
National Conference on Electronics and Communications (REV2013-KC01)

System-on-Chip Testbed for Validating the Hardware

Design of H.264/AVC Encoder

Hai-Phong Phan, Hung K. Nguyen, Duy-Hieu Bui, Nam-Khanh Dang, Xuan-Tu Tran

SIS Laboratory, VNU University of Engineering and Technology

144 Xuan Thuy road, Hanoi, Vietnam

Corresponding author’s email: tutx@vnu.edu.vn

Abstract— This paper presents an implementation of a

LEON3-based System-on-Chip (SoC) testbed, which is aimed at

experimentally evaluating and validating the H.264/AVC video

encoding Integrated Circuit (IC) developed by SIS Laboratory at

VNU University of Engineering and Technology. In addition, the

paper also presents a methodology for verifying the design of

H264/AVC video encoder in the Hardware/Software co-

emulating fashion. The design is implemented on the DE2

development board from Altera Corporation. The testbed can

help us to evaluate effectively many aspects of the developed

H.264/AVC video encoder.

Keywords— SoC testbed, Harware/Software co-verification,

LEON3 processor, H.264 encoder

I. INTRODUCTION

Because of the high mask set cost for fabricating ASIC
(Application-specific Integrated Circuit), it is necessary to
verify and evaluate carefully the design at all design phases in
order to ensure the fabricated chip is without bug. Prototyping
an ASIC design, which has large integration level and high
complexity, using FPGA (Field Programmable Gate Array) is
indispensable in the design process.

ASIC design is more and more complex. The major
challenge the designer must be confronted to design such an IC
(Integrated Circuit) is verification. In general, verification
consumes at least 50%~80% of the design effort [1]. Verifying
the design correctness is considered to be the key barrier
against designing more complex VLSIs (Very Large Scale
Integration), as well as exploiting leading-edge process
technologies. There is not any single design tool that can solve
the problem. Instead, a complex chain of tools and techniques,
including classical simulation, directed and random
verification, and formal techniques, etc., is required to reduce
the number of design errors to an acceptable minimum. In this
paper, we developed a LEON3-based System-on-Chip (SoC)
testbed and the platform-based verification method, which is
aimed at experimentally evaluating and validating the
H.264/AVC video encoding IC designed by SIS Laboratory at
the University of Engineering and Technology, Vietnam
National University, Hanoi. This testbed can help us to
evaluate effectively many aspects of the designed H.264/AVC
video encoder.

The goal of verification is to ensure that the design meets
the functional requirements as defined in the functional
specification. In the top-down method for ASIC design and
verification, the designers first develops a system-level model
of the design from the functional specification. The system-
level model is normally the high-level behavioral abstraction
that is written in a high-level programming language such as
C/C++. Alternatively, this model may also be created using the
hardware description language (HDL) such as Verilog or
VHDL. The behavioral model should be simulated in order to
verify that it meets the required functionalities completely and
correctly. The behavioral model is then used as a reference to
refine and create a synthesizable RTL (Register Transfer
Level) model.

Before being synthesized to a structural model (or gate-
level model), the RTL model is verified again to ensure that it
exactly provides the required functionality and performance.
The functional verification of the design at this step must be as
complete and thorough as possible. This requires that the test
vectors employed during simulation should provide the
necessary coverage to ensure the design will meet
specifications without bug. Unfortunately, the verification by
simulation is difficult to test all cases. While the size of design
increases, it might be unfeasible to run the full test-bench on a
RTL model because of the huge simulating time. In this case, it
is necessary to speed up the simulation using emulator, rapid
prototype system, or hardware accelerators or to partition the
design into several functional blocks. The modules are
extracted from an abstract model of the design, and then
individual modules can be verified independently with their
associated test-bench. Afterwards, system-level emulation can
run in a mixed mode where most modules are simulated with
high-level abstract models, while one or some modules are
substituted by hardware accelerator(s).

The rest of the paper is organized as follows. The hardware
architecture of H.264/AVC video encoder is firstly introduced
in Section II. Next, the design and implementation of the SoC
testbed are presented in Section III. Section IV presents the
methodology for verifying a hardware design by using the
proposed SoC testbed. The details of validating the
H.264/AVC video encoder and experimental results are
presented and discussed in Section V. In Section VI, some
conclusions are drawn.

