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Abstract This paper proposes a Coarse-grained Reconfigurable Architecture (CGRA) applied to the multimedia processing 

and communications processing. To solve the huge bandwidth requirement of parallel processing arrays, the proposed CGRA 

architecture focuses on the exploitation of data locality to reduce data access bandwidth and increase efficiency of pipelined 

execution of the kernel loops. The proposed architecture has been modeled using both C and VHDL language aiming at 

simulating and analyzing various parameters of the target architecture, as well as supporting hardware/software co-verification 

when mapping applications onto the target system. Some benchmark applications have been mapped onto the models of the 

CGRA in order to prove the high flexibility and performance of the architecture that is suitable for a wide range of multimedia 

and communications processing applications. The proposed CGRA can be applied as computing resources in reconfigurable 

Network-on-Chips. 
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1. Introduction 
Implementation of modern hand-held mobile devices 

always gives designers some challenges such as reducing 

chip area and power consumption, increasing application 

performance, shortening time-to-market, and simplifying 

the updating process. Besides, these systems are often 

designed not only for a specific application but also for 

multiple applications. Such sharing of resources by several 

applications makes the system cheaper and more versatile. 

Application Specific Integrated Circuits (ASICs), Digital 

Signal Processors (DSPs), and Application-Specific 

Instruction Set Processors (ASIPs), have been used for 

implementing the mobile multimedia systems. However, 

none of them meets all of the above challenges [1] . 

Recently, a very promising solution was the reconfigurable 

computing systems that are integrated many heterogeneous 

processing resources such as software programable 

processors, hardwired IP (Intellectual Property) core, 

reconfigurable hardware architectures, etc. based on a 

flexible communication infrastructure in the form of 

Network-on-Chip (NoC) [3]  as shown in Figure 1 . To 

program such a system, an application is first represented 

intermediately as a series of tasks that depends on each 

other by Control and Data Flow Graph (CDFG) [2] , and 

then partitioned and mapped onto the heterogeneous 

computational and routing resource of the system. 

Especially, computation-intensive kernel functions of the 

application are mapped onto the reconfigurable hardwares 

so that they can achieve high performance approximately 

equivalent to that of ASIC while maintaining a degree of 

flexibility close to that of DSP processors. By dynamically 

reconfiguring hardware, reconfigurable computing systems 

allow many hardware tasks to be mapped onto the same 

hardware platform, thus reducing the area and power 

consumption of the design [4] .  

 
Figure 1.  System-level application model of CGRA 

The reconfigurable hardware architecture is generally 

classified into the Field Programmable Gate Array (FPGA) 

and coarse-grained dynamically reconfigurable 

architecture (CGRA). FPGA supports the fine-grained 

reconfigurable fabric that can operate and be configurated 

at bit-level. FPGAs are extremly flexible due to their 

higher reconfigurable capability. However, the FPGAs 

consume more power and have more delay and area 

overhead due to greater quantity of routing required per 

configuration [5] . This limits the capability to apply FPGA 

to mobile devices. To overcome the limitation of 

conventional microprocessors and fine-grained 
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reconfigurable devices in the field of multimedia and 

communication baseband processing, we developed and 

modeled a CGRA architecture. In contrast with FPGAs, the 

CGRA aims at reconfiguring and manipulating on data at 

word-level. The CGRA is proposed to exploit high 

data-level parallelism (DLP), instruction-level parallelism 

(ILP) and TLP (Task Level Parallelism) of the 

computation-intensive loops of an application. The CGRA 

also supports the capability of dynamic reconfiguration by 

enabling the hardware fabrics to reconfigure into different 

functions even if the system is working. By dynamically 

reconfiguring the hardware, many different functions are 

mapped to the same hardware structure, thus leading to a 

reduction in size, cost and power consumption of the 

system. Consequently, high flexibility and performance, 

and low power consumption of the CGRA make itself ideal 

to satisfy the design requirements of multimedia 

processing applications. 
The rest of the paper is organized as follows. 

Architecture and application model of the proposed CGRA 

at Network-on-Chip level are presented in Section 2. In 

Section 3, mapping of some benchmark examples and 

evaluation of the CGRA in terms of flexibility and 

performance is introduced. Finally, some conclusions are 

given in Section 4. 

