

THE INSTITUTE OF ELECTRONICS, IEICE ICDV 2014
INFORMATION AND COMMUNICATION ENGINEERS

Data Locality Exploitation for Coarse-grained Reconfigurable Architecture in a
Reconfigurable Network-on-Chips

Hung K. NGUYEN† ‡, Quang-Vinh TRAN†, and Xuan-Tu TRAN†

†SIS Laboratory, VNU University of Engineering and Technology, 144 Xuan Thuy road, Cau Giay, Hanoi, Vietnam

E-mail: ‡kiemhung@vnu.edu.vn
Abstract This paper proposes a Coarse-grained Reconfigurable Architecture (CGRA) applied to the multimedia processing

and communications processing. To solve the huge bandwidth requirement of parallel processing arrays, the proposed CGRA

architecture focuses on the exploitation of data locality to reduce data access bandwidth and increase efficiency of pipelined

execution of the kernel loops. The proposed architecture has been modeled using both C and VHDL language aiming at

simulating and analyzing various parameters of the target architecture, as well as supporting hardware/software co-verification

when mapping applications onto the target system. Some benchmark applications have been mapped onto the models of the

CGRA in order to prove the high flexibility and performance of the architecture that is suitable for a wide range of multimedia

and communications processing applications. The proposed CGRA can be applied as computing resources in reconfigurable

Network-on-Chips.

Keyword CGRA, Data locality, Reconfigurable computing, parallel processing, Network-on-Chip.

1. Introduction
Implementation of modern hand-held mobile devices

always gives designers some challenges such as reducing

chip area and power consumption, increasing application

performance, shortening time-to-market, and simplifying

the updating process. Besides, these systems are often

designed not only for a specific application but also for

multiple applications. Such sharing of resources by several

applications makes the system cheaper and more versatile.

Application Specific Integrated Circuits (ASICs), Digital

Signal Processors (DSPs), and Application-Specific

Instruction Set Processors (ASIPs), have been used for

implementing the mobile multimedia systems. However,

none of them meets all of the above challenges [1] .

Recently, a very promising solution was the reconfigurable

computing systems that are integrated many heterogeneous

processing resources such as software programable

processors, hardwired IP (Intellectual Property) core,

reconfigurable hardware architectures, etc. based on a

flexible communication infrastructure in the form of

Network-on-Chip (NoC) [3] as shown in Figure 1 . To

program such a system, an application is first represented

intermediately as a series of tasks that depends on each

other by Control and Data Flow Graph (CDFG) [2] , and

then partitioned and mapped onto the heterogeneous

computational and routing resource of the system.

Especially, computation-intensive kernel functions of the

application are mapped onto the reconfigurable hardwares

so that they can achieve high performance approximately

equivalent to that of ASIC while maintaining a degree of

flexibility close to that of DSP processors. By dynamically

reconfiguring hardware, reconfigurable computing systems

allow many hardware tasks to be mapped onto the same

hardware platform, thus reducing the area and power

consumption of the design [4] .

Figure 1. System-level application model of CGRA

The reconfigurable hardware architecture is generally

classified into the Field Programmable Gate Array (FPGA)

and coarse-grained dynamically reconfigurable

architecture (CGRA). FPGA supports the fine-grained

reconfigurable fabric that can operate and be configurated

at bit-level. FPGAs are extremly flexible due to their

higher reconfigurable capability. However, the FPGAs

consume more power and have more delay and area

overhead due to greater quantity of routing required per

configuration [5] . This limits the capability to apply FPGA

to mobile devices. To overcome the limitation of

conventional microprocessors and fine-grained

Copyright ©2014 by IEICE

reconfigurable devices in the field of multimedia and

communication baseband processing, we developed and

modeled a CGRA architecture. In contrast with FPGAs, the

CGRA aims at reconfiguring and manipulating on data at

word-level. The CGRA is proposed to exploit high

data-level parallelism (DLP), instruction-level parallelism

(ILP) and TLP (Task Level Parallelism) of the

computation-intensive loops of an application. The CGRA

also supports the capability of dynamic reconfiguration by

enabling the hardware fabrics to reconfigure into different

functions even if the system is working. By dynamically

reconfiguring the hardware, many different functions are

mapped to the same hardware structure, thus leading to a

reduction in size, cost and power consumption of the

system. Consequently, high flexibility and performance,

and low power consumption of the CGRA make itself ideal

to satisfy the design requirements of multimedia

processing applications.
The rest of the paper is organized as follows.

