
A Novel Asynchronous First-In-First-Out Adapting to

Multi-synchronous Network-on-Chips

Thi-Thuy Nguyen, Xuan-Tu Tran

SIS Laboratory, VNU University of Engineering and Technology, Vietnam National University, Hanoi

144 Xuan Thuy road, Cau Giay, Hanoi, Vietnam

{thuynt_54, tutx}@vnu.edu.vn

Abstract— The integration of a variety of IP cores into a sin-

gle chip to meet the high demand of new applications leads to

many challenges in timing issues, especially the interface between

different clock domains. Globally Asynchronous, Locally Syn-

chronous (GALS) approach addresses these challenges by divid-

ing a chip into several independent subsystems working with

different clock signals. In multi-synchronous Network-on-Chip

(NoC) based on GALS architecture, the network routers run with

different frequencies, so the problem is how to transfer data

safely and efficiently between them. In order to build a synchro-

nization unit to tackle this problem, in this paper, we propose a

novel efficient asynchronous First-In-First-Out architecture

targeting to multi-synchronous NoCs. Token ring structure,

register-based memory, and modified Asynchronous Assertion -

Synchronous De-assertion techniques are applied to improve the

performance of the proposed asynchronous FIFO. After simulat-

ing and verifying the design, we have implemented our asyn-

chronous FIFO architecture with CMOS 180nm technology from

AMS. Implementation results are analyzed and compared with

previous works to show the strong points of our design.

Keywords— Asynchronous FIFO; Multi-synchronous;

Network-on-Chip; Globally Asynchronous, Locally Synchronous;

Asynchronous Assertion, Synchronous De-assertion

I. INTRODUCTION

Network-on-Chip (NoC) paradigm has been known as the
evolutionary methodology in solving the bandwidth bottleneck
of traditional on-chip interconnections [1], [2]. Although hav-
ing many potential advantages such as high throughput com-
munication, high scalability and versatility, as well as good
power management efficiency, the NoC paradigm must deal
with the difficulty of distributing a synchronous clock signals
through the entire large area chip. The Globally Asynchronous,
Locally Asynchronous (GALS) approach attempts to address
this issue by partition the chip into many multiple functional
islands [3]. Since each island is clocked by a different clock
signal, safely transmitting data between different clock do-
mains becomes a big challenge for designing NoCs based on
GALS, especially reconfigurable NoCs.

There are many ways to design a synchronization unit inter-
facing between two different clock domains, such as using
handshake signaling technique [4], parallel synchronizer,
shared flop synchronizer [5], pause or stretch the receiver’s
clock. However, using First-In-First-Out (FIFO) mechanism is
one of the most efficient and widely used methods [6]. In addi-

tion, in multi-synchronous NoCs, normally each network router
has five input/output ports, in which four input/output ports are
connected to four neighboring routers. It means that about eight
asynchronous FIFOs are needed to interface between different
clock domains. Therefore, the implementation area of the pro-
posed asynchronous FIFO plays an important role in the total
area cost of the chip. In this work, we designed an asynchro-
nous FIFO to be used for interfacing different clock domains in
multi-synchronous NoCs. To make our asynchronous FIFO
become robust with a small area overhead, we use token rings
and register-based buffers to generate pointers and control
reading and writing operations. Besides that, we also apply a
modified Asynchronous Assertion, Synchronous De-assertion
technique to empty/full detector circuits.

The rest of this paper is arranged as follows. In Section II,
we will provide some existed dominant works in FIFO design
within their features. The proposed asynchronous FIFO archi-
tecture will be described in detail in Section III. After that, the
implementation results analysis and comparison with previous
works will be provided at Section IV. Finally, conclusions and
remarks will be given in Section V.

II. RELATED WORKS

Using FIFO is known as an efficient way to design a syn-
chronization unit to communicate between independent subsys-
tems; therefore, there are a large number of FIFO architectures
within various features. The following subsections will give a
brief overview about the previous works with their characteris-
tic analysis.

A. Bi- synchronous FIFO of Miro Ivan Panades

One of the most efficient FIFO designed for adapting multi-
synchronous NoCs is the Bi- synchronous FIFO proposed by
Miro Ivan Panades in [6]. In Panades’ Bi- synchronous FIFO,
pointers are generated by using token-ring structure while data
are stored in register-based memory. Despite of having a sim-
ple structure as well as being suited for multi-synchronous
NoCs, the ways full/empty status is detected make this design
have some drawbacks. Firstly, the Bi- synchronous FIFO uses
many two-flip-flop synchronizers, leading to the increase in the
total implementation area. Secondly, as consequence of full
prediction mechanism, the full de-assertion might be delay two
more writing clock periods – not included two writing clock
periods delayed caused by two-flip-flop synchronizer. This

make throughput of the Bi- synchronous FIFO decreased. As a
result, the empty detector is made to be more complex to in-
crease the throughput of FIFO.

