
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2015) 1-21

An Efficient Implementation of Advanced Encryption

Standard on the Coarse-grained Reconfigurable Architecture

Hung K. Nguyen, Xuan-Tu Tran

SIS Laboratory, VNU University of Engineering and Technology

144 Xuan Thuy road, Cau Giay district, Hanoi, Vietnam

Abstract

The Advanced Encryption Standard (AES) is currently considered as one of the best symmetric-key block
ciphers. The hardware implementation of the AES for hand-held mobile devices or wireless sensor network
nodes is always required to meet the strict constraints in terms of performance, power and cost. Coarse-grained
reconfigurable architectures are recently proposed as the solution that provides high flexibility, high performance
and low power consumption for the next-generation embedded systems. This paper presents a flexible, high-
performance implementation of the AES algorithm on a coarse-grained reconfigurable architecture, called
MUSRA (Multimedia Specific Reconfigurable Architecture). First, we propose a hardware-software partitioning
method for mapping the AES algorithm onto the MUSRA. Second, the parallel and pipelining techniques are
considered thoughtfully to increase total computing throughput by efficiently utilizing the computing resources
of the MUSRA. Some optimizations at both loop transformation level and scheduling level are performed in
order to make better use of instruction-, loop- and task- level parallelism. The proposed implementation has been
evaluated by the cycle-accurate simulator of the MUSRA. Experimental results show that the MUSRA can be
reconfigured to support both encryption and decryption with all key lengths specified in the AES standard. The
performance of the AES algorithm on the MUSRA is better than that of the ADRES reconfigurable processor,
Xilinx Virtex-II, and the TI C64+ DSP.

© 2015 Published by VNU Journal of Science.

Manuscript communication: received 15 December 2013, revised 06 December 2014, accepted 19 January 2015

Corresponding author: Hung K. Nguyen, kiemhung@vnu.edu.vn

Keywords: Coarse-grained Reconfigurable Architecture (CGRA), Advanced Encryption Standard (AES),
reconfigurable computing, parallel processing.

1. Introduction

The fast development of the communication

technology enables the information to be easily

shared globally via the internet, especially with

the Internet of Things (IoT). However, it also

raises the requirement about the secure of the

information, especially the sensitive data such

as password, bank account, personal

information, etc. One method to protect the

sensitive data is using symmetric-key block

cipher before and after sending it over the

network. The Advanced Encryption Standard

(AES), which has been standardized by the

National Institute of Standard and Technology

(NIST) [1], is currently considered as one of the

best symmetric-key block ciphers. With the

block size of 128 bits and the variable key

length of 128 bits, 192 bits or 256 bits, the AES

has been proved to be a robust cryptographic

algorithm against illegal access.

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

2

The hardware implementation of the AES

for modern embedded systems such as hand-

held mobile devices or wireless sensor network

(WSN) nodes always gives designers some

challenges such as reducing chip area and

power consumption, increasing application

performance, shortening time-to-market, and

simplifying the updating process. Besides, these

systems are often designed not only for a

specific application but also for multiple

applications. Such sharing of resources by

several applications makes the system cheaper

and more versatile. Application Specific

Integrated Circuits (ASICs), Digital Signal

Processors (DSPs), and Application-Specific

Instruction Set Processors (ASIPs), have been

used for implementing the mobile multimedia

systems. However, none of them meets all of

the above challenges [2]. The software

implementation of the AES algorithm by using

processors (e.g. [3]) are usually very flexible

and usually targets at the applications at where

flexibility has a higher priority than the

implementation efficiency in terms of power

consumption, area, and performance. In contrast,

the ASIC implementation of the AES algorithm

(e.g. [4]) usually offers the optimized

performance and power consumption. However,

the drawback of ASIC is lower flexibility.

Moreover, the high price for designing and

manufacturing the chip masks is becoming

increasingly an important factor that limits the

application scope of ASIC. Recently, a very

promising solution is the reconfigurable

computing systems (e.g. Zynq-7000 [5],

ADRES [6], etc.) that are integrated many

heterogeneous processing resources such as

software programmable microprocessors (P),

hardwired IP (Intellectual Property) cores,

reconfigurable hardware architectures, etc. as

shown in Figure 1. To program such a system, a

target application is first represented

intermediately as a series of tasks that depends

on each other by a Control and Data Flow

Graph (CDFG) [7], and then partitioned and

mapped onto the heterogeneous computational

and routing resources of the system. Especially,

computation-intensive kernel functions of the

application are mapped onto the reconfigurable

hardware so that they can achieve high

performance approximately equivalent to that

of ASIC while maintaining a degree of

flexibility close to that of DSP processors. By

dynamically reconfiguring hardware,

reconfigurable computing systems allow many

hardware tasks to be mapped onto the same

hardware platform, thus reducing the area and

power consumption of the design [8].

CGRA

AHB/CGRA Interface

DPLL

AMBA AHB

P
Instruction

Memory
Data Memory

IP cores

Figure 1. System-level application model of CGRA.