Architecture and application model of the proposed CGRA

at Network-on-Chip level are presented in Section 2. In

Section 3, mapping of some benchmark examples and

evaluation of the CGRA in terms of flexibility and

performance is introduced. Finally, some conclusions are

given in Section 4.

2. Architecture

2.1. Coarse-grained Reconfigurable Architecture

Figure 2. CGRA architecture

The CGRA consists of an Reconfigurable Computing

Array (RCAs), an Input FIFO, an Output FIFO, Global

Register File (GRF), Data/Context memory subsystem, and

a controller, etc. (Figure 2). In turn, the RCA is an array

of 8x8 RCs (Reconfigurable Cells), and can configure

partially to implement computation-intensive tasks. The

input and output FIFO is the I/O buffers between external

data flow and RCA. Each RC can get data from the input

FIFO or/and GRFs, and store data back to the output FIFO.

These FIFOs are all 512-bit in width and 8-row in depth,

and can load/store sixty-four bytes or thirty-two 16-bit

words per cycle. Especially, the input FIFO can broadcast

data to every RC that have been configured to receive the

data from the input FIFO. This mechanism aims at

exploiting the reusable data between iterations. The

interconnection between two neighboring rows of RCs is

implemented by the crossbar switches. Through the

crossbar switch, an RC can get results that come from an

arbitrary RC in the immediately above row of it. The

Controller generates the control signals that maintain

execution of RCA accurately and automatically according

to configuration information in the Context Registers. The

architecture of RCA core is basically loop-oriented one.

Executing model of the RCA core is pipelined

multi-instruction-multi-data (MIMD) model. In this model,

each RC can be configured separately to process its own

instructions, and each row of RCs corresponds to a stage

of pipeline. Multiple iterations of a loop are possible to

execute simultaneously in the pipeline.

RC is the basic processing unit of RCA. Each RC

includes the data-path that can execute signed/unsigned

fixed-point 8/16-bit operations with two/three source

operands, such as arithmetic and logical operations,

multiplier, and multimedia application-specific operations

(e.g. barrel shift, shift and round, absolute differences,

etc.). Each RC also includes a local register called LCR.

This register can be used either to adjust operating cycles

of the pipeline when a loop is mapped onto the RCA, or to

store coefficients during executing an RCA core loop.

Figure 3. RC architecture

The data processed by RCA are clasified into two types:

variables are streamed into RCA through the input FIFO,

meanwhile constants are fed into the RCA via either GRF

for scalar constants or LCR array for array constants. The

Constant type is again classified into global constant and

local constant. Global constant is determined at

compile-time, therefore it is initialized in context memory

of the CGRA at compile-time and loaded into GRF/LCRs

while configuring the CGRA. Local constant (or

immediate value) is not determined at compile-time, but is

the result generated by other tasks at run-time, therefore it

need to be loaded dynamically into GRF/LCRs by

configuration words.

2.2. Configuration Model
The configuration information for CGRA is organized

into the packet called context. The context specifies

particular operation of the RCA core (i.e. operation of

each RC, interconnection between RCs, input source,

output location, etc.) as well as the control parameters that

control operation of the RCA core. The total length of a

context is 128 32-bit words. An application is composed of

one or more contexts that are stored into the context

memory of CGRA.

The function of CGRA is reconfigured dynamically in

run-time according to the required hardware tasks. To deal

with the huge configuration overhead in CGRAs, hardware

design of the proposed CGRA supports a mechanism to

pre-load and pre-decode the configuration context from

external memory to the context memory of CGRA. By this

method, the configuration of the CGRA can take place

behind the calculation of RCA. As a result, once the RCA

finish calculating with the current context, it can be

immediately changed into the next context.

