
Design-for-Test of Asynchronous Networks-on-Chip
Xuan-Tu TRAN∗†, Vincent BEROULLE†, Jean DURUPT∗, Chantal ROBACH†, and François BERTRAND∗

∗CEA/LETI — 17, rue des Martyrs, 38054 Grenoble, France.
†INPG/LCIS — 50, rue Barthlmy de Laffemas, 26902 Valence, France.

Email: Xuan-Tu.Tran@cea.fr; Telephone: +33-4-38 78 29 56

Abstract— Thanks to many advantages, asynchronous circuits
have been used to solve the interconnect problems faced by
system-on-chip (SoC) designers. Some asynchronous Networks-
on-Chip (NoCs) architectures are proposed for the communica-
tion within SoCs, but lack methodology and support for manu-
facturing test to ensure these communication architectures work
correctly. In this paper, we present an innovative asynchronous
DfT architecture that allows to test the asynchronous communica-
tion network architectures, as well as the synchronous computing
resources and the asynchronous/synchronous network interfaces
on the asynchronous NoC-based SoCs. This asynchronous DfT
architecture is implemented in Quasi Delay Insensitive (QDI)
asynchronous circuits and uses an area of about 20 ∗ 8 Kgates
in an asynchronous NoC-based SoC of 4.5 Mgates without
memories.

I. INTRODUCTION

As clock distribution on a large die becomes more and
more difficult in System-on-Chip (SoC) design, the SoC
designers have paid attention to asynchronous circuits. The
ITRS road map predicts that the global asynchronous – local
synchronous (GALS) platform will become the mainstream in
the near future. In a GALS system, a number of synchronous
islands communicate asynchronously with each other using
an asynchronous communication networks. As a result, the
asynchronous Network-on-Chip (NoC) paradigm has become
an alternate solution for the communication of large SoC
designs thanks to many advantages. Some asynchronous NoC
are proposed such as CHAIN [1], NEXUS [2]. However,
the testability of asynchronous circuits is one of the most
challenging problems in designing a GALS system. In other
words, one of the challenges of a GALS system design is how
to ensure the asynchronous networks work correctly. Solving
this problem will allow the SoC designers to make the GALS
systems become reality.

Unfortunately, it is very difficult to test asynchronous cir-
cuits because of the many feedback loops. Only one defect
may cause a suspension of the whole circuit. Some works
on the test of asynchronous circuits are proposed in [3]. In
these propositions, the test of the asynchronous circuits is done
by inserting scan-latches to break the feedback loops. These
works are less useful when the circuit under test has numerous
Muller ports because of the increase of the test overhead.

The CEA-LETI has proposed an asynchronous NoC
(ANoC) architecture [4], adapted to GALS systems, providing
low latency for QoS and implemented in Quasi Delay Insensi-
tive logic (QDI) style. To make this architecture practical for

industrial applications, a test methodology is needed.
In this paper, we present an innovative Design-for-Test

(DfT) methodology for the ANoC architecture. A generic,
modular, scalable and configurable architecture is modeled in
asynchronous logic and implemented in QDI circuit style. This
architecture is suitable for the ANoC design and also reusable
for the next designs.

The organization of the paper is as follows: Section II
presents briefly the context and objectives of our work;
Section III recalls the Asynchronous NoC architecture, for
which we develop a DfT architecture; Section IV presents an
innovative DfT architecture for the ANoC; The design and
verification of this architecture is presented in Section V; And
finally, some results and conclusions are given in Section VI.

II. NETWORKS-ON-CHIP: DESIGN AND TEST

In the coming billion-transistor era, the trend of SoC design
is to integrate numerous IP blocks: processors, embedded
memories, computing resources, etc. The bus-based architec-
ture does not meet the increasing demands by the communi-
cation on the large SoCs. The NoC paradigm is emerging as a
new design methodology for SoCs with numerous advantages
compared to bus-based SoCs such as good efficiency, high
scalability and versatility, as well as high bandwidth communi-
cation. Many NoC architectures with numerous topologies and
design methodologies are proposed but there are few works on
the test of the NoC-based Systems [5]–[8].