2. Architecture 

2.1. Coarse-grained Reconfigurable Architecture 

 

Figure 2. CGRA architecture 

The CGRA consists of an Reconfigurable Computing 

Array (RCAs), an Input FIFO, an Output FIFO, Global 

Register File (GRF), Data/Context memory subsystem, and 

a controller, etc. (Figure 2 ). In turn, the RCA is an array 

of 8x8 RCs (Reconfigurable Cells), and can configure 

partially to implement computation-intensive tasks. The 

input and output FIFO is the I/O buffers between external 

data flow and RCA. Each RC can get data from the input 

FIFO or/and GRFs, and store data back to the output FIFO. 

These FIFOs are all 512-bit in width and 8-row in depth, 

and can load/store sixty-four bytes or thirty-two 16-bit 

words per cycle. Especially, the input FIFO can broadcast 

data to every RC that have been configured to receive the 

data from the input FIFO. This mechanism aims at 

exploiting the reusable data between iterations. The 

interconnection between two neighboring rows of RCs is 

implemented by the crossbar switches. Through the 

crossbar switch, an RC can get results that come from an 

arbitrary RC in the immediately above row of it. The 

Controller generates the control signals that maintain 

execution of RCA accurately and automatically according 

to configuration information in the Context Registers. The 

architecture of RCA core is basically loop-oriented one. 

Executing model of the RCA core is pipelined 

multi-instruction-multi-data (MIMD) model. In this model, 

each RC can be configured separately to process its own 

instructions, and each row of RCs corresponds to a stage 

of pipeline. Multiple iterations of a loop are possible to 

execute simultaneously in the pipeline. 

RC is the basic processing unit of RCA. Each RC 

includes the data-path that can execute signed/unsigned 

fixed-point 8/16-bit operations with two/three source 

operands, such as arithmetic and logical operations, 

multiplier, and multimedia application-specific operations 

(e.g. barrel shift, shift and round, absolute differences, 

etc.). Each RC also includes a local register called LCR. 

This register can be used either to adjust operating cycles 

of the pipeline when a loop is mapped onto the RCA, or to 

store coefficients during executing an RCA core loop. 

 
Figure 3. RC architecture 

The data processed by RCA are clasified into two types: 

variables are streamed into RCA through the input FIFO, 

meanwhile constants are fed into the RCA via either GRF 

for scalar constants or LCR array for array constants. The 

Constant type is again classified into global constant and 

local constant. Global constant is determined at 

compile-time, therefore it is initialized in context memory 

 



 
  
 

of the CGRA at compile-time and loaded into GRF/LCRs 

while configuring the CGRA. Local constant (or 

immediate value) is not determined at compile-time, but is 

the result generated by other tasks at run-time, therefore it 

need to be loaded dynamically into GRF/LCRs by 

configuration words. 

2.2. Configuration Model 
The configuration information for CGRA is organized 

into the packet called context. The context specifies 

particular operation of the RCA core (i.e. operation of 

each RC, interconnection between RCs, input source, 

output location, etc.) as well as the control parameters that 

control operation of the RCA core. The total length of a 

context is 128 32-bit words. An application is composed of 

one or more contexts that are stored into the context 

memory of CGRA. 

The function of CGRA is reconfigured dynamically in 

run-time according to the required hardware tasks. To deal 

with the huge configuration overhead in CGRAs, hardware 

design of the proposed CGRA supports a mechanism to 

pre-load and pre-decode the configuration context from 

external memory to the context memory of CGRA. By this 

method, the configuration of the CGRA can take place 

behind the calculation of RCA. As a result, once the RCA 

finish calculating with the current context, it can be 

immediately changed into the next context. 

2.3. Execution Model 
It is a well-know rule of thumb that 90% of the 

execution time of a program is spent by 10% of the code of 

LOOP constructs [4] . These LOOP constructs are generally 

identified as kernel loops. Most of them have 

computation-intensive and data-parallel characteristics 

with high regularity, so they can be accelerated by 

hardware circuits. The CGRA architecture is basically the 

such-loop-oriented one. By mapping the body of the kernel 

loop onto the RCA, the RCA just needs configuring one 

time for executing multiple times, therefor it can improve 

the efficiency of the application execution. Executing 

model of the RCA is the pipelined 

multi-instruction-multi-data (MIMD) model. In this model, 

each RC can be configured separately to a certain 

operation, and each row of RCs corresponds to a stage of a 

pipeline. Multiple iterations of a loop are possible to 

execute simultaneously in the pipeline.  