The reconfigurable hardware is generally

classified into the Field Programmable Gate

Array (FPGA) and coarse-grained dynamically

reconfigurable architecture (CGRA). A typical

example of the FPGA-based reconfigurable

SoC is Xilinx Zynq-7000 devices [5]. Generally,

FPGAs support the fine-grained reconfigurable

fabric that can operate and be configured at bit-

level. FPGAs are extremely flexible due to their

higher reconfigurable capability. However, the

FPGAs consume more power and have more

delay and area overhead due to greater quantity

of routing required per configuration [9]. This

limits the capability to apply FPGA to mobile

devices. To overcome the limitation of the

FPGA-like fine-grained reconfigurable devices,

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 3

we developed and modeled a coarse-grained

dynamically reconfigurable architecture, called

MUSRA (Multimedia Specific Reconfigurable

Architecture) [10]. The MUSRA is a high-

performance, flexible platform for a domain of

applications in multimedia processing. In

contrast with FPGAs, the MUSRA aims at

reconfiguring and manipulating on the data at

word-level. The MUSRA is proposed to exploit

high data-level parallelism (DLP), instruction-

level parallelism (ILP) and TLP (Task Level

Parallelism) of the computation-intensive loops

of an application. The MUSRA also supports

the capability of dynamic reconfiguration by

enabling the hardware fabrics to be

reconfigured into different functions even if the

system is working.

In this paper, we proposed a solution for

implementing the AES algorithm on the

platform of the MUSRA-based system. The

AES algorithm is firstly analyzed and

optimized, and then HW/SW

(Hardware/Software) partitioned and scheduled

to be executed on the MUSRA-based system.

The experimental results show that our proposal

achieves the throughput of 29.71 instructions

per cycle in average. Our implementation has

been compared to the similar works on ADRES

reconfigurable processor [6], Xilinx Virtex-II

[11], and TI C64+ DSP [3]. Our

implementation is about 6.9 times, 2.2 times,

and 1.6 times better than that of TI C64+ DSP,

Xilinx Virtex-II, and ADRES, respectively.

The rest of the paper is organized as follows.

The MUSRA architecture and the AES

algorithm are presented in Section 2 and

Section 3, respectively. Section 4 presents the

mapping the AES algorithm onto the MUSRA-

based system. In Section 5, simulation results

and the evaluation of the AES algorithm on the

MUSRA-based system in terms of flexibility

and performance are reported and discussed.

Finally, conclusions are given in Section 6.

2. MUSRA Architecture

2.1. Architecture Overview

Context

Parser

Context

Memory

Input DMA

Output DMA

Data

Memory

RCA

Crossbar Switch

RC

00

RC

01

RC

07

RC

10

RC

11

RC

17

RC

70

RC

71

RC

77

Crossbar Switch

Crossbar Switch

IN_FIFO

IN_FIFO

GRF

AHB/CGRA Interface

CDMAC

DDMAC

Figure 2. MUSRA architecture.

The MUSRA is composed of a

Reconfigurable Computing Array (RCAs),

Input/Output FIFOs, Global Register File

(GRF), Data/Context memory subsystems, and

DMA (Direct Memory Access) controllers, etc.

(Figure 2). Data/Context memory subsystems

consist of storage blocks and DMA controllers

(i.e. CDMAC and DDMAC). The RCA is an

array of 88 RCs (Reconfigurable Cells) that

can be configured partially to implement

computation-intensive tasks. The input and

output FIFOs are the I/O buffers between the

data memory and the RCA. Each RC can get

the input data from the input FIFO or/and GRF,

and store the results back to the output FIFO.

These FIFOs are all 512-bit in width and 8-row

in depth, and can load/store sixty-four bytes or

thirty-two 16-bit words per cycle. Especially,

the input FIFO can broadcast data to every RC

that has been configured to receive the data

from the input FIFO. This mechanism aims at

exploiting the reusable data between several

iterations. The interconnection between two

neighboring rows of RCs is implemented by a

crossbar switch. Through the crossbar switch,

an RC can get results that come from an

arbitrary RC in the above row of it. The Parser

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

4

decodes the configuration information that has

been read from the Context Memory, and then

generates the control signals that ensure the

execution of RCA accurately and automatically.

RC (Figure 3) is the basic processing unit of

RCA. Each RC includes a data-path that can

execute signed/unsigned fixed-point 8/16-bit

operations with two/three source operands, such

as arithmetic and logical operations, multiplier,

and multimedia application-specific operations

(e.g. barrel shift, shift and round, absolute

differences, etc.). Each RC also includes a local

register called LOR. This register can be used

either to adjust operating cycles of the pipeline

or to store coefficients when a loop is mapped

onto the RCA. A set of configuration registers,

which stores configuration information for the

RC, is called a layer. Each RC contains two

layers that can operate in the ping-pong fashion

to reduce the configuration time.

DATAPATH

MUX MUX

LOR

MUX

A B

C

M
U

X

In
p

u
tF

IF
O

P
R

E
_

L
IN

E

In
p

u
tF

IF
O

P
R

E
_

L
IN

E

In
p

u
tF

IF
O

OUT_REG

LOR_input

LOR_output

PE_OUT

P
R

E
_

L
IN

E

LOR_OUT

PE

CLK

RESETN
A_IN B_IN

C
_

IN

Config._Addr

Config. Data

ENABLE

G
R

F
s

Cnfig.

REGs

Layer

1

Config.

REGs

Layer

0Config._ENB

Figure 3. RC architecture.

The data processed by RCA are classified

into two types: variables are streamed into the

RCA through the input FIFO meanwhile

constants are fed into the RCA via either GRF

for scalar constants or LOR array for array

constants. The constant type is again classified

into global constants and local constants.