The test strategy for NoC-based systems addresses three
problems: testing the IPs (i.e., the synchronous computation
resources) and their corresponding network interfaces; testing
the interconnect infrastructure itself (the nodes and the inter-
node wire segments); and testing the whole integrated system.

To test the embedded IPs and their corresponding network
interfaces, it requires test access mechanisms (TAMs) to
transport the test vectors from the source to the core-under-
test and the test results from the core-under-test to the sink.
Some researches propose reusing the on-chip network as a
high bandwidth TAM for the embedded IPs [9], [10]. The
principal advantages of reusing NoCs as TAMs is that no extra
TAM hardware cost is needed and the availability of multi-path
core test.

To test the interconnect infrastructure, we must address
two aspects: testing the node and testing the wire segments
between the nodes. Because the nodes consist of FIFO
buffers and routing logics, some works propose that we can



test these parts separately, using a BIST for FIFOs and a
traditional method for the routing logics. However, the FIFO
buffers are distributed all over the chip and it poses a big
challenge for this approach. In our opinion, we prefer to
test the whole node with an unique DfT architecture. This
approach becomes more favorable when the network nodes
are designed in asynchronous logic.

III. THE ASYNCHRONOUS NOC ARCHITECTURE

A. Architecture description

Fig. 1. Networks-on-Chip architecture.

The ANoC developed by the CEA-LETI [4] is composed
of asynchronous nodes, links between nodes, synchronous
computation resources (they may be hardware, software, or
firmware resources), and network interfaces between the net-
work and the resources, see Figure 1. The network nodes
compute where to transmit an incoming data, arbitrate between
potential concurrent data, and finally transmit the selected
data to the selected link. The links between the nodes are
bi-directional 32-bit data paths, implemented with a flit-level
handshake signaling protocol.

The synchronous computing resources can either be generic
blocks (CPU, DSP, memories, . . . ) or be configurable hard-
ware IP blocks (FFT, MPEG, . . . ). Each resource is con-
nected to the communication network by a network interface
with the nearest node. The network interface is an asyn-
chronous/synchronous interface block that contains a dedicated
GALS interface in order to perform synchronization between
the synchronous and asynchronous domains.

This asynchronous NoC is targeted to be used in the FAUST,
a Flexible Architecture Unified System for Telecommunica-
tion, developed by the CEA-LETI to be demonstrated on 4-G
telecommunication system [11].

Fig. 2. Connections between two nodes.

B. Asynchronous Nodes

The nodes are the basic elements of the network and
they usually have 5 bi-directional ports that connect to four
neighboring nodes and the nearest synchronous computing
resource via an asynchronous/synchronous network interface.
A bi-directional port is driven by an input controller and an
output controller, so that a node has 5 input controllers and
5 output controllers. Each input controller is connected to
only 4 output controllers, going back and forth on the same
network link is not allowed by the communication protocol.
The design of these asynchronous network nodes and their
operations are described in [4]. The interconnections between
two nodes and their resources is described in Figure 2.

IV. AN INNOVATIVE DFT ARCHITECTURE FOR
ASYNCHRONOUS NOCS

A. Embedded core test and IEEE 1500 wrapper

To test the embedded cores in SoCs, a general architecture
is first proposed in [12]. In this architecture, the embedded
cores are covered by wrappers to improve the controllability
and the observability of the embedded cores. Test vectors from
the source are transported to the core-under-test and test results
from the core-under-test are transported to the sink by the test
access mechanisms (TAMs).