For purpose of mapping, a kernel loop is first analyzed 

and loop transformed (e.g. loop unrolling, loop pipelining, 

loop blocking, etc.) in order to expose inherent parallelism 

and data locality that is then exploited to maximize the 

computation performance on the target architecture. Next, 

the body of the loop is represented by data-flow graphs 

(DFGs) as shown in Figure 4 . Thereafter, DFGs are 

mapped onto RCA by generating configuration information, 

which relate to binding nodes to RCs and edges to 

interconnections. Finally, these DFGs are scheduled in 

order to execute automatically on RCA by generating the 

corresponding control parameters for the CGRA’s 

controller. Once configured for a certain loop, RCA 

operates as the hardware dedicated for this loop. When all 

iterations of loop have completed, this loop is removed 

from the RCA, and the other loops are mapped onto the 

RCA. 

In architecture model of RCA core, five parameters are 

used for controlling the execution of a loop on RCA as 

follows: 

 Input count (NI) is defined as the number of cycles 
spent to take data from the input FIFO. 

 Output count (NO) is defined as the number of 
cycles spent to write the entire results of one loop 
iteration to Output FIFO. 

 Iteration count (NL) is the number of the loop 
iterations. 

 Iteration Interval (II) is defined as the number of 
cycles calculated from the 1st input of the ith 
iteration to the 1st input of the (i+1)th iteration.  

 Output Time (NW) is defined as the number of clock 
cycles between the first output and the first input in 
the same iteration. 

 

Figure 4. DFG representation of a simple loop body 

The execution of a loop is scheduled so that different 

phases of successive iterations are overlapped each other 

as much as possible. As defined, II indicates when the next 

iteration is possible to start. The smaller II is, the sooner 

next iteration starts, thereby the more iterations of the 

loop are possible to execute simultaneously in the pipeline. 

Consequently, achieving the minimum II value is the 

object of optimization to improve execution performance 

 



 
  
 

of a loop on RCA. Scheduling also needs to ensure that 

there are not any conflicts between resources as multiple 

phases take place simultaneously. 

Parallel processing increases computation performance 

but also increase the pressure on data bandwidth. The 

system’s bandwidth is necessary to ensure that data is 

always available for all resources running concurrently 

without IDLE state. A way for increase data availability is 

to exploit Data locality that refers to capability of data 

reuse within a short period of time [6] . Exploiting the data 

locality has the potential to increase the processing 

efficiency of the system because the data can be cached in 

the internal memory for reuse later, thus reducing stalled 

times due to waiting for external memory accesses. 

Moreover, the data reuse also has the potential to minimize 

the number of access to external memory, thus achieves a 

significant reduction in the power consumption [7] . 

Compared with the execution model in [8]  and [9] , our 

execution model exploits the overlapping data between two 

successive iterations, so it can enhance performance and 

reduce input data bandwidth. In this model, RCA core can 

start computing as soon as the data of the first input 

appears on the input of the RCA, so LOAD phase and 

EXECUTION phase of the same iteration can happen 

simultaneously. In other words, the modified execution 

model allows overlapping three phases LOAD, 

EXECUTION, STORE of the same iteration as much as 

possible. As shown in Figure 4 , an iteration of RCA core 

in our model is started by LOAD-EXECUTION phase, and 

then is EXECUTION phase, finally finished by 

STORE-EXECUTION phase. On the other hand, our model 

also allows the data of the next iteration be LOADed 

simultaneously with the data of the current iteration, so it 

not only maximize the degree of overlapping between the 

consecutive iterations but also maximize the data reuse. 

3. Verification and Evaluation 
An environment for developing and verifying 

application is built at the different abstract levels. Firstly, 

a C model is used for hardware/software co-verifying an 

algorithm on the CGRA. Secondly, a cycle-accurate RTL 

(Register Transfer Level) model, which is written in VHDL 

language, is used for evaluating performance of the 

algorithm. 

To evaluate performance and flexibility of the CGRA 

architecture, the section presents mapping some 

benchmark examples in the field of the digital signal and 

multimedia processing, including motion estimation (ME) 

algorithm, convolution, and matrix-vector multiplication, 

onto the CGRA. Although the actual size of the RCA array 

is 88, but for simplifying presentation in this section 

some figures will only illustrate the RCA array with size 

of 44. 

