 
coefficients has been proposed for trading-off between 
compression performance and video quality to meet the 
requirements of applications. Besides that, an efficient 
method called Context-Adaptive Variable Length 
Coding (CAVLC) is also used to encode residual data. 
In this coding technique, VLC tables are switched 
according to already transmitted syntax elements. Since 
these VLC tables are specifically designed to match the 
corresponding image statistic, the entropy coding 
performance is impressively improved in comparison 
with schemes using only a single VLC table [2]; 

• The H.264/AVC adopts variable block size prediction 
to provide more flexibility. The intra prediction can be 
applied either on 4×4 blocks individually or on entire 
16×16 macroblocks (MBs). There are nine different 
prediction modes for 4×4 blocks and four prediction 
modes for 16×16 blocks. After comparing among the 
cost functions of all possible modes, the best mode 
having the lowest cost is selected. On the other hand, 
the inter-prediction is based on a tree-structure where 
the motion vector and prediction can adopt various 
block sizes and partitions ranging from 16×16 MBs to 
4×4-blocks. To identify these prediction modes, motion 
vectors, and partitions, the H.264/AVC specifies a very 
complex algorithm to derive them from their neighbors; 

• The forward transform/inverse transform also operate 
on blocks of 4×4 pixels to match the smallest block 
size. The transform is still Discrete Cosine Transform 

(DCT) but with some fundamental differences 
compared to those in previous standards [3]. In [4], the 
transform unit is composed of both DCT and Walsh 
Hadamard transforms for all prediction processes; 

• The in-loop de-blocking filter in the H.264/AVC 
depends on the parameters so-called Boundary Strength 
(BS) to determine whether the current block edge 
should be filtered. The derivation of the BS is highly 
adaptive because it relies on the modes and coding 
conditions of the adjacent blocks. 

B. VENGME Hardware Architecture 

The “Video Encoder for the Next Generation Multimedia 
Equipment (VENGME)” project, supported by the Vietnam 
National University, Hanoi, aims at designing and 
implementing an H.264/AVC encoder targeting mobile 
platforms. The current design is optimized for CIF video; 
however, the architecture can be extended for larger resolutions 
by enlarging the reference memory and the search window. 

One of the factors which affect both computational path 
and the power consumption is the workload of the system and 
the data dependencies among the pipeline stages. In the 
H.264/AVC encoder, the most time consuming part is inter 
prediction including Integer Motion Estimation (IME), 
Fractional Motion Estimation (FME), and Motion 
Compensation (MC). The second time consuming module in 
the encoder is the Entropy Coding (EC). Therefore, the 
architecture should be carefully selected to improve the coding 
throughput and the overall performance. Our proposed designs 
for Intra-Prediction, Inter-Prediction, Entropy Encoder, and 
Forward Transformation and Quantization (FTQ) have been 
presented in [4]-[8]. 

 

Fig. 2 VENGME H.264/AVC encoder architecture. 

The complete architecture of VENGME encoder uses a 4-

stage pipeline scheme, as illustrated in Fig. 2. The first stage is 

used to load the data needed for the prediction. The second 

stage includes intra- and inter-predictions. Because FME and 

MC can reuse the information from IME and the data from the 

search window SRAM, therefore the IME and FME are 

merged into the same stage. Inter-prediction and intra-

prediction in the same stage can be executed in parallel or 

separately, thanks to the system controller decision. In the 
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separate mode of execution, to save the power consumption, 

the intra- or inter-prediction can be switch off while the other 

in active state. In the mixed mode of execution, the intra 

prediction and inter prediction can be done in parallel, the 

intra prediction will finish first, and its results are stored in 

TQIF (TQ Interface) memory. After that, the intra module can 

be switched off to save power. Inter prediction and motion 

compensation continue to find the best predicted pixels. After 

having inter-prediction results, TQIF memory can be 

invalidated to store new transformed results for inter module. 

The third stage and the final stage are the same as the classical 

4-pipeline architecture. The complete VENGME architecture 

has been implemented using a CMOS 0.18µm technology 

from ams AG. 