In order to make this architecture become reusable, a
standard for embedded core test has been developed, the IEEE
1500 Standard for Embedded Core Test [13]. The objects of
the IEEE 1500 Standard is to develop a core test wrapper
architecture and a test language for the core-based SoCs. The
TAMs are defined by the system chip integrators and then they
may be serial, bus, or NoC architectures. The test stimuli and
test results are shifted around the core by wrapper boundary
register cells with a test clock. In our case, there is no global
synchronization between networks elements so the IEEE 1500
wrapper is unsuitable. Therefore, we introduce in this paper
an innovative DfT architecture for asynchronous NoCs, called
ANoC-TEST, described in the following sections.



Fig. 3. ANoC-TEST general architecture.

B. ANoC-TEST architecture description

In this architecture, the network nodes are covered by the
test wrappers, which are implemented in asynchronous circuits
in order to better adapt to the GALS paradigms. To reduce
TAM overhead we reused the links between the nodes to build
a TAM with high throughput.

To generate test vectors, analyze the test results and control
the test flows, a general-purpose unit is modeled, named GAC
(Generator, Analyzer, and Controller) unit. This GAC unit may
be implemented on-chip as an IP connected to a network node,
or off-chip as a computer program that communicates with
the ANoC via I/O ports or Ethernet ports of the ANoC. The
ANoC-TEST general architecture is presented in Figure 3.

With this architecture, the test vectors generated by GAC
block are transmitted to the node-under-test via the wire
segments between nodes, loaded to the node-under-test by the
test wrapper. On the other side, the test results are withdrawn
from the node-under-test by the test wrapper, transmitted to
the GAC block via the wire segments, and analyzed by an
analyzer in the GAC block.

C. ANoC-TEST wrapper

Because the network node has 5 input/output ports, the
test wrapper is composed of 5 input and 5 output wrapper
boundary cells, see Figure 4. To control these input/output
wrapper cells, a local test control module (TCM) is needed.
The role of the test wrapper is to transport the test vectors
to the node-under-test and get the test results from the node-
under-test. To do this, the TCM has to control the input/output
wrapper cells to do many operations such as updating test
vectors (update new test vectors to the cell), shifting test
vectors (shift the test vectors to the targeted cell corresponding
to the targeted input port of the node-under-test), loading test
vectors (load the test vectors to the node-under-test via the
targeted input port), exporting test results (get the test results
out of the node-under-test), shifting test results (shift the test
results to the targeted cell corresponding to the target output of
the wrapper), transmitting test results (transmit the test results
to the TAM).

Fig. 4. ANoC-TEST wrapper.

To improve the quality of service (QoS), the CEA-LETI
introduces in their asynchronous NoC k virtual channels with
k levels of priority. All these levels of priority are arbitrated
so that only one virtual channel is established at a time.
Therefore, the test wrapper has to make no changes not only
to data values, but also to their levels of priority. The design
of the input/output ANoC-TEST wrapper boundary cells and
the TCM module is described in [14].

D. GAC unit and test algorithm

Fig. 5. The control flow of GAC unit.

The GAC (Generator, Analyzer and Controller) unit may
be implemented on-chip as an IP, or may be implemented off-
chip as a computer program. If the GAC unit is implemented
on-chip, it may be modeled as a synchronous block and
connected to the asynchronous communication network via
an asynchronous/synchronous network interface. If the GAC
unit is implemented as a computer program, this unit has to



be connected to the asynchronous network via the I/O ports
or the Ethernet ports.

The role of the GAC unit is to generate test vectors for the
asynchronous nodes and the computing resources, to configure
the test wrappers via a serial asynchronous configuration
channel, and to analyze the test results.

The control flow of the GAC unit is presented by a Finite
State Machine (FSM) described in Figure 5.

V. DESIGN AND VERIFICATION

A. Flit-level Synchronization

The communication between the wrappers or between the
wrappers and the nodes, as well as between the cells of the
wrappers is established by a basic handshake protocol, the flit-
level handshake protocol. This handshake protocol is defined
as the “Send/Accept” protocol, in which the communication
between two communication blocks is performed via the
“Send” and “Accept” signals.

