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Abstract 

The Advanced Encryption Standard (AES) is currently considered as one of the best symmetric-key block 
ciphers. The hardware implementation of the AES for hand-held mobile devices or wireless sensor network 
nodes is always required to meet the strict constraints in terms of performance, power and cost. Coarse-grained 
reconfigurable architectures are recently proposed as the solution that provides high flexibility, high performance 
and low power consumption for the next-generation embedded systems. This paper presents a flexible, high-
performance implementation of the AES algorithm on a coarse-grained reconfigurable architecture, called 
MUSRA (Multimedia Specific Reconfigurable Architecture). First, we propose a hardware-software partitioning 
method for mapping the AES algorithm onto the MUSRA. Second, the parallel and pipelining techniques are 
considered thoughtfully to increase total computing throughput by efficiently utilizing the computing resources 
of the MUSRA. Some optimizations at both loop transformation level and scheduling level are performed in 
order to make better use of instruction-, loop- and task- level parallelism. The proposed implementation has been 
evaluated by the cycle-accurate simulator of the MUSRA. Experimental results show that the MUSRA can be 
reconfigured to support both encryption and decryption with all key lengths specified in the AES standard. The 
performance of the AES algorithm on the MUSRA is better than that of the ADRES reconfigurable processor, 
Xilinx Virtex-II, and the TI C64+ DSP. 
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1. Introduction 

The fast development of the communication 

technology enables the information to be easily 

shared globally via the internet, especially with 

the Internet of Things (IoT). However, it also 

raises the requirement about the secure of the 

information, especially the sensitive data such 

as password, bank account, personal 

information, etc. One method to protect the 

sensitive data is using symmetric-key block 

cipher before and after sending it over the 

network. The Advanced Encryption Standard 

(AES), which has been standardized by the 

National Institute of Standard and Technology 

(NIST) [1], is currently considered as one of the 

best symmetric-key block ciphers. With the 

block size of 128 bits and the variable key 

length of 128 bits, 192 bits or 256 bits, the AES 

has been proved to be a robust cryptographic 

algorithm against illegal access. 
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The hardware implementation of the AES 

for modern embedded systems such as hand-

held mobile devices or wireless sensor network 

(WSN) nodes always gives designers some 

challenges such as reducing chip area and 

power consumption, increasing application 

performance, shortening time-to-market, and 

simplifying the updating process. Besides, these 

systems are often designed not only for a 

specific application but also for multiple 

applications. Such sharing of resources by 

several applications makes the system cheaper 

and more versatile. Application Specific 

Integrated Circuits (ASICs), Digital Signal 

Processors (DSPs), and Application-Specific 

Instruction Set Processors (ASIPs), have been 

used for implementing the mobile multimedia 

systems. However, none of them meets all of 

the above challenges [2]. The software 

implementation of the AES algorithm by using 

processors (e.g. [3]) are usually very flexible 

and usually targets at the applications at where 

flexibility has a higher priority than the 

implementation efficiency in terms of power 

consumption, area, and performance. In contrast, 

the ASIC implementation of the AES algorithm 

(e.g. [4]) usually offers the optimized 

performance and power consumption. However, 

the drawback of ASIC is lower flexibility. 

Moreover, the high price for designing and 

manufacturing the chip masks is becoming 

increasingly an important factor that limits the 

application scope of ASIC. Recently, a very 

promising solution is the reconfigurable 

computing systems (e.g. Zynq-7000 [5], 

ADRES [6], etc.) that are integrated many 

heterogeneous processing resources such as 

software programmable microprocessors (P), 

hardwired IP (Intellectual Property) cores, 

reconfigurable hardware architectures, etc. as 

shown in Figure 1. To program such a system, a 

target application is first represented 

intermediately as a series of tasks that depends 

on each other by a Control and Data Flow 

Graph (CDFG) [7], and then partitioned and 

mapped onto the heterogeneous computational 

and routing resources of the system. Especially, 

computation-intensive kernel functions of the 

application are mapped onto the reconfigurable 

hardware so that they can achieve high 

performance approximately equivalent to that 

of ASIC while maintaining a degree of 

flexibility close to that of DSP processors. By 

dynamically reconfiguring hardware, 

reconfigurable computing systems allow many 

hardware tasks to be mapped onto the same 

hardware platform, thus reducing the area and 

power consumption of the design [8]. 