B. Asynchronous FIFO of Clifford E.Cummings

The asynchronous FIFO proposed by Cumming in [7] is
very robust FIFO which uses pointers generated from Gray-
code counters to control the writing/reading data into/from a
dual Random Access Memory (dual-RAM). In particular, two
pointers are compared asynchronously to detect FIFO’s
full/empty status, and then full/empty flags are asserted imme-
diately and de-asserted safely by using Asynchronous Asser-
tion, Synchronous De-assertion (AASD) technique. However,
the AASD technique lengthens the critical paths, so the operat-
ing frequency that FIFO achieves has been reduced. Moreover,
this design is not suitable for multi-synchronous NoCs where
the depth of FIFO is normally less than 10 words.

C. Other FIFO architectures

Another design style is building a FIFO based on a ring of
stages, where each stage includes a data storage cell, a ‘put’
interface and a ‘get’ interface. This model is represented firstly
by T. Chelcea and S. M. Nowick [8], and then improved by
Tark Ono and Mark Greenstreet [9] which only uses typical
standard cells instead of requiring some custom ones (pre-
charged cells in the original design). The later design has flexi-
ble communication protocols. However, for multi-synchronous
NoCs with determined communication protocols, this feature is
not really necessary. Recently, reconfigurable FIFO structures
are also presented for adapting multi- voltage/frequency do-
mains [10].

D. What changes in our design

In our design, token-ring and register-based memory are
used to build a simple FIFO architecture which can implement-
ed without using any macro block. In addition, AASD is flexi-
ble applied in full/empty detection components to improve the
FIFO’s performance. On one hand, thanks for characteristic of
the AASD technique, each pointer contains only one token and
does not need to be synchronized. This reduces the number of
two-flip-flop-synchronizer and some logic gates used in bub-
ble-encoding algorithm as in Panades’ design. On the other
hand, the AASD technique lengthens the critical path. There-
fore, we modified this technique to reduce the length of these
paths. More detail about our design will be described in the
flowing section.

III. PROPOSED ASYNCRONOUS FIFO ARCHITECTURE

Our proposed asynchronous FIFO architecture has five
main components as represented in Fig. 1: buffer, write pointer,
read pointer, full detector, and empty detector. Write pointer
and full detector operate in writing clock domain while read
pointer and empty detector operate in reading clock domain.
Buffer which is the only storage element of the FIFO can be
accessed by both clock domains.

Before going to describe five mentioned components of the
proposed FIFO, two special techniques will be introduced.
These techniques are used to simplify the mechanism of the

FIFO as well as to improve its performance. The first technique
is token ring and the second one is the AASD.

Fig. 1. Block diagram.

A. Token-ring structure

Token ring is a succession of registers connected in circular
manner like a cyclic register with tokens. A token can be repre-
sented by a logic state 1 of one register. A token ring can be
used as the state machine in which the states are defined by the
position of a token or some adjacent tokens or even other ideas
due to target applications. This structure is used to generate
pointers in the proposed FIFO architecture.

For example, Fig. 2 demonstrates a token ring which in-
cludes only one token. When ‘enable’ signal is active, the value
of the i

th
 cell is shifted to the (i+1)

th
 cell of the shift register,

especially the value of the last cell is shifted to the first cell.

Fig. 2. An example of token-ring structure.

B. Asynchronous Assertion, Synchronous De-assertion

This technique is referred as a special case of two-flip-flop-
synchronizers (two or more flip-flops). It is used to transfer
data from a combinational logic (not clocked) to a clocked
domain safely and effectively. If the changing of data is asyn-
chronous to the destination clock domain, the circuit of this
technique will behave like an original two-flip-flop-
synchronizer to tolerate meta-stability. In this case, data path is
the ‘dash’ line in Fig. 3. On the contrary, if data change syn-
chronously to the destination clock domain, data flow will be
the ‘dash-dot’ line because it does not need to be synchronized
anymore.

C. Buffer & pointers

The circuit of buffer & pointer components is represented
in Fig. 4.

As mentioned above, pointers are created by using token
ring in which the token is a shift register containing the logic
state ‘1’. Position of the token is also the position of pointers.
Token rings used to implement write pointer and read pointers
are clocked by ‘w_clk’ and ‘r_clk’, respectively.

Fig. 3. Asynchronous Assertion, Synchronous De-assertion.

Read pointer is always points to the position of current
memory location where data to be read from. Read pointer is
shifted to the right when the FIFO is not empty (‘empty’ signal
is inactive) and reading operation is required (‘r_req’ signal is
active) at the rising edge of ‘r_clk’.