In the asynchronous NoC of the CEA, k virtual channels
are implemented with k levels of priority in order to improve
the QoS of the communication. To implement the flit-level
handshake protocol for k virtual channels in the network, we
need k “Send” and k “Accept” signals: send < i > and
accept < i >, where i gets values from 0 to k − 1. The
sender is allowed to send a new flit on virtual channel i with
send < i >= 1, if and only if, the receiver indicated accept <
i >= 1 at the previous cycle. With this “send/accept” protocol,
flit transactions are realized in many virtual channels with an
assurance of a free physical channel.

B. QDI asynchronous design

To design the ANoC-TEST wrappers, the Quasi Delay
Insensitive (QDI) asynchronous design style [15] is used. We
have used a 4-phase RTZ signaling protocol for asynchronous
channels. In order to reduce power consumption, the 1-of-4
code signaling is used [16].

C. Asynchronous Design with SystemC/C++

All the asynchronous nodes as well as their test wrappers
are implemented with the QDI style, which may be modeled
in CHP language [15], Tangram [17], or Balsa [18]. In order
to model the asynchronous logic with the same SystemC
TLM framework we have used the basic SystemC “sc fifo”
primitives to model the asynchronous logic behavior. The
sc fifo primitive implements a blocking communication with
associated .read() and .write() statements. Thanks to the
class features of C++, we can model the different hardware
types (such as multi-rail) easily. To model non-deterministic
process like in CHP, a .probe() function is added to the sc fifo
primitives.

Unfortunately, there are some drawbacks of designing in
SystemC/C++. Firstly, in a communication channel the sc fifo
primitive has at least one place in the depth, where the depth
of a communication channel in CHP may be zero. This makes
the model more pipelined, but it is sufficient for behavioral

simulations and validations. Secondly, we are able to model
only the passive input & active output channels. Nevertheless,
the active input & passive output channels are sometimes
required. Finally, we can not see the visualization of data
transfer with identical values in debug process. Refer to [4]
for more detail about the modeling asynchronous logic in
SystemC.

D. Verification platform

Fig. 6. A testbench with 4 asynchronous nodes and resources.

The proposed DfT architecture has been validated by a
test-bench model with 4 nodes and resources as illustrated
in Figure 6. All test processes of this model are controlled
by a GAC unit that is modeled in SystemC/C++. The GAC
unit also generates test vectors to the asynchronous nodes,
the computing resources, and the internode wires. The test
results are received and stored in a test result file and then
are compared with the test vectors to analyze the defects
of the circuits. In addition, the test architecture can test
itself by comparison the configuration vectors that have been
transmitted to and received from the configuration channel by
the GAC unit.

VI. RESULTS AND CONCLUSION

The proposed DfT architecture is an innovative, generic,
scalable, flexible, and configurable architecture so that it can
be expanded to meet the extension of Asynchronous NoC-
based SoCs. It can be modified to test the nodes in parallel.
Because the nodes are identical, the test vectors can be reused
and the test results can be compared to each other, it is
especially useful in parallel test case.

This DfT architecture is used to test not only the network
nodes and internode wires, but also the computing resources
(IPs) and the asynchronous/synchronous network interfaces.

In this design, we reuse the internode wires as high
bandwidth test access mechanisms (TAMs). This avoid the



congestion in the layout process. With a cycle time of 4ns
and 32-bit width, a test path has a throughput of 1Gbytes/s.

The ANoC-TEST wrapper is modeled and validated in the
SystemC/C++, described in Section V, that corresponds to
the behaviors of asynchronous circuits. The surface cost of
this wrapper is evaluated at about 8 Kgates, in report of 4.5
Mgates of our target asynchronous NoC with 20 nodes, 23
IPs (without memories).