CGRA

AHB/CGRA Interface

DPLL

AMBA AHB

P
Instruction 

Memory
Data Memory

IP cores

 
Figure 1. System-level application model of CGRA. 

The reconfigurable hardware is generally 

classified into the Field Programmable Gate 

Array (FPGA) and coarse-grained dynamically 

reconfigurable architecture (CGRA). A typical 

example of the FPGA-based reconfigurable 

SoC is Xilinx Zynq-7000 devices [5]. Generally, 

FPGAs support the fine-grained reconfigurable 

fabric that can operate and be configured at bit-

level. FPGAs are extremely flexible due to their 

higher reconfigurable capability. However, the 

FPGAs consume more power and have more 

delay and area overhead due to greater quantity 

of routing required per configuration [9]. This 

limits the capability to apply FPGA to mobile 

devices. To overcome the limitation of the 

FPGA-like fine-grained reconfigurable devices, 
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we developed and modeled a coarse-grained 

dynamically reconfigurable architecture, called 

MUSRA (Multimedia Specific Reconfigurable 

Architecture) [10]. The MUSRA is a high-

performance, flexible platform for a domain of 

applications in multimedia processing. In 

contrast with FPGAs, the MUSRA aims at 

reconfiguring and manipulating on the data at 

word-level. The MUSRA is proposed to exploit 

high data-level parallelism (DLP), instruction-

level parallelism (ILP) and TLP (Task Level 

Parallelism) of the computation-intensive loops 

of an application. The MUSRA also supports 

the capability of dynamic reconfiguration by 

enabling the hardware fabrics to be 

reconfigured into different functions even if the 

system is working.  

In this paper, we proposed a solution for 

implementing the AES algorithm on the 

platform of the MUSRA-based system. The 

AES algorithm is firstly analyzed and 

optimized, and then HW/SW 

(Hardware/Software) partitioned and scheduled 

to be executed on the MUSRA-based system. 

The experimental results show that our proposal 

achieves the throughput of 29.71 instructions 

per cycle in average. Our implementation has 

been compared to the similar works on ADRES 

reconfigurable processor [6], Xilinx Virtex-II 

[11], and TI C64+ DSP [3]. Our 

implementation is about 6.9 times, 2.2 times, 

and 1.6 times better than that of TI C64+ DSP, 

Xilinx Virtex-II, and ADRES, respectively. 

The rest of the paper is organized as follows. 

The MUSRA architecture and the AES 

algorithm are presented in Section 2 and 

Section 3, respectively. Section 4 presents the 

mapping the AES algorithm onto the MUSRA-

based system. In Section 5, simulation results 

and the evaluation of the AES algorithm on the 

MUSRA-based system in terms of flexibility 

and performance are reported and discussed. 

Finally, conclusions are given in Section 6. 

2. MUSRA Architecture 

2.1. Architecture Overview 

Context 

Parser

Context 

Memory

Input DMA

Output DMA

Data 

Memory

RCA

Crossbar Switch

RC

00

RC

01

RC

07

RC

10

RC

11

RC

17

RC

70

RC

71

RC

77

Crossbar Switch

Crossbar Switch

IN_FIFO

IN_FIFO

GRF

AHB/CGRA Interface

CDMAC

DDMAC

 

Figure 2. MUSRA architecture. 

The MUSRA is composed of a 

Reconfigurable Computing Array (RCAs), 

Input/Output FIFOs, Global Register File 

(GRF), Data/Context memory subsystems, and 

DMA (Direct Memory Access) controllers, etc. 

(Figure 2). Data/Context memory subsystems 

consist of storage blocks and DMA controllers 

(i.e. CDMAC and DDMAC). The RCA is an 

array of 88 RCs (Reconfigurable Cells) that 

can be configured partially to implement 

computation-intensive tasks. The input and 

output FIFOs are the I/O buffers between the 

data memory and the RCA. Each RC can get 

the input data from the input FIFO or/and GRF, 

and store the results back to the output FIFO. 

These FIFOs are all 512-bit in width and 8-row 

in depth, and can load/store sixty-four bytes or 

thirty-two 16-bit words per cycle. Especially, 

the input FIFO can broadcast data to every RC 

that has been configured to receive the data 

from the input FIFO. This mechanism aims at 

exploiting the reusable data between several 

iterations. The interconnection between two 

neighboring rows of RCs is implemented by a 

crossbar switch. Through the crossbar switch, 

an RC can get results that come from an 

arbitrary RC in the above row of it. The Parser 



H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 

 

4 
 

decodes the configuration information that has 

been read from the Context Memory, and then 

generates the control signals that ensure the 

execution of RCA accurately and automatically.  