Global constants are determined at compile-

time therefore they are initialized in context

memory of the MUSRA at compile-time and

loaded into GRF/LORs while configuring the

RCA. Local constants (or immediate values) are

not determined at compile-time, but are the

results generated by other tasks at run-time,

therefore, they need to be loaded dynamically

into GRF/LCRs by configuration words.

2.2. Configuration Model

The configuration information for the

MUSRA is organized into the packets called

context. The context specifies a particular

operation of the RCA core (i.e. the operation of

each RC, the interconnection between RCs, the

input source, output location, etc.) as well as the

control parameters that control the operation of

the RCA core. The total length of a context is

128 32-bit words. An application is composed

of one or more contexts that are stored into the

context memory of the MUSRA.

The function of the MUSRA is

reconfigured dynamically in run-time according

to the required hardware tasks. To deal with the

huge configuration overhead in the

reconfigurable hardware, the proposed design

of the MUSRA supports a mechanism to pre-

load and pre-decode the configuration context

from the context memory to the configuration

layers in the RCA. By this method, the

configuration of the MUSRA can take place

behind the execution of the RCA. As a result,

once the RCA finishes calculating with the

current context, it can be immediately changed

into the next context.

2.3. Execution Model

It is a well-known rule of thumb that 90%

of the execution time of a program is spent by

10% of the code of LOOP constructs [9]. These

LOOP constructs are generally identified as

kernel loops. Most of them have computation-

intensive and data-parallel characteristics with

high regularity, so they can be accelerated by

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 5

+

&

-

x y

×
CLK1

CLK2

CLK3

CLK4

CLK5

LOAD -

EXECUTION

STORE-

EXECUTION

z

v

InputFIFO

x y

z
L

O
A

D NI = 2

A

CLK6 w

OutputFIFO

v

w

0

1

Output #1

Output #2

NO = 2

Data broadcasted

directly to every RC

Input #1

Input #2

35

t

t

EXECUTION

(a)

PE

LORPE

PE

PE TD

PE

PE

PE
LOR

PE TD

x y

×

-

+

&

Stage1

 Stage2

Stage3

Stage4

z

LOR

LOR

LOR

LOR

PE TD PE TDAStage4

w

t

GRF(0)

OUT_FIFO(0)

OUT_FIFO(0)

v

(b)

Figure 4. (a) DFG representation of a simple loop body, and (b) its map onto RCA.

hardware circuits. The MUSRA architecture is

basically the such-loop-oriented one. By

mapping the body of the kernel loop onto the

RCA, the RCA just needs configuring one time

for executing multiple times, therefore it can

improve the efficiency of the application

execution. Executing model of the RCA is the

pipelined multi-instruction-multi-data (MIMD)

model. In this model, each RC can be

configured separately to a certain operation, and

each row of RCs corresponds to a stage of a

pipeline. Multiple iterations of a loop are

possible to execute simultaneously in the

pipeline.

For purpose of mapping, a kernel loop is

first analyzed and loop transformed (e.g. loop

unrolling, loop pipelining, loop blocking, etc.)

in order to expose inherent parallelism and data

locality that are then exploited to maximize the

computation performance on the target

architecture. Next, the body of the loop is

represented by data-flow graphs (DFGs) as

shown in Figure 4. Thereafter, DFGs are

mapped onto RCA by generating configuration

information, which relate to binding nodes to

the RCs and edges to the interconnections.

Finally, these DFGs are scheduled in order to

execute automatically on RCA by generating

the corresponding control parameters for the

CGRA’s controller. Once configured for a

certain loop, RCA operates as the hardware

dedicated for this loop. When all iterations of

loop have completed, this loop is removed from

the RCA, and the other loops are mapped onto

the RCA.

The execution of a loop is scheduled so that

the different phases of successive iterations are

overlapped each other as much as possible.

Scheduling also needs to ensure that there are

not any conflicts between resources as multiple

phases take place simultaneously.

Parallel processing increases not only the

computation performance but also the pressure

on the data bandwidth. The system’s bandwidth

is necessary to ensure that data is always

available for all resources running concurrently

without the IDLE state. One way to increase

data availability is to exploit the data locality

that refers to capability of data reuse within a

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

6

short period of time [12]. Exploiting the data

locality has the potential to increase the

processing efficiency of the system because the

data can be cached in the internal memory for

reuse later, thus reducing stalled times due to

waiting for external memory accesses.

Moreover, the data reuse also has the potential

to minimize the number of access to external

memory, thus achieves a significant reduction

in the power consumption [13]. Compared with

the execution model in [14], the MUSRA’s

execution model exploits the overlapping data

between two successive iterations, so it can

enhance the performance and reduce the input

data bandwidth [10]. In this model, RCA core

can start computing as soon as the data of the

first input appears on the input of the RCA, so

LOAD phase and EXECUTION phase of the

same iteration can happen simultaneously. In

other words, our execution model allows

overlapping three phases LOAD, EXECUTION,

STORE of the same iteration as much as

possible. As shown in Figure 4, an iteration of

RCA core in the MUSRA’s model is started by

LOAD-EXECUTION phase, and then is

EXECUTION phase, finally finished by

STORE-EXECUTION phase. On the other

hand, this model also allows the data of the next

iteration be LOADed simultaneously with the

data of the current iteration, so it maximizes not

only the level of overlapping between the

consecutive iterations but also the data reuse

[10].