National Conference on Electronics and Communications (REV2013-KC01)

II. INTRODUCTION TO THE H.264/AVC VIDEO ENCODER

A. Basic concepts of H.264/AVC video encoding

The H.264/AVC video encoding standard is known as an
efficient video encoding standard providing high quality at a
very low bitrate in comparison with the previous standards
such as MPEG-2 and MPEG-4.

 The general architecture of the H.264/AVC encoder,
composed of different functional blocks, is depicted in Fig. 1.

Fn
(current)

�, F’n-1
(reference)

F’n
(reconstructed)

MC

Intra
prediction

ME

T

Q

Q-1

T-1

Pre-Intra
prediction

Re-ordering

Entropy
encode

Blocking
Filter

FTQ

iTQ

NAL

Intra

Inter

+

-

+

+

uF’n

Fn
(current)

�, F’n-1
(reference)

F’n
(reconstructed)

MC

Intra
prediction

ME

T

Q

Q-1

T-1

Pre-Intra
prediction

Re-ordering

Entropy
encode

Blocking
Filter

FTQ

iTQ

NAL

Intra

Inter

+

-

+

+

uF’n

Fig. 1 Functional diagram of the H.264/AVC encoder.

In order to achieve high compression ratio, the H.264/AVC
standard has adopted several advances in coding technology to
remove spatial and temporal redundancies. These prominent
techniques are as follows:

• A new way to handle the quantized transform
coefficients has been proposed for trading-off between
compression performance and video quality to meet the
requirements of applications. Besides that, an efficient
method called Context-Adaptive Variable Length
Coding (CAVLC) is also used to encode residual data.
In this coding technique, VLC tables are switched
according to already transmitted syntax elements. Since
these VLC tables are specifically designed to match the
corresponding image statistic, the entropy coding
performance is impressively improved in comparison
with schemes using only a single VLC table [2];

• The H.264/AVC adopts variable block size prediction
to provide more flexibility. The intra prediction can be
applied either on 4×4 blocks individually or on entire
16×16 macroblocks (MBs). There are nine different
prediction modes for 4×4 blocks and four prediction
modes for 16×16 blocks. After comparing among the
cost functions of all possible modes, the best mode
having the lowest cost is selected. On the other hand,
the inter-prediction is based on a tree-structure where
the motion vector and prediction can adopt various
block sizes and partitions ranging from 16×16 MBs to
4×4-blocks. To identify these prediction modes, motion
vectors, and partitions, the H.264/AVC specifies a very
complex algorithm to derive them from their neighbors;

• The forward transform/inverse transform also operate
on blocks of 4×4 pixels to match the smallest block
size. The transform is still Discrete Cosine Transform

(DCT) but with some fundamental differences
compared to those in previous standards [3]. In [4], the
transform unit is composed of both DCT and Walsh
Hadamard transforms for all prediction processes;

• The in-loop de-blocking filter in the H.264/AVC
depends on the parameters so-called Boundary Strength
(BS) to determine whether the current block edge
should be filtered. The derivation of the BS is highly
adaptive because it relies on the modes and coding
conditions of the adjacent blocks.

B. VENGME Hardware Architecture

The “Video Encoder for the Next Generation Multimedia
Equipment (VENGME)” project, supported by the Vietnam
National University, Hanoi, aims at designing and
implementing an H.264/AVC encoder targeting mobile
platforms. The current design is optimized for CIF video;
however, the architecture can be extended for larger resolutions
by enlarging the reference memory and the search window.

One of the factors which affect both computational path
and the power consumption is the workload of the system and
the data dependencies among the pipeline stages. In the
H.264/AVC encoder, the most time consuming part is inter
prediction including Integer Motion Estimation (IME),
Fractional Motion Estimation (FME), and Motion
Compensation (MC). The second time consuming module in
the encoder is the Entropy Coding (EC). Therefore, the
architecture should be carefully selected to improve the coding
throughput and the overall performance. Our proposed designs
for Intra-Prediction, Inter-Prediction, Entropy Encoder, and
Forward Transformation and Quantization (FTQ) have been
presented in [4]-[8].