RC (Figure 3) is the basic processing unit of 

RCA. Each RC includes a data-path that can 

execute signed/unsigned fixed-point 8/16-bit 

operations with two/three source operands, such 

as arithmetic and logical operations, multiplier, 

and multimedia application-specific operations 

(e.g. barrel shift, shift and round, absolute 

differences, etc.). Each RC also includes a local 

register called LOR. This register can be used 

either to adjust operating cycles of the pipeline 

or to store coefficients when a loop is mapped 

onto the RCA. A set of configuration registers, 

which stores configuration information for the 

RC, is called a layer. Each RC contains two 

layers that can operate in the ping-pong fashion 

to reduce the configuration time. 
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Figure 3. RC architecture. 

The data processed by RCA are classified 

into two types: variables are streamed into the 

RCA through the input FIFO meanwhile 

constants are fed into the RCA via either GRF 

for scalar constants or LOR array for array 

constants. The constant type is again classified 

into global constants and local constants. 

Global constants are determined at compile-

time therefore they are initialized in context 

memory of the MUSRA at compile-time and 

loaded into GRF/LORs while configuring the 

RCA. Local constants (or immediate values) are 

not determined at compile-time, but are the 

results generated by other tasks at run-time, 

therefore, they need to be loaded dynamically 

into GRF/LCRs by configuration words. 

2.2. Configuration Model 

The configuration information for the 

MUSRA is organized into the packets called 

context. The context specifies a particular 

operation of the RCA core (i.e. the operation of 

each RC, the interconnection between RCs, the 

input source, output location, etc.) as well as the 

control parameters that control the operation of 

the RCA core. The total length of a context is 

128 32-bit words. An application is composed 

of one or more contexts that are stored into the 

context memory of the MUSRA. 

The function of the MUSRA is 

reconfigured dynamically in run-time according 

to the required hardware tasks. To deal with the 

huge configuration overhead in the 

reconfigurable hardware, the proposed design 

of the MUSRA supports a mechanism to pre-

load and pre-decode the configuration context 

from the context memory to the configuration 

layers in the RCA. By this method, the 

configuration of the MUSRA can take place 

behind the execution of the RCA. As a result, 

once the RCA finishes calculating with the 

current context, it can be immediately changed 

into the next context. 

2.3. Execution Model 

It is a well-known rule of thumb that 90% 

of the execution time of a program is spent by 

10% of the code of LOOP constructs [9]. These 

LOOP constructs are generally identified as 

kernel loops. Most of them have computation-

intensive and data-parallel characteristics with 

high regularity, so they can be accelerated by 
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Figure 4. (a) DFG representation of a simple loop body, and (b) its map onto RCA. 

hardware circuits. The MUSRA architecture is 

basically the such-loop-oriented one. By 

mapping the body of the kernel loop onto the 

RCA, the RCA just needs configuring one time 

for executing multiple times, therefore it can 

improve the efficiency of the application 

execution. Executing model of the RCA is the 

pipelined multi-instruction-multi-data (MIMD) 

model. In this model, each RC can be 

configured separately to a certain operation, and 

each row of RCs corresponds to a stage of a 

pipeline. Multiple iterations of a loop are 

possible to execute simultaneously in the 

pipeline.  

For purpose of mapping, a kernel loop is 

first analyzed and loop transformed (e.g. loop 

unrolling, loop pipelining, loop blocking, etc.) 

in order to expose inherent parallelism and data 

locality that are then exploited to maximize the 

computation performance on the target 

architecture. Next, the body of the loop is 

represented by data-flow graphs (DFGs) as 

shown in Figure 4. Thereafter, DFGs are 

mapped onto RCA by generating configuration 

information, which relate to binding nodes to 

the RCs and edges to the interconnections. 

Finally, these DFGs are scheduled in order to 

execute automatically on RCA by generating 

the corresponding control parameters for the 

CGRA’s controller. Once configured for a 

certain loop, RCA operates as the hardware 

dedicated for this loop. When all iterations of 

loop have completed, this loop is removed from 

the RCA, and the other loops are mapped onto 

the RCA. 

The execution of a loop is scheduled so that 

the different phases of successive iterations are 

overlapped each other as much as possible. 

Scheduling also needs to ensure that there are 

not any conflicts between resources as multiple 

phases take place simultaneously. 