3. Advanced Encryption Standard

The overall structure of the Advanced

Encryption Standard (AES) algorithm, which

includes both encryption and decryption

process, at Electronic Codebook (EBC) mode is

depicted in Figure 5 [1]. The AES is an iterated

cryptographic block cipher with a block length

of 128-bits, which means that the input data is

divided into 128-bit blocks and encrypted

independently through a sequence of rounds.

During the cipher process, the 128-bit input

block is arranged into a 4×4 matrix of bytes so

that the first four bytes of a 128-bit input block

are located at the first column in the 4×4 matrix;

the next four bytes are located at the second

column, and so on. At the output of the last

round, the 4×4 matrix of bytes is rearranged

into a 128-bit output block. This 4×4 matrix is

referred to as the state array in the context of

the AES algorithm. The AES standard supports

three types of key length, including 128, 196 or

256 bits. The number of rounds to be executed

in an AES encryption or decryption process is

dependent on the used key length as shown in

Eq.(1). The round keys are derived from the

original key thank to the key expansion unit.

6
32

_
+

LengthKey
n

(1)

Except for the last round, all rounds are

identical and including four steps as shown in

Figure 6. Notice that the last round (Round n)

does not have “Mix Columns” and “Inverse Mix

Columns” for the encryption and the decryption,

respectively. Also notice that the sequence at

where the steps are performed is different for

the encryption and the decryption.

Add Round Key

Round 1

Round 2

Round n

K
ey

 E
x

p
a

n
sio

n

w0 – w3

w4 – w7

w8 – w11

w4n – w4n+3

w0 – w3

w4 – w7

w8 – w11

w4n – w4n+3

Round n

Round (n – 1)

Round (n – 2)

Add Round Key

128-bit Plaintext

block

128-bit Ciphertext

block

128-bit Plaintext

block

128-bit Ciphertext

block

128/192/256-bit

Key

Encryption Decryption

Figure 5. The overall structure of AES algorithm [1].

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 7

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key
Round Key

Inverse Mix Columns

Add Round Key

Inverse Substitute Bytes

Inverse Shift Rows

Round Key

(a) Encryption Round (b) Decryption Round

Figure 6. The overall structure of a round.

4. Implementation

Motivated by the demand of higher

throughput and flexibility, as well as low power

consumption for the applications of video

conference, security IP camera, etc. in this

section we are going to describe our

optimization method for improving the

performance of the AES algorithm on the

architecture of the MUSRA-based system. In

the work, we have mapped both the AES

encryption and AES decryption with all options

of key length onto the MUSRA-based system.

However, for simplifying the presentation in

this section, we will focus on the AES

encryption and assume that the key length is

128 bits. We have started with the C-software

implementation of the AES algorithm and then

pay attention on analyzing the source code to

indentify computation-intensive loops of the C-

software. Besides, since no more parallel is

available in the application when processing a

single block, the loop transformation and

source-level transformation are applied to

kernel loops to improve parallelism. Next, the

kernel loops are represented intermediately by

DFGs and mapped onto RCA to increase the

total computing throughput. Finally, we

propose a scheduling scheme to manage the

dynamically reconfigurable operation of the

system. The scheduling scheme also takes

charge of synchronizing the data

communication between tasks, and managing

the conflict between hardware resources.

4.1. Hardware/Software Partition

The structure of the AES encryption

algorithm in Figure 5 can be modeled by the C

source code as shown in Figure 7(a). The AES

encryption program is represented by two FOR

loops that are denoted as block_loop and

round_loop as shown in Figure 7(a). There are

five functions in this program. Where,

KeyExpansion() implements the function of

Key Expansion unit; SubBytes(), ShiftRows(),

MixColumns(), and AddRoundKey() implement

steps of an encryption round. In order to

indentify which parts of the algorithm are

taking most of the execution time, the AES

encryption program has been profiled by the

GPROF profiler of GNU [15]. The profiling

result while encrypting an input file of 256MB

(equivalent to 16,777,215 blocks of 4×4 bytes)

is shown in Figure 8. As you can see, the

functions AddRoundKey(), MixColumns(), and

SubBytes() are the most time-consuming parts

of the program. In order to improve the

performance, these loops are transformed and

the computation-intensive loops must be

mapped onto the reconfigurable hardware for

parallel processing. Firstly, because 128-bit

blocks are encrypted independently, instead of

processing block-by-block we can invert these

loops to process round-by-round so that at each

round all of blocks will be processed before

changed to next round. In other words, while

going into a certain round, all blocks will be

processed instead of only block as in the

original code. As a result, the round_loop

covers the block_loop now. The loops continue

to be transformed and partitioned into some

small loops as shown in Figure 7(b). By

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

KeyExpansion();

// processing all blocks of the plain text input file

for (block = 1; block =< Nb; block++)

{ // block_loop

 AddRoundKey(0);

 // first Nr-1 rounds

 for (round = 1; round < Nr; ++round)

 {// round_loop

 SubBytes();

 ShiftRows();

 MixColumns();

 AddRoundKey(round);

 }

 // The last round

 SubBytes();

 ShiftRows();

 AddRoundKey(Nr);

}

KeyExpansion();

for (block = 1; block =< Nb; block++)

{ // Hardware

AddRoundKey(0);

}

 // first Nr-1 rounds

for (round = 1; round < Nr; ++round)

{

 for (block = 1; block =< Nb; block++)

{ // Software

SubBytes();

ShiftRows();

}

 for (block = 1; block =< Nb; block++)

 { // Hardware

 MixColumns();

AddRoundKey(round);

}

 }

 // The last round

for (block = 1; block =< Nb; block++)

 {// Software

 SubBytes();

 ShiftRows();

}

for (block = 1; block =< Nb; block++)

{// Hardware

 AddRoundKey(Nr);

}

 (a) Original Code (b) Code after Loop transformations

Figure 7. C code for the AES encryption algorithm.