III. DESIGN AND IMPLEMENTATION OF A SOC TESTBED 

The top-level architecture of the SoC testbed is shown in 
Fig. 3.  Altera DE2 development board is used as a prototype 
for this SoC testbed. The SoC testbed mainly consists of the 
blocks as follows. LEON3 processor [9] functions as the 
central processing unit (CPU) that takes charge of managing 
and scheduling all activities of the system. It receives the 
interrupt, stores data from input devices, processes data, and 
sets up operations for data transfer between memory and other 
devices. A real-time operating system (RTOS) (e.g., Linux) 
running on the processor may be responsible for performing all 
the above tasks. SDcard/SDRAM/FLASH/SRAM controllers 
provide the interface to external SDcard/SDRAM/FLASH/ 
SRAM memories, respectively. SD card stores benchmark 
video sequences. SDRAM (Synchronous Dynamic Random 
Access Memory) buffers input data (e.g., the encoding video 
frame) and intermediate data (e.g., reference frames and 
encoded frames). SRAM (Static RAM) buffers the temporary 
data during operating of the system. Flash memory stores the 
initialization and configuration information of the system, as 
well as holds the application program for CPU. The 
components communicate with each other by an AMBA bus, 
which is an on-chip bus architecture defined by ARM. The 
AMBA bus consists of three parts: AMBA High-performance 
bus (AHB) aims at connecting to high-bandwidth devices; 
AMBA peripheral bus (APB) targets at connecting to the 
devices that require a lower bandwidth; and a bridge joins 
AHB bus and APB bus together (AHB/APB Bridge). Some 
assistant functional modules such as interrupt controller (IRQ 
controller), UART, Timer, PS/2 and GPIO interface are 
connected to APB bus, whereas SDRAM/FLASH/SRAM 
controllers are connected to AHB bus. 

User-defined IP (Intellectual Property) cores can be 
connected to AHB or APB bus for verifying. For example, 
considering the H.264/AVC encoder that organized into a 
number of modules (i.e., User-defined IP core in Fig. 3). Each 
IP core is specific to a particular function such as ME, DCT, 
etc. To increase the flexibility, we have developed a wrapper 
that make the interface of IP core compatible with the AHB or 
APB bus so that it can communicate with other integrated 
components in the system. The wrapper integrates a PLL 
(Phase Lock Loop) and a DMA (Direct Memory Access) unit, 

which are reprogrammable at run-time by CPU. Here, PLL 
takes charge of synthesizing the clock signal that required by 
IP core, whereas DMA unit is responsible for getting and 
putting the data from and to SDRAM memory during IP core 
operation. 

Fig. 3. Top-level architecture of SoC testbed. 

IV. VALIDATION METHODOLOGY 

The system-on-a-chip (SoC) design and verification flow 

is shown in Fig. 4. In SoC design methodology, system-level 

design is implemented after the system specification was 

defined. A high-level description of application/algorithm is 

developed, which describes the architecture of the design by 

using the C language (so called C-Model) for simulating and 

analyzing different parameters of target system architecture, as 

well as verifying the design against the functional 

requirements. 
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Fig. 4. Design and verification flow. 
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The C-Model then is analyzed for identifying the most 

time-consumption parts by a profiler (e.g. GNU profiler 

(gprof)). The code-level refinement can be required to 

modularize the C-Model. Based on the results from previous 

phases, HW/SW (Hardware/Software) partition phase will 

partition the overall computation of the algorithm into HW 

tasks and SW tasks. Each HW task, which is equivalent to a 

function in C-Model, will be extracted and refined to RTL 

model. The individual blocks can then be verified in isolation 

with a suitable test-bench. After RTL model of the module has 

been verified by the simulation, it can be evaluated further 

through RTL/C co-emulation environment on the SoC testbed 

as shown in Fig. 5b. For that purpose, some refinement to C-

model is also implemented, such as replacing the module, 

which needs to be verified at RTL level, with the 

communication interface that drives the corresponding IP core. 