Parallel processing increases not only the 

computation performance but also the pressure 

on the data bandwidth. The system’s bandwidth 

is necessary to ensure that data is always 

available for all resources running concurrently 

without the IDLE state. One way to increase 

data availability is to exploit the data locality 

that refers to capability of data reuse within a 
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short period of time [12]. Exploiting the data 

locality has the potential to increase the 

processing efficiency of the system because the 

data can be cached in the internal memory for 

reuse later, thus reducing stalled times due to 

waiting for external memory accesses. 

Moreover, the data reuse also has the potential 

to minimize the number of access to external 

memory, thus achieves a significant reduction 

in the power consumption [13]. Compared with 

the execution model in [14], the MUSRA’s 

execution model exploits the overlapping data 

between two successive iterations, so it can 

enhance the performance and reduce the input 

data bandwidth [10]. In this model, RCA core 

can start computing as soon as the data of the 

first input appears on the input of the RCA, so 

LOAD phase and EXECUTION phase of the 

same iteration can happen simultaneously. In 

other words, our execution model allows 

overlapping three phases LOAD, EXECUTION, 

STORE of the same iteration as much as 

possible. As shown in Figure 4, an iteration of 

RCA core in the MUSRA’s model is started by 

LOAD-EXECUTION phase, and then is 

EXECUTION phase, finally finished by 

STORE-EXECUTION phase. On the other 

hand, this model also allows the data of the next 

iteration be LOADed simultaneously with the 

data of the current iteration, so it maximizes not 

only the level of overlapping between the 

consecutive iterations but also the data reuse 

[10]. 

3. Advanced Encryption Standard 

The overall structure of the Advanced 

Encryption Standard (AES) algorithm, which 

includes both encryption and decryption 

process, at Electronic Codebook (EBC) mode is 

depicted in Figure 5 [1]. The AES is an iterated 

cryptographic block cipher with a block length 

of 128-bits, which means that the input data is 

divided into 128-bit blocks and encrypted 

independently through a sequence of rounds. 

During the cipher process, the 128-bit input 

block is arranged into a 4×4 matrix of bytes so 

that the first four bytes of a 128-bit input block 

are located at the first column in the 4×4 matrix; 

the next four bytes are located at the second 

column, and so on. At the output of the last 

round, the 4×4 matrix of bytes is rearranged 

into a 128-bit output block. This 4×4 matrix is 

referred to as the state array in the context of 

the AES algorithm. The AES standard supports 

three types of key length, including 128, 196 or 

256 bits. The number of rounds to be executed 

in an AES encryption or decryption process is 

dependent on the used key length as shown in 

Eq.(1). The round keys are derived from the 

original key thank to the key expansion unit. 

6
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Except for the last round, all rounds are 

identical and including four steps as shown in 

Figure 6. Notice that the last round (Round n) 

does not have “Mix Columns” and “Inverse Mix 

Columns” for the encryption and the decryption, 

respectively. Also notice that the sequence at 

where the steps are performed is different for 

the encryption and the decryption. 
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Figure 5. The overall structure of AES algorithm [1]. 
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Figure 6. The overall structure of a round. 

4.  Implementation 

Motivated by the demand of higher 

throughput and flexibility, as well as low power 

consumption for the applications of video 

conference, security IP camera, etc. in this 

section we are going to describe our 

optimization method for improving the 

performance of the AES algorithm on the 

architecture of the MUSRA-based system. In 

the work, we have mapped both the AES 

encryption and AES decryption with all options 

of key length onto the MUSRA-based system. 

However, for simplifying the presentation in 

this section, we will focus on the AES 

encryption and assume that the key length is 

128 bits. We have started with the C-software 

implementation of the AES algorithm and then 

pay attention on analyzing the source code to 

indentify computation-intensive loops of the C-

software. Besides, since no more parallel is 

available in the application when processing a 

single block, the loop transformation and 

source-level transformation are applied to 

kernel loops to improve parallelism. Next, the 

kernel loops are represented intermediately by 

DFGs and mapped onto RCA to increase the 

total computing throughput. Finally, we 

propose a scheduling scheme to manage the 

dynamically reconfigurable operation of the 

system. The scheduling scheme also takes 

charge of synchronizing the data 

communication between tasks, and managing 

the conflict between hardware resources. 