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls us/call us/call name
 32.82 29.75 29.75 184549365 0.16 0.16 AddRoundKey

 29.72 56.69 26.94 150994935 0.18 0.18 MixColumns

 26.85 81.03 24.34 167772150 0.15 0.15 SubBytes

 5.57 86.08 5.05 167772150 0.03 0.03 ShiftRows

 2.06 87.95 1.87 16777215 0.11 0.11 BlockCopy

 1.86 89.64 1.69 16777215 0.10 5.23 Cipher

 0.82 90.38 0.74 main

 0.00 90.38 0.00 40 0.00 0.00 getSBoxValue

 0.00 90.38 0.00 1 0.00 0.00 KeyExpansion

Figure 8. Profiling result by using GNU profiler.

rearranging, it is possible to reduce about 99%

of the total configuration time due to decrease

context swapping frequency. Finally, HW/SW

partition decides to map AddRoudKey() and

MixColumns() onto the MUSRA. Because the

computation of SubBytes() relates to look-up

table, whereas, ShiftRows() performs matrix

transpose, therefore, it is more efficient to map

these functions onto the a microprocessor.

G

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 9

Table 1. Optimizing MixColumns() function.

Original Mixcolumns() Transformed Mixcolumns()

ccccc xxxxy ,3,2,1,0,0 *3*2))(()(*2 ,3,2,1,1,0,0 cccccc xxxxxy

ccccc xxxxy ,3,2,1,0,1 *3*2))(()(*2 ,3,0,2,2,1,1 cccccc xxxxxy

ccccc xxxxy ,3,2,1,0,2 *3*2))(()(*2 ,1,0,3,3,2,2 cccccc xxxxxy

ccccc xxxxy ,3,2,1,0,3 *2*3))(()(*2 ,2,1,0,0,3,3 cccccc xxxxxy

XOR

LORXOR

PE

x0 x1

Stage1

 Stage2

Stage3

Stage4

XOR LOR
Stage5

t0

y0

SLL

XOR LOR
Stage6

XOR

LORXOR

PE

x1 x2

XOR LOR

t1

SLL

XOR LOR

XOR

LORXOR

PE

x2 x3

XOR LOR

t2

SLL

XOR LOR

XOR

LORXOR

PE

x3 x0

XOR LOR

t3

SLL

XOR LOR

PE

LORSRL

MUL LOR

LOR

LOR

XOR LOR

AND

PE LOR

PE

LORSRL

MUL LOR

LOR

LOR

XOR LOR

AND

PE LOR

PE

LORSRL

MUL LOR

LOR

LOR

XOR LOR

AND

PE LOR

PE

LORSRL

MUL LOR

LOR

LOR

XOR LOR

AND

PE LOR

x3 x0 x1 x2

LOR LOR LOR LOR

t0 t1 t2 t3GRF(0) GRF(0) GRF(0) GRF(0)

GRF(1)GRF(1)GRF(1)GRF(1)

LOR LOR LOR LOR

LOR LOR LOR LOR

GRF(1) GRF(1) GRF(1) GRF(1)

GRF(2) GRF(2) GRF(2) GRF(2)

v0 v1 v2 v3

v0 v1 v2 v3

GRF(6)GRF(5)GRF(4)GRF(3)

w0 w1 w2 w3
w0 w1 w2 w3

y0 y1 y2 y3

y1 y2 y3OUTPUT FIFO

0 31

x0 x1 x2 x3INPUT FIFO

0 31

0x07 0x01 0x1B K0GRF

0 31

K1 K2 K3

Figure 9. RCA configuration for computing both MixColumns() and AddRoundKey().

Mapping AddRoundKey() onto MUSRA is

straightforward because it is simple to XOR

each bytes from the state matrix with a

corresponding round key byte. However, it is

more complex to map Mixcolumn() onto the

MUSRA. Some mathematical transformation

must be implemented so that the computation of

Mixcolumn() is mapped effectively onto the

execution model of the RCA. Table 1 shows

optimizing Mixcolumn() function.

Notice that “ ” is bitwise XOR operation

and “*” symbol is multiplication operation in

GF(2
8
), thereby:

xxx *2*3 and

)10*)010&)7((()1(*2 bxxxxx (2)

Figure 9 shows a solution for mapping both

MixColumn() and AddRoundKey() onto the

RCA of MUSRA with only one context. Each

column of the state matrix is fed into the RCA

via the Input FIFO, while constants (in Eq.(2))

and the corresponding round keys are pre-

loaded into the GRF. There are 36 operations

performed concurrently per cycle in a 6-stage

pipeline. As a result, there are seven columns

processed in parallel.

4.2. Scheduling

In this paper, we developed a system-level

cycle-accurate simulator for experimentally

evaluating and validating the implementation of

an application on the MUSRA. The simulator is

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

10

based on the LEON3 processor and the other IP

cores from the Gaisler’s library [16] as shown

in Figure 10. The LEON3 processor functions

as the central processing unit (CPU) that takes

charge of managing and scheduling all activities

of the system. The external memory is used for

communicating data between tasks on the CPU

and tasks on the RCA. Cooperation between

RCA, CPU and DMAs are synchronized by the

interrupt mechanism. When the MUSRA

finishes the assigned task, it generates an

interrupt via IRQC (Interrupt Request

Controller) unit to signal the CPU, and returns

bus control to the CPU. In order to simulate, the

C-software of the AES algorithm is compiled

and loaded into the Instruction Memory of the

simulator. Meanwhile, the plaintext file is

copied into the Data Memory.