The HW and SW tasks may communicate data with each other 

through the off-chip SDRAM. Finally, the software tasks and 

communication tasks will be compiled onto the LEON3 

processor by Gaisler’s compiler [10]. 

 

 

 

Fig. 5. Method for validating the RTL design on the SoC testbed. 

V. APPLICATION TO THE H.264/AVC VIDEO ENCODER 

The H.264/AVC encoder is evaluated with CIF video 

sequences by both C/RTL simulation and emulation. Firstly, 

the encoder is divided into several functional modules, which 

relate to each other by a Control and Data Flow Graph 

(CDFG). Next, a C software model (C-Model as shown in Fig. 

5a) of the encoder is built for untimed functional verification. 

The C-Model first run on only LEON3 processor of the SoC 

testbed for generating the result files that is called Soft_results 

as shown in Fig. 5a.  

Once the design has been refined to the RTL model, and 

evaluated in terms of function and performance by RTL level 

simulation, it can be evaluated further through emulation 

environment on the SoC testbed. A RTL/C co-emulation 

model as shown in Fig. 5b is used for verifying the 

functionality and performance of the implementation of 

modules or the complete encoder. To verify one certain 

module (e.g., IME) at RTL-level, this functional module is 

refined independently to RTL model. At each time, only one 

function will be verified at the RTL level, the other functions 

are executed by the C-model running on the LEON3 core. The 

output result file from co-emulator (called Hard-result as 

shown in Fig. 5b) is compared with the result from the C-

model to validate: if matching, it may continue to simulate and 

verify the implementation at the RTL-level for the other 

modules.  

After all of functional modules are already validated, they 

are integrated together into a complete encoder, and continue 

to be verified on the emulator.   

The process of emulating the encoder on the emulation 

board is described briefly as follows (Fig. 6). Firstly, Linux 

OS and C-model encoder is compiled and loaded into the 

Flash memory of the SoC testbed. Next, the benchmark video 

files are copied into an SDcard, which inserted in the SDcard 

slot afterwards. These source video files are in ‘raw’ YCbCr 

format at CIF resolution. After resetting the system, C-model 

encoder running on LEON3 core analyses the encoding 

parameters, gets the video frame one-by-one from FLASH 

memory and writes to SDRAM memory, and starts the 

encoding process. When software program executes to the 

location at where the module has been replaced by the 

communication interface, it transfers all of the necessary 

control parameters to DMA in wrapper and passes bus control 

to wrapper (i.e., phase (1) in Fig. 6). DMA will read data from 

SDRAM and trigger IP core operation (i.e. phase (2) in Fig. 

6). DMA is also in charge of writing the result back to 

SDRAM. When the hardware IP core has done its task, it 

generates an interrupt signal to notice LEON3, and returns bus 

control to the CPU (i.e., phase (3) in Fig. 6).  

The encoder creates a reconstructed video file, which is 

identical to decoded video file by a decoder. Therefore, it is 

able to display the reconstructed frames on a LCD monitor via 

SVGA controller for evaluating the visual quality of the 

decoded video file. 

 
Fig. 6. The process of validating one IP core on the emulation board. 



National Conference on Electronics and Communications (REV2013-KC01) 

 

 

Synthesis results of the SoC testbed are reported by Altera 

Quartus II as shown in Fig. 7. 

 

 
Fig. 7. Compilation report by Altera Quartus II. 

Fig. 8 shows the demonstrating result of the testbed on the 
Altera DE2 board, where a CIF@25fps video sequence is 
encoded by the H.264/AVC video encoder and the 
reconstructed video sequence is displayed on the LCD screen. 

 

Fig. 8. Testbed implementation on Altera DE2 development board. 

VI. CONCLUSIONS 

A SoC testbed and platform-based verification method for 
validating the hardware design of H.264/AVC video encoder 

has been presented in the paper. Hardware modules are 
connected to the system designed around LEON3 processor as 
custom hardware blocks for HW/SW co-emulation. The 
interface between the hardware module and SoC is done 
through the wrapper, so it is quite simple for application, and 
saves developing time. The experimental results prove that the 
SoC testbed is valuable to ASIC research and design. 
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