4.1. Hardware/Software Partition 

The structure of the AES encryption 

algorithm in Figure 5 can be modeled by the C 

source code as shown in Figure 7(a). The AES 

encryption program is represented by two FOR 

loops that are denoted as block_loop and 

round_loop as shown in Figure 7(a). There are 

five functions in this program. Where, 

KeyExpansion() implements the function of 

Key Expansion unit; SubBytes(), ShiftRows(), 

MixColumns(), and AddRoundKey() implement 

steps of an encryption round. In order to 

indentify which parts of the algorithm are 

taking most of the execution time, the AES 

encryption program has been profiled by the 

GPROF profiler of GNU [15]. The profiling 

result while encrypting an input file of 256MB 

(equivalent to 16,777,215 blocks of 4×4 bytes) 

is shown in Figure 8.  As you can see, the 

functions AddRoundKey(), MixColumns(), and 

SubBytes() are the most time-consuming parts 

of the program. In order to improve the 

performance, these loops are transformed and 

the computation-intensive loops must be 

mapped onto the reconfigurable hardware for 

parallel processing. Firstly, because 128-bit 

blocks are encrypted independently, instead of 

processing block-by-block we can invert these 

loops to process round-by-round so that at each 

round all of blocks will be processed before 

changed to next round. In other words, while 

going into a certain round, all blocks will be 

processed instead of only block as in the 

original code. As a result, the round_loop 

covers the block_loop now. The loops continue 

to be transformed and partitioned into some 

small loops as shown in Figure 7(b). By 



H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 

 

8 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

KeyExpansion(); 

// processing all blocks of the plain text input file  

for (block = 1; block =< Nb; block++) 

{  // block_loop 

  AddRoundKey(0);  

   // first Nr-1 rounds 

  for (round = 1; round < Nr; ++round) 

  {// round_loop 

    SubBytes(); 

    ShiftRows(); 

    MixColumns(); 

    AddRoundKey(round); 

  } 

   // The last round 

   SubBytes(); 

   ShiftRows(); 

   AddRoundKey(Nr); 

} 

KeyExpansion(); 

for (block = 1; block =< Nb; block++) 

{  // Hardware 

AddRoundKey(0);  

} 

   // first Nr-1 rounds 

for (round = 1; round < Nr; ++round) 

{ 

   for (block = 1; block =< Nb; block++) 

{ // Software 

SubBytes(); 

ShiftRows(); 

} 

   for (block = 1; block =< Nb; block++) 

       { // Hardware 

      MixColumns(); 

AddRoundKey(round); 

} 

 } 

 // The last round 

for (block = 1; block =< Nb; block++) 

      {// Software 

          SubBytes(); 

          ShiftRows(); 

} 

for (block = 1; block =< Nb; block++) 

{// Hardware 

     AddRoundKey(Nr); 

} 

 (a) Original Code (b) Code after Loop transformations 

Figure 7. C code for the AES encryption algorithm. 

Each sample counts as 0.01 seconds. 

  %     cumulative     self                                self         total            

 time     seconds      seconds      calls            us/call     us/call           name     
 32.82     29.75         29.75       184549365     0.16        0.16         AddRoundKey 

 29.72     56.69         26.94       150994935     0.18        0.18         MixColumns 

 26.85     81.03         24.34       167772150     0.15        0.15         SubBytes 

  5.57      86.08           5.05       167772150     0.03        0.03         ShiftRows 

  2.06      87.95           1.87       16777215       0.11        0.11         BlockCopy 

  1.86      89.64           1.69       16777215       0.10        5.23         Cipher 

  0.82      90.38           0.74                                                             main 

  0.00      90.38           0.00            40              0.00        0.00         getSBoxValue 

  0.00      90.38           0.00            1                0.00        0.00         KeyExpansion 

Figure 8. Profiling result by using GNU profiler. 

rearranging, it is possible to reduce about 99% 

of the total configuration time due to decrease 

context swapping frequency. Finally, HW/SW 

partition decides to map AddRoudKey() and 

MixColumns() onto the MUSRA. Because the 

computation of SubBytes() relates to look-up 

table, whereas, ShiftRows() performs matrix 

transpose, therefore, it is more efficient to map 

these functions onto the a microprocessor. 

G 
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Table 1. Optimizing MixColumns() function. 