Fig. 2 VENGME H.264/AVC encoder architecture.

The complete architecture of VENGME encoder uses a 4-

stage pipeline scheme, as illustrated in Fig. 2. The first stage is

used to load the data needed for the prediction. The second

stage includes intra- and inter-predictions. Because FME and

MC can reuse the information from IME and the data from the

search window SRAM, therefore the IME and FME are

merged into the same stage. Inter-prediction and intra-

prediction in the same stage can be executed in parallel or

separately, thanks to the system controller decision. In the

National Conference on Electronics and Communications (REV2013-KC01)

separate mode of execution, to save the power consumption,

the intra- or inter-prediction can be switch off while the other

in active state. In the mixed mode of execution, the intra

prediction and inter prediction can be done in parallel, the

intra prediction will finish first, and its results are stored in

TQIF (TQ Interface) memory. After that, the intra module can

be switched off to save power. Inter prediction and motion

compensation continue to find the best predicted pixels. After

having inter-prediction results, TQIF memory can be

invalidated to store new transformed results for inter module.

The third stage and the final stage are the same as the classical

4-pipeline architecture. The complete VENGME architecture

has been implemented using a CMOS 0.18µm technology

from ams AG.

III. DESIGN AND IMPLEMENTATION OF A SOC TESTBED

The top-level architecture of the SoC testbed is shown in
Fig. 3. Altera DE2 development board is used as a prototype
for this SoC testbed. The SoC testbed mainly consists of the
blocks as follows. LEON3 processor [9] functions as the
central processing unit (CPU) that takes charge of managing
and scheduling all activities of the system. It receives the
interrupt, stores data from input devices, processes data, and
sets up operations for data transfer between memory and other
devices. A real-time operating system (RTOS) (e.g., Linux)
running on the processor may be responsible for performing all
the above tasks. SDcard/SDRAM/FLASH/SRAM controllers
provide the interface to external SDcard/SDRAM/FLASH/
SRAM memories, respectively. SD card stores benchmark
video sequences. SDRAM (Synchronous Dynamic Random
Access Memory) buffers input data (e.g., the encoding video
frame) and intermediate data (e.g., reference frames and
encoded frames). SRAM (Static RAM) buffers the temporary
data during operating of the system. Flash memory stores the
initialization and configuration information of the system, as
well as holds the application program for CPU. The
components communicate with each other by an AMBA bus,
which is an on-chip bus architecture defined by ARM. The
AMBA bus consists of three parts: AMBA High-performance
bus (AHB) aims at connecting to high-bandwidth devices;
AMBA peripheral bus (APB) targets at connecting to the
devices that require a lower bandwidth; and a bridge joins
AHB bus and APB bus together (AHB/APB Bridge). Some
assistant functional modules such as interrupt controller (IRQ
controller), UART, Timer, PS/2 and GPIO interface are
connected to APB bus, whereas SDRAM/FLASH/SRAM
controllers are connected to AHB bus.

User-defined IP (Intellectual Property) cores can be
connected to AHB or APB bus for verifying. For example,
considering the H.264/AVC encoder that organized into a
number of modules (i.e., User-defined IP core in Fig. 3). Each
IP core is specific to a particular function such as ME, DCT,
etc. To increase the flexibility, we have developed a wrapper
that make the interface of IP core compatible with the AHB or
APB bus so that it can communicate with other integrated
components in the system. The wrapper integrates a PLL
(Phase Lock Loop) and a DMA (Direct Memory Access) unit,

which are reprogrammable at run-time by CPU. Here, PLL
takes charge of synthesizing the clock signal that required by
IP core, whereas DMA unit is responsible for getting and
putting the data from and to SDRAM memory during IP core
operation.

Fig. 3. Top-level architecture of SoC testbed.

IV. VALIDATION METHODOLOGY

The system-on-a-chip (SoC) design and verification flow

is shown in Fig. 4. In SoC design methodology, system-level

design is implemented after the system specification was

defined. A high-level description of application/algorithm is

developed, which describes the architecture of the design by

using the C language (so called C-Model) for simulating and

analyzing different parameters of target system architecture, as

well as verifying the design against the functional

requirements.