3.1. Mapping of benchmark examples 
A) Matrix – Vector Multiplication 

The multiplication of an M×N matrix by a length-N 

vector is represented by the following equations: 
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Figure 5 (a) shows a DFG for multiplying a 

44-matrix with a 41-vector. Mapping of DFG onto the 

RCA array and its pipelined execution is shown in Figure 

5 (b-c). Since the vector Y is used repeatedly for computing 

every value Zi, therefore its value will be loaded into 

registers of GRF before starting the calculating process. 

As a result, the amount of memory access will be 

significantly reduced. 

B) Convolution 
Convolution is a mathematical operation on two 

functions and producing a third function that is typically 

viewed as a modified version of one of the original 

functions. It is applied popularly in field of the image and 

signal processing. A well-known application of 

convolution is FIR filter as shown in Figure 6 . Direct form 

realization of 4-tap FIR filter is based on the direct 

implementation of (2) : 
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where, x[k] are input samples (x[k]=0 k<0); h[k] are the 

coefficients of frequency response; and y[n] are output 

samples. 

As shown in Figure 6 (a), the DFG for 4-tap FIR filter is 

similar to the DFG for matrix–vector multiplication. 

However, note that there are three values of the sequence 

x[n] that are repeatly used to calculate the two consecutive 

values of the sequence y[n]. Therefor, in order to exploit 

these reused data between successive iterations, the DFG 

as shown in Figure 6 (b) will be used. In this DFG, the 

samples x[n] will be multiplied by the coefficients h[n] 

and then accumulated together in the result z[n] according 

to the method of 4-stage pipelined execution. The samples 

x[n] will be streamed by the input FIFO and broadcasted to 

all the chosen RCs. As a result, only one sample x[n] is 

outputed by the input FIFO at the moment. Moreover, 

because each sample x[n] is accessed only once, the 

 



 
  
 

 

memory access bandwidth will be reduced significantly. 

 
(a) 

 
(b)  

(c) 

Figure 5. DFG DFG (a), mapping of DFG on CGRA (b), and pipelined execution (c) of matrix–vector multiplication 

 
(a) 

 
(b) 

Figure 6. DFG for implementing a 4-tap FIR filter 

C) Motion Estimation 
Motion Estimation (ME) is the powerful tool used 

popularly in the latest video coding standard such as 

H.264/AVC [10] . ME exploits temporal redundancy of a 

video sequence by finding the best matching candidate 

block of each current 16×16-pixel macroblock from a 

search window in reference frames. The two operations 

that have the highest complexity of ME are the sum of 

absolute differences (SAD) and Sum of absolute Hadamard 

transformed values of residues (SATD). Because the 4×4 

block is the smallest block size supported by almost all of 

standards, the SA(T)D of the 4×4-blocks are first 

calculated, and then these results are used to calculate 

SA(T)D for the larger block sizes. 

SAD Computation: Figure 7 (a) presents a DFG for 

computing SAD of a 44-block (SAD4×4). In this diagram, 

the absolute difference of each row of one 4×4-block is 

performed independently on the consecutive stages of the 

pipeline. Scheduling of the data and computation sequence 

is shown in Figure 7 (b-c). 4×4 current pixels are used to 

initialize registers in GRF, whereas one row of the 4 

reference pixels (i.e. Pi) is fed to RCA via the input FIFO 

every cycle. 

SATD Computation: The optimized DFG for computing 

SATD of a 44-block, which can be mapped completely 

onto one 8×8-RCA, is shown in Figure 8 . A 44-block is 

first divided into two halves of 8 pixels to input to the 

DFG in sequential order. Eight RCs in the 1st row generate 

eight residues in parallel and then transmit them to 2-D 

Hadamard transform unit. The transformed residues of the 

1st half are stored in LCRs (denoted as T in Figure 8 ) 

waiting for transformed residues of the 2nd half. Once 

residues of the 2nd half have transformed, they are 
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Figure 7. DFG (a), data organization (b) and scheduling (c) of SAD computation on CGRA



 
  
 

compared with the transformed residues of the 1st half to 

find maximum values. The maximum values then are 

transferred to the adder-tree in order compute SATD value, 

finishing computing SATD of a 44-block. The process is 

fully pipelined with the latency of eight cycles. No 

intermediate data is buffered when computing SATD of a 

44-block, therefore, no additional internal memory is 

required. 