Original Mixcolumns() Transformed Mixcolumns() 

ccccc xxxxy ,3,2,1,0,0 *3*2   ))(()(*2 ,3,2,1,1,0,0 cccccc xxxxxy   

ccccc xxxxy ,3,2,1,0,1 *3*2   ))(()(*2 ,3,0,2,2,1,1 cccccc xxxxxy   

ccccc xxxxy ,3,2,1,0,2 *3*2   ))(()(*2 ,1,0,3,3,2,2 cccccc xxxxxy   

ccccc xxxxy ,3,2,1,0,3 *2*3   ))(()(*2 ,2,1,0,0,3,3 cccccc xxxxxy   
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Figure 9. RCA configuration for computing both MixColumns() and AddRoundKey(). 

Mapping AddRoundKey() onto MUSRA is 

straightforward because it is simple to XOR 

each bytes from the state matrix with a 

corresponding round key byte. However, it is 

more complex to map Mixcolumn() onto  the 

MUSRA. Some mathematical transformation 

must be implemented so that the computation of 

Mixcolumn() is mapped effectively onto the 

execution model of the RCA. Table 1 shows 

optimizing Mixcolumn() function. 

Notice that “ ” is bitwise XOR operation 

and “*” symbol is multiplication operation in 

GF(2
8
), thereby: 

xxx  *2*3  and 

)10*)010&)7((()1(*2 bxxxxx   (2) 

Figure 9 shows a solution for mapping both 

MixColumn() and AddRoundKey() onto the 

RCA of MUSRA with only one context. Each 

column of the state matrix is fed into the RCA 

via the Input FIFO, while constants (in Eq.(2)) 

and the corresponding round keys are pre-

loaded into the GRF. There are 36 operations 

performed concurrently per cycle in a 6-stage 

pipeline. As a result, there are seven columns 

processed in parallel. 

4.2. Scheduling 

In this paper, we developed a system-level 

cycle-accurate simulator for experimentally 

evaluating and validating the implementation of 

an application on the MUSRA. The simulator is 
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based on the LEON3 processor and the other IP 

cores from the Gaisler’s library [16] as shown 

in Figure 10. The LEON3 processor functions 

as the central processing unit (CPU) that takes 

charge of managing and scheduling all activities 

of the system. The external memory is used for 

communicating data between tasks on the CPU 

and tasks on the RCA. Cooperation between 

RCA, CPU and DMAs are synchronized by the 

interrupt mechanism. When the MUSRA 

finishes the assigned task, it generates an 

interrupt via IRQC (Interrupt Request 

Controller) unit to signal the CPU, and returns 

bus control to the CPU. In order to simulate, the 

C-software of the AES algorithm is compiled 

and loaded into the Instruction Memory of the 

simulator. Meanwhile, the plaintext file is 

copied into the Data Memory.  

Figure 11 shows the timing diagram of 

scheduling tasks on the different resources of 

the MUSRA-based system. Execution and data-

flow of the MUSRA are reconfigured 

dynamically under controlling of the CPU. 

AddRoundKey() and the combination of 

MixColum() and AddRoundKey() are mapped 

onto the RCA and denoted as AddRoundKey() 

and Mix_Add(), respectively, in Figure 11. The 

other tasks including KeyExpansion() (i.e. Key 

Exp.) and the combination of SubBytes() and 

ShiftRows() (i.e. Sub_Shft()) are assigned to the 

CPU. 

After resetting, the operation of the system 

is briefly described as follows: 

① Context Memory Initialization (i.e. 

CM Init. process in Figure 11): CPU 

writes the necessary control parameters 

and then grant bus control to CDMAC 

in Context Memory (i.e. phase (1) in 

Figure 10). CDMAC will copy a 

context from the instruction memory to 

context memory. At the same time, 

CPU executes Key Exp. function. 

② Context Parser Initialization (i.e. PAR 

init. process in Figure 11): CPU writes 

the configuration words to the context 

parser.  

③ RCA Configuration and Data 

Memory Initialization: After 

configured, parser reads one proper 

context from the context memory, 

decode it and configure RCA (i.e. Conf. 

process in Figure 11). Concurrently, 

CPU initializes DDMAC that will copy 

data from the external data memory to 

the internal data memory (i.e. DM init. 

process in Figure 11). DDMAC is also 

used for writing the result back to the 

external data memory. 

④ RCA Execution: RCA performs a 

certain task (e.g. AddRoundKey(), 

Mix_Add(),…) right after it has been 

configured.  
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Figure 10. System-level cycle-accurate simulator for 

MUSRA. 
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Figure 11. Timing diagram of scheduling sub-tasks on resources of RPU. 