2.3. Execution Model
It is a well-know rule of thumb that 90% of the

execution time of a program is spent by 10% of the code of

LOOP constructs [4] . These LOOP constructs are generally

identified as kernel loops. Most of them have

computation-intensive and data-parallel characteristics

with high regularity, so they can be accelerated by

hardware circuits. The CGRA architecture is basically the

such-loop-oriented one. By mapping the body of the kernel

loop onto the RCA, the RCA just needs configuring one

time for executing multiple times, therefor it can improve

the efficiency of the application execution. Executing

model of the RCA is the pipelined

multi-instruction-multi-data (MIMD) model. In this model,

each RC can be configured separately to a certain

operation, and each row of RCs corresponds to a stage of a

pipeline. Multiple iterations of a loop are possible to

execute simultaneously in the pipeline.

For purpose of mapping, a kernel loop is first analyzed

and loop transformed (e.g. loop unrolling, loop pipelining,

loop blocking, etc.) in order to expose inherent parallelism

and data locality that is then exploited to maximize the

computation performance on the target architecture. Next,

the body of the loop is represented by data-flow graphs

(DFGs) as shown in Figure 4 . Thereafter, DFGs are

mapped onto RCA by generating configuration information,

which relate to binding nodes to RCs and edges to

interconnections. Finally, these DFGs are scheduled in

order to execute automatically on RCA by generating the

corresponding control parameters for the CGRA’s

controller. Once configured for a certain loop, RCA

operates as the hardware dedicated for this loop. When all

iterations of loop have completed, this loop is removed

from the RCA, and the other loops are mapped onto the

RCA.

In architecture model of RCA core, five parameters are

used for controlling the execution of a loop on RCA as

follows:

 Input count (NI) is defined as the number of cycles
spent to take data from the input FIFO.

 Output count (NO) is defined as the number of
cycles spent to write the entire results of one loop
iteration to Output FIFO.

 Iteration count (NL) is the number of the loop
iterations.

 Iteration Interval (II) is defined as the number of
cycles calculated from the 1st input of the ith
iteration to the 1st input of the (i+1)th iteration.

 Output Time (NW) is defined as the number of clock
cycles between the first output and the first input in
the same iteration.

Figure 4. DFG representation of a simple loop body

The execution of a loop is scheduled so that different

phases of successive iterations are overlapped each other

as much as possible. As defined, II indicates when the next

iteration is possible to start. The smaller II is, the sooner

next iteration starts, thereby the more iterations of the

loop are possible to execute simultaneously in the pipeline.

Consequently, achieving the minimum II value is the

object of optimization to improve execution performance

of a loop on RCA. Scheduling also needs to ensure that

there are not any conflicts between resources as multiple

phases take place simultaneously.

Parallel processing increases computation performance

but also increase the pressure on data bandwidth. The

system’s bandwidth is necessary to ensure that data is

always available for all resources running concurrently

without IDLE state. A way for increase data availability is

to exploit Data locality that refers to capability of data

reuse within a short period of time [6] . Exploiting the data

locality has the potential to increase the processing

efficiency of the system because the data can be cached in

the internal memory for reuse later, thus reducing stalled

times due to waiting for external memory accesses.

Moreover, the data reuse also has the potential to minimize

the number of access to external memory, thus achieves a

significant reduction in the power consumption [7] .

Compared with the execution model in [8] and [9] , our

execution model exploits the overlapping data between two

successive iterations, so it can enhance performance and

reduce input data bandwidth. In this model, RCA core can

start computing as soon as the data of the first input

appears on the input of the RCA, so LOAD phase and

EXECUTION phase of the same iteration can happen

simultaneously. In other words, the modified execution

model allows overlapping three phases LOAD,

EXECUTION, STORE of the same iteration as much as

possible. As shown in Figure 4 , an iteration of RCA core

in our model is started by LOAD-EXECUTION phase, and

then is EXECUTION phase, finally finished by

STORE-EXECUTION phase. On the other hand, our model

also allows the data of the next iteration be LOADed

simultaneously with the data of the current iteration, so it

not only maximize the degree of overlapping between the

consecutive iterations but also maximize the data reuse.