Description of Application/Algorithm in C

Language (e.g. C-Model)

HW/SW Partition

YES

Emulator for HW/SW co-verification

HARWARE DESIGN

Profile

Hardware Tasks

Function1 Function2 FunctionN

Simulation (by ModelSim)

C compiler for LEON3 CPU

SW tasks + HW/SW communication interface
Refine C-model to RTL model

Executable files

SOFTWARE REFINEMENT

Testbench

EVALUATING
No

Specification of H.264/

AVC Encoder

Benchmark video

sequences

Fig. 4. Design and verification flow.

National Conference on Electronics and Communications (REV2013-KC01)

The C-Model then is analyzed for identifying the most

time-consumption parts by a profiler (e.g. GNU profiler

(gprof)). The code-level refinement can be required to

modularize the C-Model. Based on the results from previous

phases, HW/SW (Hardware/Software) partition phase will

partition the overall computation of the algorithm into HW

tasks and SW tasks. Each HW task, which is equivalent to a

function in C-Model, will be extracted and refined to RTL

model. The individual blocks can then be verified in isolation

with a suitable test-bench. After RTL model of the module has

been verified by the simulation, it can be evaluated further

through RTL/C co-emulation environment on the SoC testbed

as shown in Fig. 5b. For that purpose, some refinement to C-

model is also implemented, such as replacing the module,

which needs to be verified at RTL level, with the

communication interface that drives the corresponding IP core.

The HW and SW tasks may communicate data with each other

through the off-chip SDRAM. Finally, the software tasks and

communication tasks will be compiled onto the LEON3

processor by Gaisler’s compiler [10].

Fig. 5. Method for validating the RTL design on the SoC testbed.

V. APPLICATION TO THE H.264/AVC VIDEO ENCODER

The H.264/AVC encoder is evaluated with CIF video

sequences by both C/RTL simulation and emulation. Firstly,

the encoder is divided into several functional modules, which

relate to each other by a Control and Data Flow Graph

(CDFG). Next, a C software model (C-Model as shown in Fig.

5a) of the encoder is built for untimed functional verification.

The C-Model first run on only LEON3 processor of the SoC

testbed for generating the result files that is called Soft_results

as shown in Fig. 5a.

Once the design has been refined to the RTL model, and

evaluated in terms of function and performance by RTL level

simulation, it can be evaluated further through emulation

environment on the SoC testbed. A RTL/C co-emulation

model as shown in Fig. 5b is used for verifying the

functionality and performance of the implementation of

modules or the complete encoder. To verify one certain

module (e.g., IME) at RTL-level, this functional module is

refined independently to RTL model. At each time, only one

function will be verified at the RTL level, the other functions

are executed by the C-model running on the LEON3 core. The

output result file from co-emulator (called Hard-result as

shown in Fig. 5b) is compared with the result from the C-

model to validate: if matching, it may continue to simulate and

verify the implementation at the RTL-level for the other

modules.

After all of functional modules are already validated, they

are integrated together into a complete encoder, and continue

to be verified on the emulator.

The process of emulating the encoder on the emulation

board is described briefly as follows (Fig. 6). Firstly, Linux

OS and C-model encoder is compiled and loaded into the

Flash memory of the SoC testbed. Next, the benchmark video

files are copied into an SDcard, which inserted in the SDcard

slot afterwards. These source video files are in ‘raw’ YCbCr

format at CIF resolution. After resetting the system, C-model

encoder running on LEON3 core analyses the encoding

parameters, gets the video frame one-by-one from FLASH

memory and writes to SDRAM memory, and starts the

encoding process. When software program executes to the

location at where the module has been replaced by the

communication interface, it transfers all of the necessary

control parameters to DMA in wrapper and passes bus control

to wrapper (i.e., phase (1) in Fig. 6). DMA will read data from

SDRAM and trigger IP core operation (i.e. phase (2) in Fig.

6). DMA is also in charge of writing the result back to

SDRAM. When the hardware IP core has done its task, it

generates an interrupt signal to notice LEON3, and returns bus

control to the CPU (i.e., phase (3) in Fig. 6).