 
Figure 8. The DFG for SATD computation 

3.2. Evaluation 
Table 1 shows the parameters for evaluating the 

performance of four benchmark loops. Here, NL is the 

number of loop iterations. ILP (Instruction Level 

Parallelism), LLP (Loop Level Parallelism) and TLP (Task 

Level Parallelism) denote the number of instructions, the 

number of iterations, and the number of task can be 

performed in parallel on RCA. 

A) Matrix–vector multiplication and Convolution 
Assuming that both matrix - vector multiplication and 

convolution use the same DFG as shown in Figure 5 , it 

requires (NL+3) cycles to complete the tasks with the 

amount of data had to be read from memory is NL4. If 

convolution is performed according to the DFG in Figure 

6 (b), the number of cycles to complete the computation is 

(NL+4) cycles. However, by reusing the overlapping data 

between two consecutive iterations of the FIR filter, the 

proposed model allows the number of memory access to be 

reduced from NL4 to (NL+3). This reduction is significant 

for large value of NL, and has a potential to impact 

significantly on the memory bandwidth. Moreover, because 

only one byte instead of four bytes is read per cycle, it 

also has a potential to impact significantly on the data bus 

width for fetching the data to the RCA array while many 

4-tap FIR filters are mapped concurrently onto the RCA. 

Input/output data stream is continuous, therefore it is 

possible to get a higher performance by utilizing 100% 

pipeline for computing. Compared to the execution model 

in [8], the proposed execution model exploits the 

overlapping data between two successive iterations, 

thereby it can reduce input data bandwidth, while 

maintaining computation performance approximately 

equivalent to that of [8]. 

B) SAD computation 
The DFG in Figure 7  is an arrangement of RCs in order 

to achieve a higher data reuse ratio. Although this is not 

the optimized solution in terms of the length of pipeline, 

but the data structure for this solution is much simpler, 

while maintaining the high performance because pipeline 

utilization is 100% of the total operating time. Compared 

to the architecture in [8], Table 1  shows that the 

performance of the proposed architecture can be increased 

approximately twice, while the number of memory read 

access can be reduced approximately 4 times. 

C) SATD computation 
The DFG for computing SATD in Figure 8  illustrates the 

ability to support dual-loop calculation of the proposed 

CGRA architecture compared to the architecture in [8]. 

Instead of having to divide the loop body into two contexts 

as the architecture in [8], one iteration of the loop is 

mapped into two RCA’s iterations without context 

switching. The executing process is continuous and does 

not require the memory for buffering intermediate results, 

therefore pipeline utilization is very high. 

4. Conclusions 
In this paper, we proposed the architecture, and then 

developed high-level models of a coarse-grained 

reconfigurable architecture (CGRA). We also demonstrated 

the executing model of the CGRA through mapping some 

examples onto the developed architecture. Simulation 

results show that the proposed CGRA can be reconfigured 

for a wide range of applications in the fields of multimedia 

processing and communications. The CGRA has the ability 

to exploit the parallel mechanism and data locality in 

algorithm to increase processing performance, as well as 

to reduce the memory access bandwidth. In the future, we 

will continue to optimize the proposed CGRA, and validate 

 



 
  
 

 

the CGRA at NoC level on a FPGA platform. 

Table 1 Mapping result of kernel loops  

M a t r i x  –  v e c t o r  C o n v o l u t i o n  S A D  S A T D  K e r n e l  L o o p  
o u r  [8] o u r  [8] o u r  [8] o u r  [ 8 ]  

II 0 0 0 3 0 2 1  0  

Pipeline Utilization 
(%) 

100% 100% 100% 100% 100% 50% 1 0 0 %  1 0 0 %  

ILP  7 7 4 7 31 31 47 6 4 / 1 5 ( * )

LLP  5 5 6 5 8 4 5 4/4(*)  

TLP 6 6 16 6 1 1 1 2/1(*)  

Execution Time  
(cycles) 

NL + 3 NL + 3 NL + 4 NL + 3 NL + 7 2NL + 6 2(NL + 4) NL + 5 

Memory access 
(times  bytes/time) 

NL4  NL4  NL +3  NL4  (NL+3)4 NL16 NL16 (NL16)

(*): context1/context2 
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