3. Verification and Evaluation
An environment for developing and verifying

application is built at the different abstract levels. Firstly,

a C model is used for hardware/software co-verifying an

algorithm on the CGRA. Secondly, a cycle-accurate RTL

(Register Transfer Level) model, which is written in VHDL

language, is used for evaluating performance of the

algorithm.

To evaluate performance and flexibility of the CGRA

architecture, the section presents mapping some

benchmark examples in the field of the digital signal and

multimedia processing, including motion estimation (ME)

algorithm, convolution, and matrix-vector multiplication,

onto the CGRA. Although the actual size of the RCA array

is 88, but for simplifying presentation in this section

some figures will only illustrate the RCA array with size

of 44.

3.1. Mapping of benchmark examples
A) Matrix – Vector Multiplication

The multiplication of an M×N matrix by a length-N

vector is represented by the following equations:

nmnmm

n

n

m Y

Y

Y

XXX

XXX

XXX

Z

Z

Z

 2

1

21

22221

11211

2

1

...

...

...

 (1)

Figure 5 (a) shows a DFG for multiplying a

44-matrix with a 41-vector. Mapping of DFG onto the

RCA array and its pipelined execution is shown in Figure

5 (b-c). Since the vector Y is used repeatedly for computing

every value Zi, therefore its value will be loaded into

registers of GRF before starting the calculating process.

As a result, the amount of memory access will be

significantly reduced.

B) Convolution
Convolution is a mathematical operation on two

functions and producing a third function that is typically

viewed as a modified version of one of the original

functions. It is applied popularly in field of the image and

signal processing. A well-known application of

convolution is FIR filter as shown in Figure 6 . Direct form

realization of 4-tap FIR filter is based on the direct

implementation of (2) :

1

0

][*][][
N

k

knxkhny (2)

where, x[k] are input samples (x[k]=0 k<0); h[k] are the

coefficients of frequency response; and y[n] are output

samples.

As shown in Figure 6 (a), the DFG for 4-tap FIR filter is

similar to the DFG for matrix–vector multiplication.

However, note that there are three values of the sequence

x[n] that are repeatly used to calculate the two consecutive

values of the sequence y[n]. Therefor, in order to exploit

these reused data between successive iterations, the DFG

as shown in Figure 6 (b) will be used. In this DFG, the

samples x[n] will be multiplied by the coefficients h[n]

and then accumulated together in the result z[n] according

to the method of 4-stage pipelined execution. The samples

x[n] will be streamed by the input FIFO and broadcasted to

all the chosen RCs. As a result, only one sample x[n] is

outputed by the input FIFO at the moment. Moreover,

because each sample x[n] is accessed only once, the

memory access bandwidth will be reduced significantly.

(a)

(b)

(c)

Figure 5. DFG DFG (a), mapping of DFG on CGRA (b), and pipelined execution (c) of matrix–vector multiplication

(a)

(b)

Figure 6. DFG for implementing a 4-tap FIR filter

C) Motion Estimation
Motion Estimation (ME) is the powerful tool used

popularly in the latest video coding standard such as

H.264/AVC [10] . ME exploits temporal redundancy of a

video sequence by finding the best matching candidate

block of each current 16×16-pixel macroblock from a

search window in reference frames. The two operations

that have the highest complexity of ME are the sum of

absolute differences (SAD) and Sum of absolute Hadamard

transformed values of residues (SATD). Because the 4×4

block is the smallest block size supported by almost all of

standards, the SA(T)D of the 4×4-blocks are first

calculated, and then these results are used to calculate

SA(T)D for the larger block sizes.

SAD Computation: Figure 7 (a) presents a DFG for

computing SAD of a 44-block (SAD4×4). In this diagram,

the absolute difference of each row of one 4×4-block is

performed independently on the consecutive stages of the

pipeline. Scheduling of the data and computation sequence

is shown in Figure 7 (b-c). 4×4 current pixels are used to

initialize registers in GRF, whereas one row of the 4

reference pixels (i.e. Pi) is fed to RCA via the input FIFO

every cycle.