Figure 11 shows the timing diagram of

scheduling tasks on the different resources of

the MUSRA-based system. Execution and data-

flow of the MUSRA are reconfigured

dynamically under controlling of the CPU.

AddRoundKey() and the combination of

MixColum() and AddRoundKey() are mapped

onto the RCA and denoted as AddRoundKey()

and Mix_Add(), respectively, in Figure 11. The

other tasks including KeyExpansion() (i.e. Key

Exp.) and the combination of SubBytes() and

ShiftRows() (i.e. Sub_Shft()) are assigned to the

CPU.

After resetting, the operation of the system

is briefly described as follows:

① Context Memory Initialization (i.e.

CM Init. process in Figure 11): CPU

writes the necessary control parameters

and then grant bus control to CDMAC

in Context Memory (i.e. phase (1) in

Figure 10). CDMAC will copy a

context from the instruction memory to

context memory. At the same time,

CPU executes Key Exp. function.

② Context Parser Initialization (i.e. PAR

init. process in Figure 11): CPU writes

the configuration words to the context

parser.

③ RCA Configuration and Data

Memory Initialization: After

configured, parser reads one proper

context from the context memory,

decode it and configure RCA (i.e. Conf.

process in Figure 11). Concurrently,

CPU initializes DDMAC that will copy

data from the external data memory to

the internal data memory (i.e. DM init.

process in Figure 11). DDMAC is also

used for writing the result back to the

external data memory.

④ RCA Execution: RCA performs a

certain task (e.g. AddRoundKey(),

Mix_Add(),…) right after it has been

configured.

Context

Parser

Context

Memory

Input DMA

Output DMA

Data

Memory

IN_FIFO

OUT_FIFO

GRF

 AMBA/CGRA Interface

1

2

3

4

3

RCA

 AMBA BUS

CPUInstruction

Memory

Data

Memory
IRQC

CDMAC

DDMAC

CGRA

Figure 10. System-level cycle-accurate simulator for

MUSRA.

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 11

Copy to

CM

RCA

PARSER

DMA

Boot
R

Processing

Resource

Time (Cycles)

Encryption

Copy data to/from DM

Conf.

AddRounKey(0) Mix_Add(1) Mix_Add(1)

CM

Init.

PAR

Init.

DM

Init.
Sub_Shf(1) Sub_Shf(2)

Key

Exp.

Sub_Shf

(Nr)

Conf.

AddRounKey

(Nr)

Conf.

Figure 11. Timing diagram of scheduling sub-tasks on resources of RPU.

5. Experiment and Evaluation

This section presents the simulating of the

AES algorithm on the MUSRA platform that is

modeled at different abstraction levels. The

performance of the AES algorithm running on

the MUSRA is compared with that of the

ADRES reconfigurable processor [6], Xilinx

Virtex-II (XC2V500) [11], and the TI C64+

DSP from Texas Instruments [3].

5.1. Simulation Environment

The environment for developing and

verifying applications on the MUSRA has

been built at the different abstract levels [10].

Firstly, the C-model is used for

hardware/software partitioning and generating

configuration contexts. C-Model is a software

platform includes a set of C source files (.c, .h)

to define the parameters and the functional

model of the building blocks of MUSRA

(Figure 12). Besides, C-model also offers

several APIs for reading/writing data from/to a

text file (.txt) to initialize or store the contents

of the memory model of the C-model. The

configuration information for the MUSRA is

generated by the configuration Tools. Based on

the C-model, it is easy to build the testbench

programs to verify applications on the

MUSRA architecture. The C-model has been

developed in the Visual Studio IDE.

Secondly, a cycle-accurate RTL (Register

Transfer Level) model, which is written in

VHDL language, is used for evaluating the

performance of the algorithm on the proposed

architecture. Figure 13 shows an example of

the construction of the testbench model for

verifying the AES algorithm. Besides the RCA

described at RTL, some other function blocks

such as clock generator, address generator,

data memory, and context memory... are

described in the behavioral level. In order to

simulate, it also needs the input data files

includes "in_data.txt", "constant.txt" and

"context.txt" - these was created by the C-

model of the MUSRA.

C-model of MUSRA
FIFO DMA RCA core

Context Parser MUSRA Parameters API processing file

// User application

main ()

{

 //SW code here

}

{

 //code of HW task is removed

 //extract and generate data for MUSRA

 //grant parameter to MUSRA

}

{

 //Read data that are returned by HW

 //SW code

}

C++ code of application Initializing Context Memory

Initializing Data Memory and

GRF

Fetching Context and

Configuring RCA, DMAs

Run RCA core:

(1) Write data to IN_FIFO

(2) Processing

(3) Write result to OUT_FIFO

Store data from OUT_FIFO

to Memory

OUT_DATA.txt

IN_DATA.txt

CONSTANT.txt

Print data to file or screenScreen

CONTEXT.txt

HW/SW

Partition

Configuration

ToolHW

tasks

Testbench

Tools

Figure 12. C-model of MUSRA.