5. Experiment and Evaluation 

This section presents the simulating of the 

AES algorithm on the MUSRA platform that is 

modeled at different abstraction levels. The 

performance of the AES algorithm running on 

the MUSRA is compared with that of the 

ADRES reconfigurable processor [6], Xilinx 

Virtex-II (XC2V500) [11], and the TI C64+ 

DSP from Texas Instruments [3]. 

5.1. Simulation Environment 

The environment for developing and 

verifying applications on the MUSRA has 

been built at the different abstract levels [10]. 

Firstly, the C-model is used for 

hardware/software partitioning and generating 

configuration contexts. C-Model is a software 

platform includes a set of C source files (.c, .h) 

to define the parameters and the functional 

model of the building blocks of MUSRA 

(Figure 12). Besides, C-model also offers 

several APIs for reading/writing data from/to a 

text file (.txt) to initialize or store the contents 

of the memory model of the C-model. The 

configuration information for the MUSRA is 

generated by the configuration Tools. Based on 

the C-model, it is easy to build the testbench 

programs to verify applications on the 

MUSRA architecture. The C-model has been 

developed in the Visual Studio IDE.  

Secondly, a cycle-accurate RTL (Register 

Transfer Level) model, which is written in 

VHDL language, is used for evaluating the 

performance of the algorithm on the proposed 

architecture. Figure 13 shows an example of 

the construction of the testbench model for 

verifying the AES algorithm. Besides the RCA 

described at RTL, some other function blocks 

such as clock generator, address generator, 

data memory, and context memory... are 

described in the behavioral level. In order to 

simulate, it also needs the input data files 

includes "in_data.txt", "constant.txt" and 

"context.txt" - these was created by the C-

model of the MUSRA. 

C-model of MUSRA
FIFO DMA RCA core

Context Parser MUSRA Parameters API processing file 

// User application

main ()

{

     //SW code here

}

{

  

 //code of HW task is removed

   //extract and generate data for MUSRA

   //grant parameter to MUSRA

}

{

  //Read data that are returned by HW     

  //SW code

}

C++ code of application Initializing Context Memory

Initializing Data Memory and 

GRF

Fetching Context and 

Configuring RCA, DMAs

Run RCA core:

(1) Write data to IN_FIFO

(2) Processing  

(3) Write result to OUT_FIFO

Store data from OUT_FIFO 

to Memory

OUT_DATA.txt

IN_DATA.txt

CONSTANT.txt

Print data to file or screenScreen

CONTEXT.txt

HW/SW 

Partition

Configuration 

ToolHW 

tasks

Testbench

Tools

 

Figure 12. C-model of MUSRA. 



H.K. NGUYEN et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 1 (2015) 1-21 

 

12 
 

DUT: RCA8x8_DATAPATH

DATA MEMORY 

SUBSYSTEM MODEL

FIFO_WIRE_IN GRF

4*8 bits

FIFO_WIRE_IN

(31 downto 0)

GRF model

PE_OUT(5)(0~3)

ADDRESS 

GENERATOR
32 

bits

CLK 

GENERATOR

CONTEXT 

MEMORY 

SUBSYSTEM 

MODEL

8 bits

7*8 bits

In_Data.txt Constant.txt

C
o

n
te

x
t.

tx
t

FIFO_WIRE_OUT

 

Figure 13. RTL model of the MUSRA. 

Finally, the system-level cycle-accurate 

simulator (as shown in Figure 11) is used for 

hardware/software co-verifying and evaluating 

the performance of the whole algorithm. Both 

RTL model and the cycle-accurate simulator 

were developed by using the ModelSim EDA 

tool from Mentor Graphics. 

5.2. Simulation Results and Evaluation 

Figure 14 shows the simulation results for 

the case of mapping Mix_Add() (i.e. DFG in 

Figure 9) on the MUSRA. After the latency of 

seven cycles (from 100ns to 220ns), RCA can 

calculate and output a column of four bytes 

(including pe_out(5)(0) to pe_out(5)(0)) of the 

status matrix every clock cycle. 

At the system level, the simulations are 

done for both encryption and decryption 

process on an input file of 300KB with key 

lengths of 128- and 256-bit. The simulation 

result shows that it take about 2.2 and 2.89 

million cycles to perform the algorithm AES 

with 128- and 256-bit key lengths on the 

MUSRA, respectively.  