SATD Computation: The optimized DFG for computing

SATD of a 44-block, which can be mapped completely

onto one 8×8-RCA, is shown in Figure 8 . A 44-block is

first divided into two halves of 8 pixels to input to the

DFG in sequential order. Eight RCs in the 1st row generate

eight residues in parallel and then transmit them to 2-D

Hadamard transform unit. The transformed residues of the

1st half are stored in LCRs (denoted as T in Figure 8)

waiting for transformed residues of the 2nd half. Once

residues of the 2nd half have transformed, they are

− − − −

+ + − − − −

+ + − − − −

+ +

+

+

+ +

+

P

− − − −

+ +

+

+

CLK1

CLK2

CLK3

CLK4

CLK5

CLK6

CLK7

CLK8

SAD4x4

(a) (b)

(c)

Figure 7. DFG (a), data organization (b) and scheduling (c) of SAD computation on CGRA

compared with the transformed residues of the 1st half to

find maximum values. The maximum values then are

transferred to the adder-tree in order compute SATD value,

finishing computing SATD of a 44-block. The process is

fully pipelined with the latency of eight cycles. No

intermediate data is buffered when computing SATD of a

44-block, therefore, no additional internal memory is

required.

Figure 8. The DFG for SATD computation

3.2. Evaluation
Table 1 shows the parameters for evaluating the

performance of four benchmark loops. Here, NL is the

number of loop iterations. ILP (Instruction Level

Parallelism), LLP (Loop Level Parallelism) and TLP (Task

Level Parallelism) denote the number of instructions, the

number of iterations, and the number of task can be

performed in parallel on RCA.

A) Matrix–vector multiplication and Convolution
Assuming that both matrix - vector multiplication and

convolution use the same DFG as shown in Figure 5 , it

requires (NL+3) cycles to complete the tasks with the

amount of data had to be read from memory is NL4. If

convolution is performed according to the DFG in Figure

6 (b), the number of cycles to complete the computation is

(NL+4) cycles. However, by reusing the overlapping data

between two consecutive iterations of the FIR filter, the

proposed model allows the number of memory access to be

reduced from NL4 to (NL+3). This reduction is significant

for large value of NL, and has a potential to impact

significantly on the memory bandwidth. Moreover, because

only one byte instead of four bytes is read per cycle, it

also has a potential to impact significantly on the data bus

width for fetching the data to the RCA array while many

4-tap FIR filters are mapped concurrently onto the RCA.

Input/output data stream is continuous, therefore it is

possible to get a higher performance by utilizing 100%

pipeline for computing. Compared to the execution model

in [8], the proposed execution model exploits the

overlapping data between two successive iterations,

thereby it can reduce input data bandwidth, while

maintaining computation performance approximately

equivalent to that of [8].

B) SAD computation
The DFG in Figure 7 is an arrangement of RCs in order

to achieve a higher data reuse ratio. Although this is not

the optimized solution in terms of the length of pipeline,

but the data structure for this solution is much simpler,

while maintaining the high performance because pipeline

utilization is 100% of the total operating time. Compared

to the architecture in [8], Table 1 shows that the

performance of the proposed architecture can be increased

approximately twice, while the number of memory read

access can be reduced approximately 4 times.

C) SATD computation
The DFG for computing SATD in Figure 8 illustrates the

ability to support dual-loop calculation of the proposed

CGRA architecture compared to the architecture in [8].

Instead of having to divide the loop body into two contexts

as the architecture in [8], one iteration of the loop is

mapped into two RCA’s iterations without context

switching. The executing process is continuous and does

not require the memory for buffering intermediate results,

therefore pipeline utilization is very high.

4. Conclusions
In this paper, we proposed the architecture, and then

developed high-level models of a coarse-grained

reconfigurable architecture (CGRA). We also demonstrated

the executing model of the CGRA through mapping some

examples onto the developed architecture. Simulation

results show that the proposed CGRA can be reconfigured

for a wide range of applications in the fields of multimedia

processing and communications. The CGRA has the ability

to exploit the parallel mechanism and data locality in

algorithm to increase processing performance, as well as

to reduce the memory access bandwidth. In the future, we

will continue to optimize the proposed CGRA, and validate

the CGRA at NoC level on a FPGA platform.