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

12

DUT: RCA8x8_DATAPATH

DATA MEMORY

SUBSYSTEM MODEL

FIFO_WIRE_IN GRF

4*8 bits

FIFO_WIRE_IN

(31 downto 0)

GRF model

PE_OUT(5)(0~3)

ADDRESS

GENERATOR
32

bits

CLK

GENERATOR

CONTEXT

MEMORY

SUBSYSTEM

MODEL

8 bits

7*8 bits

In_Data.txt Constant.txt

C
o

n
te

x
t.

tx
t

FIFO_WIRE_OUT

Figure 13. RTL model of the MUSRA.

Finally, the system-level cycle-accurate

simulator (as shown in Figure 11) is used for

hardware/software co-verifying and evaluating

the performance of the whole algorithm. Both

RTL model and the cycle-accurate simulator

were developed by using the ModelSim EDA

tool from Mentor Graphics.

5.2. Simulation Results and Evaluation

Figure 14 shows the simulation results for

the case of mapping Mix_Add() (i.e. DFG in

Figure 9) on the MUSRA. After the latency of

seven cycles (from 100ns to 220ns), RCA can

calculate and output a column of four bytes

(including pe_out(5)(0) to pe_out(5)(0)) of the

status matrix every clock cycle.

At the system level, the simulations are

done for both encryption and decryption

process on an input file of 300KB with key

lengths of 128- and 256-bit. The simulation

result shows that it take about 2.2 and 2.89

million cycles to perform the algorithm AES

with 128- and 256-bit key lengths on the

MUSRA, respectively.

Table 2 summarizes the simulation results

of the AES encryption and decryption

algorithm with MUSRA, TI C64+ DSP, and

ADRES, Xilinx Virtex-II (XC2V500).

The TI C64+ DSP is one 64-bit digital

signal processor targeted at the cryptography

applications on embedded systems. The C-

software of the AES algorithm that is

optimized for 64-bit architecture just requires

approximately 32 million instructions in total

to complete the assigned task. The simulation

shows that TI C64+ DSP can execute average

2.09 instructions per cycle, and therefore it

takes about 15.2 million cycles to process its

tasks.

The ADRES [6] is a 32-bit reconfigurable

architecture that tightly couples a VLIW

processing core with an array of 4×4

reconfigurable cells (RCs). The reconfigurable

RCs act as instruction issue slots of the VLIW

core. The ADRES takes 3.6 million

instructions in total to complete its task with

6.31 instructions per cycle in average.

The Virtex-II (XC2V500) is a FPGA

device from Xilinx. The authors in [11]

proposed the SoC that includes a MicroBlaze

processor and the programmable logic of the

Xilinx Virtex-II for performing the AES

algorithm. Their implementation shows that it

requires about 250 cycles to encrypt or decrypt

one state block.

To evaluate the performance of the

MUSRA, the C-software of the AES algorithm,

which was optimized for the MUSRA

architecture, is first executed on only the

LEON3 processor. As shown in Table 2, it has

to execute approximately 65.4 million

instructions in total. The reason is that the

proposed loop transformation increases the

length of the C-software. However, when this

C-software is executed on both of the LEON3

and the MUSRA, the total cycles is just 2.2

million, which is about 6.9 times, 2.2 times,

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 13

Figure 14. Simulation result with RTL model of MUSRA.

Table 2. Performance of the AES algorithm on different platforms (using 128-bit key length)

Platform Processing Elements
Total

Instructions

Total

Cycles

Instructions

per Cycle

Cycles

per Block

TI C64+ DSP[3] 1 CPU + Coprocessor 32M 15.2M 2.09

N/A

ADRES[6] 1 CPU + 4×4 RCs 23.2M 3.6M 6.31 N/A

Xilinx Virtex-II [11] 1 CPU + FPGA N/A N/A N/A 250

Our

proposal

LEON3 1 CPU 65.4M 65.6M 1

3416

LEON3+MUSRA 1 CPU + 8×8 RCs 65.4M 2.2M 29.71 114
G

and 1.6 times better than that of the TI C64+

DSP, Xilinx Virtex-II, and the ADRES. Our

proposal achieves 29.71 instructions per cycle

in average. The implementation by using Xilinx

Virtex-II is slower than ours due to the inherent

fine-grained architecture of FPGAs. There are

two reasons that make our proposal better than

the ADRES. Firstly, the MUSRA uses an 8×8

RCA compared with 4×4 one of the ADRES.

Secondly, the AES algorithm is partitioned into

hardware tasks and software tasks that are

executed simultaneously on both LEON3 and

MUSRA. It is difficult to exploit task-level

parallelism on the ADRES due to tightly

coupling between the VLIW processor with the

RCA.

6. Conclusions

In this paper, a detailed explanation for

mapping the AES algorithm onto the MUSRA

platform has been presented. Multi-level

parallelism was exploited in order to improve

the performance of the AES algorithm on the

MUSRA. We first analyzed the source code of

the AES algorithm and proposed the

optimization solution to expose the instruction-

level and the loop-level parallelism.

Hardware/software partition and scheduling

were also proposed to exploit the task-level

parallelism. Our implementation has been

simulated and verified by the cycle-accurate

simulator of the MUSRA. Experimental results

show that the performance of the AES

algorithm on MUSRA is better than that of the

ADRES reconfigurable processor, Xilinx

Virtex-II, and the TI C64+ DSP. It is also easy

to reconfigure the MUSRA to support both the

encryption and decryption with all key lengths

specified in the AES standard.