Table 2 summarizes the simulation results 

of the AES encryption and decryption 

algorithm with MUSRA, TI C64+ DSP, and 

ADRES, Xilinx Virtex-II (XC2V500).  

The TI C64+ DSP is one 64-bit digital 

signal processor targeted at the cryptography 

applications on embedded systems. The C-

software of the AES algorithm that is 

optimized for 64-bit architecture just requires 

approximately 32 million instructions in total 

to complete the assigned task. The simulation 

shows that TI C64+ DSP can execute average 

2.09 instructions per cycle, and therefore it 

takes about 15.2 million cycles to process its 

tasks. 

The ADRES [6] is a 32-bit reconfigurable 

architecture that tightly couples a VLIW 

processing core with an array of 4×4 

reconfigurable cells (RCs). The reconfigurable 

RCs act as instruction issue slots of the VLIW 

core. The ADRES takes 3.6 million 

instructions in total to complete its task with 

6.31 instructions per cycle in average.  

The Virtex-II (XC2V500) is a FPGA 

device from Xilinx. The authors in [11] 

proposed the SoC that includes a MicroBlaze 

processor and the programmable logic of the 

Xilinx Virtex-II for performing the AES 

algorithm. Their implementation shows that it 

requires about 250 cycles to encrypt or decrypt 

one state block. 

To evaluate the performance of the 

MUSRA, the C-software of the AES algorithm, 

which was optimized for the MUSRA 

architecture, is first executed on only the 

LEON3 processor. As shown in Table 2, it has 

to execute approximately 65.4 million 

instructions in total. The reason is that the 

proposed loop transformation increases the 

length of the C-software. However, when this 

C-software is executed on both of the LEON3 

and the MUSRA, the total cycles is just 2.2 

million, which is about 6.9 times, 2.2 times,
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Figure 14. Simulation result with RTL model of MUSRA. 

Table 2. Performance of the AES algorithm on different platforms (using 128-bit key length) 

Platform Processing Elements 
Total 

Instructions 

Total 

Cycles 

Instructions 

per Cycle 

Cycles 

per Block 

TI C64+ DSP[3] 1 CPU + Coprocessor 32M 15.2M 2.09 

 
N/A 

ADRES[6] 1 CPU + 4×4 RCs 23.2M 3.6M 6.31 N/A 

Xilinx Virtex-II [11] 1 CPU + FPGA N/A N/A N/A 250 

Our 

proposal 

LEON3 1 CPU 65.4M 65.6M 1 

 
3416 

LEON3+MUSRA 1 CPU + 8×8 RCs 65.4M 2.2M 29.71 114 
G 

 

and 1.6 times better than that of the TI C64+ 

DSP, Xilinx Virtex-II, and the ADRES. Our 

proposal achieves 29.71 instructions per cycle 

in average. The implementation by using Xilinx 

Virtex-II is slower than ours due to the inherent 

fine-grained architecture of FPGAs. There are 

two reasons that make our proposal better than 

the ADRES. Firstly, the MUSRA uses an 8×8 

RCA compared with 4×4 one of the ADRES. 

Secondly, the AES algorithm is partitioned into 

hardware tasks and software tasks that are 

executed simultaneously on both LEON3 and 

MUSRA. It is difficult to exploit task-level 

parallelism on the ADRES due to tightly 

coupling between the VLIW processor with the 

RCA. 

6. Conclusions 

In this paper, a detailed explanation for 

mapping the AES algorithm onto the MUSRA 

platform has been presented. Multi-level 

parallelism was exploited in order to improve 

the performance of the AES algorithm on the 

MUSRA. We first analyzed the source code of 

the AES algorithm and proposed the 

optimization solution to expose the instruction-

level and the loop-level parallelism. 

Hardware/software partition and scheduling 

were also proposed to exploit the task-level 

parallelism. Our implementation has been 

simulated and verified by the cycle-accurate 

simulator of the MUSRA. Experimental results 

show that the performance of the AES 

algorithm on MUSRA is better than that of the 

ADRES reconfigurable processor, Xilinx 

Virtex-II, and the TI C64+ DSP. It is also easy 

to reconfigure the MUSRA to support both the 

encryption and decryption with all key lengths 

specified in the AES standard. 
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In the future work, some aspects such as 

hardware/software partitioning, DFG extracting, 

and scheduling, etc., will continue to be 

optimized according to the architecture of the 

MUSRA to achieve a better performance. The 

proposed implementation also will be validated 

with the MUSRA prototype on FPGA platform. 
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