Table 1 Mapping result of kernel loops

M a t r i x – v e c t o r C o n v o l u t i o n S A D S A T D K e r n e l L o o p
o u r [8] o u r [8] o u r [8] o u r [8]

II 0 0 0 3 0 2 1 0

Pipeline Utilization
(%)

100% 100% 100% 100% 100% 50% 1 0 0 % 1 0 0 %

ILP 7 7 4 7 31 31 47 6 4 / 1 5 (*)

LLP 5 5 6 5 8 4 5 4/4(*)

TLP 6 6 16 6 1 1 1 2/1(*)

Execution Time
(cycles)

NL + 3 NL + 3 NL + 4 NL + 3 NL + 7 2NL + 6 2(NL + 4) NL + 5

Memory access
(times bytes/time)

NL4 NL4 NL +3 NL4 (NL+3)4 NL16 NL16 (NL16)

(*): context1/context2

Acknowledgement
This work has been supported by VNU, University of

Engineering and Technology under Project No. CN.14.04

and Vietnam National Foundation for Science and

Technology Development (NAFOSTED) under grant

number 102.01-2013.17.

References
[1] Christophe Bobda, “Introduction to Reconfigurable

Computing – Architectures, Algorithms, and
Applications”. Springer, 2007.

[2] João M. P. Cardoso Pedro C. Diniz: Compilation
Techniques for Reconfigurable Architectures,
2009, Springer.

[3] Natalie Enright Jerger, Li-Shiuan Peh: On-Chip
Networks, 2009 by Morgan & Claypool.

[4] A. Shoa and S. Shirani, “Run-Time Reconfigurable
Systems for Digital Signal Processing Applications: A
Survey”, Journal of VLSI Signal Processing, Vol. 39,
pp.213–235, 2005, Springer Science.

[5] G. Theodoridis, D. Soudris and S. Vassiliadis: “A
Survey of Coarse-Grain Reconfigurable Architectures
and Cad Tools Basic Definitions, Critical Design
Issues and Existing Coarse-grain Reconfigurable
Systems”, Springer 2008, p89-149.

[6] Kathryn S. McKinley , Steve Carr , Chau-Wen Tseng :
“Improving Data Locality with Loop
Transformations”, ACM Transactions on
Programming Languages and Systems (TOPLAS),
Volume 18, Issue 4, July 1996, Pages 424 - 453.

[7] S. Sohoni, and R. Min, et al. “A study of memory
system performance of multimedia applications”.
SIGMETRICS Performance 2001, pages 206–215.

[8] M. Zhu, L. Liu, S. Yin, et al.: "A Cycle-Accurate
Simulator for a Reconfigurable Multi-Media System,"
IEICE Transactions on Information and Systems, vol.
93, pp. 3202-3210, 2010.

[9] Hung K. Nguyen, Peng Cao, Xuexiang Wang, Jun
Yang, Longxing Shi, Min Zhu, Leibo Liu, Shaojun
Wei: Hardware Software Co-design of H.264
Baseline Encoder on Coarse-Grained
Dynamically Reconfigurable Computing
System-on-Chip, IEICE TRANSACTIONS on
Information and Systems (SCI index),
Vol.E96-D, No.3, pp.601-615, 2013.

[10] Iain E. Richardson: “The H.264 advanced video
compression standard”, second edition, 2010, John
Wiley & Sons, Ltd.

http://dl.acm.org/author_page.cfm?id=81100402805&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133
http://dl.acm.org/author_page.cfm?id=81100072915&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133
http://dl.acm.org/author_page.cfm?id=81410592010&coll=DL&dl=ACM&trk=0&cfid=239776647&cftoken=85754133

	A) Matrix – Vector Multiplication
	B) Convolution
	C) Motion Estimation
	A) Matrix–vector multiplication and Convolution
	B) SAD computation
	C) SATD computation