The encoder creates a reconstructed video file, which is

identical to decoded video file by a decoder. Therefore, it is

able to display the reconstructed frames on a LCD monitor via

SVGA controller for evaluating the visual quality of the

decoded video file.

Fig. 6. The process of validating one IP core on the emulation board.

National Conference on Electronics and Communications (REV2013-KC01)

Synthesis results of the SoC testbed are reported by Altera

Quartus II as shown in Fig. 7.

Fig. 7. Compilation report by Altera Quartus II.

Fig. 8 shows the demonstrating result of the testbed on the
Altera DE2 board, where a CIF@25fps video sequence is
encoded by the H.264/AVC video encoder and the
reconstructed video sequence is displayed on the LCD screen.

Fig. 8. Testbed implementation on Altera DE2 development board.

VI. CONCLUSIONS

A SoC testbed and platform-based verification method for
validating the hardware design of H.264/AVC video encoder

has been presented in the paper. Hardware modules are
connected to the system designed around LEON3 processor as
custom hardware blocks for HW/SW co-emulation. The
interface between the hardware module and SoC is done
through the wrapper, so it is quite simple for application, and
saves developing time. The experimental results prove that the
SoC testbed is valuable to ASIC research and design.

ACKNOWLEDGEMENT

This work has been done in the framework of research
project No. QGDA.10.02 (VENGME), funded by Vietnam
National University, Hanoi. The project aims at developing a
hardware for video encoding system based on the H.264/AVC
standard, targeted to mobile applications. We would like to
express special thanks to Synopsys for providing EDA tools,

CMP and AMS for providing CMOS 0.18µm technology
libraries.

REFERENCES

[1] P. Rashinkar. System-On-a-Chip Verification Methodology and
Techniques, USA Kluwer Academic, Publishers, 2001.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H.264/AVC Video Coding Standard. IEEE Trans. on Circuits and
Systems for Video Technology, Vol.13, No. 7, pp. 560-576, 2003.

[3] I. E. G. Richardson. H.264 and MPEG-4 Video Compression. John
Willey & Sons, New York, NY, USA, 2003.

[4] Xuan-Tu Tran, Van-Huan Tran. An Efficient Architecture of Forward
Transforms and Quantization for H.264/AVC Codecs. REV Journal on
Electronics and Communications JEC, Vol. 1, No. 2, pp. 122-129, 2011.

[5] Duy-Hieu Bui, Van-Huan Tran, Van-Mien Nguyen, Duc-Hoang Ngo,
Xuan-Tu Tran. A Hardware Architecture for Intra Prediction in
H.264/AVC Encoder. In Proceedings of the 2012 IEICE International
Conference on Integrated Circuits and Devices in Vietnam (ICDV
2012), pp. 95-100, Danang, 2012.

[6] Nam-Khanh Dang, Xuan-Tu Tran. A VLSI Implementation for Inter-
Prediction Module in H.264/AVC Encoders. In Proceedings of the 2013
IEICE International Conference on Integrated Circuits, Devices, and
Verification (ICDV 2013), Ho Chi Minh city, Vietnam, November 2013.

[7] Ngoc-Mai Nguyen, Xuan-Tu Tran, Pascal Vivet, Suzanne Lesecq. An
Efficient Context Adaptive Variable Length Coding Architecture for
H.264/AVC Video Encoders. In Proceedings of the 2012 International
Conference on Advanced Technologies for Communications (ATC
2012), pp. 158-164, Hanoi, October 2012.

[8] Ngoc-Mai Nguyen, Edith Beigne, Suzanne Lesecq, Pascal Vivet, Duy-
Hieu Bui, Xuan-Tu Tran. Hardware Implementation for Entropy Coding
and Byte Stream Packing Engine in H.264/AVC. In Proceedings of the
2013 International Conference on Advanced Technologies for
Communications (ATC 2013), pp. 360-365, October 2013.

[9] Gaisler Research. GRLIB IP Core User’s Manual. Version 1.3.0-b4133,
Aug. 2013.

[10] Gaisler Research. Bare-C Cross-Compiler System for LEON3 User’s
Manual.