Write pointer always points to the position (the next
memory location) where data is being written in. Similarly to
read pointer, when the FIFO is not full (‘full’ signal is inactive)
and writing operation is required (‘w_req’ signal is active) at
the rising edge of ‘w_clk’, the write pointer is shifted to the
right.

Buffer is the only storage component of the proposed asyn-
chronous FIFO and it can be accessed by both two clock do-
mains as shown in Fig. 4. Because the FIFO depth requirement
for multi-synchronous NoCs is not high, buffer is implemented
by a sequence of registers being clocked by ‘w_clk’ signal.
Once writing operation occurs, the input data will be written in
one register when its enable signal value is true. On the other
hand, the read pointer controls data reading process by using
tri-state buffers. The output data are the output of tri-state
buffers.

Fig. 4. 7×32 FIFO buffer & pointer components.

The number of registers defines the depth of the FIFO. In
our design, the FIFO contains maximum seven 32-bit words
which is the minimum depth of FIFO to get 100% throughput.

D. Full and Empty detector

The ‘full’ or ‘empty’ flags indicate that no data should be
written in full condition or no data should be read in empty
condition as it can lead to loss of data or generation of irrele-
vant data.

To assert full/empty effectively and safely, a modified
asynchronous assertion, synchronous de-assertion technique is
proposed. Similarly to AASD technique, if the changing of
data is asynchronous to the destination clock domain, the cir-
cuit of modified AASD technique will behave like an original
two-flip-flop-synchronizer to tolerate meta-stability. However,
in the case when data change synchronously to the destination
clock domain, data will flows as ‘dash-dot’ line in Fig. 5. This
means the data is delayed one b_clk periods in comparison
with AASD technique. Thanks to this modified technique,
critical paths which pass through full/empty detector circuit
will be shortened. Nevertheless, as the modified AASD tech-
nique is applied to full/empty detectors, full and empty flag
might be asserted when FIFO just going to be full/empty. This
has no danger to FIFO functional, but this will add more delay
to full/empty de-assertion.

Fig. 5. The modified AASD technique.

When the write pointer and read pointer point to the same
position, FIFO is either full or empty. Since the empty detector
is correlated to the FIFO throughput, it must be optimized first.
Therefore, to distinguish between full and empty states of FIFO
without increasing the complexity of circuit, full flag will be
asserted when FIFO contains (N-1) elements (N is the depth of
FIFO) and empty flag will be asserted when two pointers point
to the same position. Position of read and write pointers in full
case are shown in Fig. 6.

Fig. 6. Pointers' position when FIFO is full.

Fig. 7 represents the full detector circuit. When FIFO is go-
ing to be almost full, the write pointer is going to catch the read
pointer. This lead to ‘full_pre’ signal can only be asserted when
write pointer incremented (write pointer shifted right), so the
assertion of ‘full_pre’ signal is synchronous to the write clock
domain. However, the de-assertion of ‘full_pre’ takes place

when read pointer incremented, which is asynchronous to the
write clock domain. As results, in order to improve the efficient
of the full assertion flag circuit and optimize the effect to the
critical paths, the modified AASD is applied.

Fig. 7. Full detector circuit.

FIFO is empty when read and write pointers point to the
same memory location as presented in Fig. 8.

Fig. 8. Pointers' position when FIFO is empty.

The design of Empty detector is presented in Fig. 9. Con-
trast to the full detector, ‘empty_n’ signal can only be asserted
when ‘r_ptr’ incremented (‘r_ptr’ shifted right), so the asser-
tion of ‘empty_n’ signal is synchronous to read clock domain.
However, the de-assertion of ‘empty_pp0’ takes place when
‘w_ptr’ incremented, which is asynchronous to the read clock
domain. Similarly to full detector circuit, the modified AASD
is also used in empty detector circuit.

Fig. 9. Empty detector circuit.

E. Reset synchronization

To reset the proposed FIFO, we use an asynchronous reset
signal with reset synchronizers which use AASD technique.
This type of reset is named Asynchronous reset, synchronous
de-reset and is designed to take advantage of both asynchro-
nous reset type and synchronous one.

The ‘rst_n’ signal is synchronized to write and read clock
domains and is turned into ‘rst_nw’ and ‘rst_nr’, respectively
as shown in Fig. 10.

Fig. 10. Reset synchronization.

When ‘rst_n’ signal is low-active, ‘rst_nw’ and ‘Rrst_nr’ is
reset to the ‘0’ logic immediately. This causes that write point-
er, read pointer, full flag and register-based memory are set to
the default status. When ‘rst_n’ is de-acitve (has high voltage),
it allows the input of the first synchronizer flip-flop which is
tied high is clocked through the flip-flop-synchronizer. There-
fore, the removal of reset signals in each clock domain will be
synchronous to that domain. This eliminates the drawbacks of
asynchronous reset from the circuit.