H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21

14

In the future work, some aspects such as

hardware/software partitioning, DFG extracting,

and scheduling, etc., will continue to be

optimized according to the architecture of the

MUSRA to achieve a better performance. The

proposed implementation also will be validated

with the MUSRA prototype on FPGA platform.

Acknowledgment

This work has been supported by Vietnam National

University, Hanoi under Project No. QG.16.33.

References

[1] NIST, “Announcing the advanced encryption
standard (AES)”, Federal Information Processing
Standards Publication, n. 197, November 26,
2001.

[2] Christophe Bobda, “Introduction to
Reconfigurable Computing – Architectures,
Algorithms, and Applications”, Springer, 2007.
doi: 10.1007/978-1-4020-6100-4.

[3] J. Jurely and H. Hakkarainen, “TI’s new ’C6x
DSP screams at 1.600 MIPS. Microprocessor
Report”, 1997.

[4] V. Dao, A. Nguyen, V. Hoang and T. Tran, “An
ASIC Implementation of Low Area AES
Encryption Core for Wireless Networks”, in Proc.
International Conference on Computing,
Management and Telecommunications
(ComManTel2015), pp. 99-112, December 2015.

[5] http://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.htm

[6] Garcia, A., Berekovic M., Aa T.V., “Mapping of
the AES cryptographic algorithm on a Coarse-
Grain reconfigurable array processor”,
International Conference on Application-Specific
Systems, Architectures and Processors (ASAP
2008).

[7] João M. P. Cardoso, Pedro C. Diniz:
“Compilation Techniques for Reconfigurable
Architectures”, Springer, 2009.

[8] A. Shoa and S. Shirani, “Run-Time
Reconfigurable Systems for Digital Signal
Processing Applications: A Survey”, Journal of
VLSI Signal Processing, Vol. 39, pp.213–235,
Springer, 2005.

[9] G. Theodoridis, D. Soudris and S. Vassiliadis, “A
Survey of Coarse-Grain Reconfigurable
Architectures and Cad Tools Basic Definitions,
Critical Design Issues and Existing Coarse-grain
Reconfigurable Systems”, Springer, 2008.

[10] Hung K. Nguyen, Quang-Vinh Tran, and Xuan-
Tu Tran, “Data Locality Exploitation for Coarse-
grained Reconfigurable Architecture in a
Reconfigurable Network-on-Chip”, The 2014
International Conference on Integrated Circuits,
Design, and Verification (ICDV 2014).

[11] Z. Alaoui Ismaili and A. Moussa, “Self-Partial

and Dynamic Reconfiguration Implementation for
AES using FPGA”, IJCSI International Journal of
Computer Science Issues, Vol. 2, pp. 33-40, 2009.

[12] Kathryn S. McKinley, Steve Carr, Chau-Wen
Tseng, “Improving Data Locality with Loop
Transformations”, ACM Transactions on
Programming Languages and Systems (TOPLAS),
Volume 18, Issue 4, July 1996, pp. 424 - 453.

[13] S. Sohoni, and R. Min, et al. “A study of memory
system performance of multimedia applications”.
SIGMETRICS Performance 2001, pp. 206–215.

[14] M. Zhu, L. Liu, S. Yin, et al., "A Cycle-Accurate
Simulator for a Reconfigurable Multi-Media
System," IEICE Transactions on Information and
Systems, Vol. 93, pp. 3202-3210, 2010.

[15] https://gcc.gnu.org/.

[16] Gaisler Research, “GRLIB IP Core User’s
Manual”, Version 1.3.0-b4133, August 2013.

Hung K. Nguyen received the B.S.
and M.S. degrees in electronic
engineering from Vietnam National
University, Hanoi, Vietnam, in 2003
and 2005, respectively. He received
the Ph.D. degree in electronic
engineering from Southeast
University, Nanjing, China in 2013.

He is currently a researcher at Key Laboratory for

Smart Integrated Systems, VNU University of

Engineering and Technology. His research interests

mainly include multimedia processing, reconfigurable

computing, and SoC designs.

Xuan-Tu Tran received a Ph.D.
degree in 2008 from Grenoble INP
(in collaboration with the CEALETI),
France, in Micro Nano Electronics.
Xuan-Tu Tran is currently an
associate professor at the Faculty of
Electronics and Telecommunications,
VNU University of Engineering and
Technology (VNU-UET), a member
university of Vietnam National
University, Hanoi (VNU).

He is currently Deputy Director of UET-key

Laboratory for Smart Integrated Systems (SIS) and

Head of VLSI Systems Design laboratory. He is in

charge for CoMoSy, VENGME, ReSoNoC projects

for embedded systems and multimedia applications.

His research interests include design and test of

systems-on-chips, networks-on-chips, design-for-

testability, asynchronous/synchronous VLSI design,

low power techniques, and hardware architectures for

multimedia applications.

He is a Senior Member of the IEEE, IEEE Circuits

and Systems (CAS), IEEE Solid-State Circuits Society

(SSCS), member of IEICE, and the Executive Board

of the Radio Electronics Association of Vietnam

(REV).

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm
http://dl.acm.org/author_page.cfm?id=81100402805&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133
http://dl.acm.org/author_page.cfm?id=81100072915&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133
http://dl.acm.org/author_page.cfm?id=81410592010&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133
http://dl.acm.org/author_page.cfm?id=81410592010&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133

VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2015) 1-21