REFERENCES

[1] J. Bainbridge and S. Furber. CHAIN: a Delay-Insensitive
Chip Area Interconnect. IEEE Micro, Vol. 22(5):16–23, Sept.-
Oct. 2002.

[2] A. Lines. Asynchronous Interconnect for Synchronous SoC De-
sign. IEEE Micro, Vol. 24(1):32–41, Jan.-Feb. 2004.

[3] A. Efthymiou, J. Bainbridge, and D.A. Edwards. Adding Testa-
bility to an Asynchronous Interconnect for GALS SoC. In Proc.
of the 13th Asian Test Symposium, Taiwan, Nov. 2004.

[4] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin.
An Asynchronous NoC Architecture Providing Low Latency
Service and Its Multi-Level Design Framework. In Proc. of the
11th International Symposium on Asynchronous Circuits and
Systems (ASYNC), pp. 54–63, New York, USA, Mars 2005.

[5] W. J. Dally and B. Towless. Route Packets, not Wires: On-Chip
Interconnection Networks. In Proc. of the Design Automation
Conference (DAC), pp. 684–689, Las Vegas, NV, USA, June
2001.

[6] L. Benini and G. De Micheli. Networks on Chip: a New SoC
Paradigm. IEEE Computer, Vol. 1, pp. 70–78, Jan. 2002.

[7] A. Jantsch and H. Tenhunen. Networks on Chip. Kluwer Aca-
demic Publisher, Feb. 2003.

[8] B. Vermeulent, J. Dielissen, K. Goossens, and C. Ciordas.
Bringing Communication Networks on a Chip: Test and Verifi-
cation Implications. IEEE Communication Magazine, pp. 74–81,
Sep. 2003.

[9] É. Cota, L. Carro, F. Wagner, and M. Lubaszewski. Reusing
an On-Chip Network for the Test of Core-Based Systems.
ACM Trans. on Design Automation of Electronic Systems,
Vol. 9(4):471–499, Otc. 2004.

[10] M. Nahvi and A. Ivanov. Indirect Test Architecture for SoC
Testing. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 23(7):1128–1142, July 2004.

[11] Y. Durand, C. Bernard, and D. Lattard. FAUST: On-Chip
Distributed Architecture for a 4G Baseband Modem SoC. In
Proc. of the IP based SoC Design Conference (IP-SoC), Grenoble,
France, Dec. 2005.

[12] Y. Zorian. Testing Embedded-Core based System Chips. In
Proc. of the International Test Conference (ITC), pp. 130–140,
Washington, DC, USA, Oct. 1998.

[13] IEEE Std. 1500, IEEE 1500 Standard for Embedded Core Test.
http://grouper.ieee.org/groups/1500/.

[14] X-T. Tran, C. Robach, J. Durupt, V. Beroulle, and F. Bertrand.
A DfT Architecture for Asynchronous Networks-on-Chip. In the
11th European Test Symposium (ETS’06), Southampton, UK,
May 2006 (accepted).

[15] M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: a Standard
Cell QDI 16-bit RISC Asynchronous Microprocessor. In Proc.
of the 4th International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC), pp. 22–31, San
Diego, USA, April 1998.

[16] J. Bainbridge, W. Toms, D. Edwards, and S. Furber. Delay-
Insensitive, Point-to-Point Interconnect using m-of-n Codes. In
Proc. of the 9th International Symposium on Asynchronous
Circuits and Systems (ASYNC), pp. 132–140, Vancouver, BC,
Canada, May 2003.

[17] K. van Berkel, J. Kessels, M. Ronken, R. Saeijs, and F. Chalij.
The VLSI Programming Language Tangram and its Translation
into Handshakes Circuits. In Proc. of the European Design
Automation Conference, pp. 384–389, Amsterdam, Feb 1991.

[18] A. Bardsley, and D. Edwards. Compiling the Language Balsa
to Delay-Insensitive Hardware. Hardware Description Languages
and their Applications (CHDL), pp. 89–91, April 1997.