IV. IMPLEMENTATION RESULT ANALYSIS

After being simulated and verified, the proposed asynchro-
nous FIFO is synthesized on CMOS 180nm technology from
ASM using Synopsys Design Compiler in worst case condi-
tion.

To get 100% throughput as well as minimize the area of de-
sign, we implemented an asynchronous 7×32 FIFO. The graph
in Fig. 11 gives information about total area and power con-
sumption of this architecture in term of frequency.

Fig. 11. Area, Power consumption in relationship with frequency.

It is clear from the graph, from 30MHz to 340MHz, the
higher the operating frequency of the design gets, the more
power consumption increase. While, as the operating frequency
raises, the area slightly fluctuates and the trend is upward.

By doing the gate-level simulation we ensure the final im-
plementation function as intended and determine that the max-
imum throughput our design can achieve is 10.88Gbps at oper-
ating frequency of 340MHz. At that frequency, the implement
area and power consumption it takes are about 40 655.61µm

2

(3601 gates) and 4.025mW, respectively.

A. Throughput

From the overview point, throughput of our asynchronous
FIFO – is analyzed as function of FIFO’s depth. TABLE I
shows the comparison between our design and previous works
in term of Minimum of FIFO’s depth to get the required
throughput.

TABLE I. MINIMUM OF FIFO DEPTH IN FUNCTION OF REQUIREMENT

THROUGHPUT

Design

50% throughput

(Minimum depth of

FIFO)

100% throughput

(Minimum depth of FIFO)

Our design 5 7

Panades et al. [6] 5 6

Ono et al. [9] 3 6

Cummings [7] 3 6

Especially, the firstly condition for asynchronous FIFO get
the 100% throughput is that the write and read frequency must
be equal.

As indicated in TABLE I, the proposed asynchronous FIFO
requires at least 7 memory cells to get 100% throughput while
all other considered FIFO styles need just 6 memory cells.
However, in order to get 50% throughput, the minimum depth
of our FIFO is 4 which bigger than the ones of Ono & Mark
Greenstreet and Cummings, but less than the one of Panades.

B. Area analysis

Because of the difference between the technology libraries
we used (180nm) and the others used to implement (90nm) the
considered worked, we compare the area of designs in term of
Gate count. Data of our design in four cases are gotten from
implementation results at the maximum frequencies design can
achieve. In detail, the maximum frequencies 4×16 FIFO, 4×32
FIFO, 8×16 FIFO, and 8×32 FIFO can operate are 390MHz,
390MHz, 340MHz and 340MHz, respectively. TABLE II
shows that in all case the gate number of our design is the
smallest. The other designs are bigger from 0.01% to 44.86%
than ours. In both Panades et al. design and Cummings’ design
row, the maximum difference between our design and their
ones are in 8×16 columns. In comparison with Ono et al. or
Cummings’ design, the difference of these two designs and our
design gets smaller when either FIFO’s depth increases or
FIFO’s width increase.

C. Laten analysis

To make latency analysis be easier, we assume that the de-
lay of data is independent from the reading request and writing
request (‘w_req’ and ‘r_req’ are always in active status).

The delay of data read from FIFO just after the empty flag
is de-asserted (called “First Data”) is denoted by Td1. It can be
calculated by the following equation.

 Td1 = Tw + 2*Tr + ∆T (1)

Where,

• Tw is the writing period; Tr is the reading period.

• ∆T is the period from the rising edge of writing clock
(where a writing operation occurs and makes ‘emp-
ty_pre’ de-active) to the rising edge of reading clock
(where the first flip-flop of two-flip-flop synchronizer
gets ‘empty_pre’ de-active).

TABLE II. IMPLEMENTATION AREA COMPARISON BETWEEN DIFFERENT DESIGNS

 4×16 4×32 8×16 8×32

Design Technology Total area Gate count Total area Gate count Total area Gate count Total area Gate count

 library (µm
2
) (gates) (µm

2
) (gates) (µm

2
) (gates) (µm

2
) (gates)

Proposed

design

180nm 13296 1178 24008 2126 25385 2248 48404 4287

100%

100%

100%

100%

Panades et al.

[6]

90nm 3600 1440 6511 2604 7117 2847 12939 5176

122%

122%

127%

121%

Ono et al.

[9]

90nm 4266 1706 6866 2746 7004 2802 10906 4288

145%

129%

125%

100%

Cummings

[7]

90nm 3226 1290.4 5779 2311.6 6237 2494.8 11298 4519.2

110% 109%

111%

105%

In (1), Tw is the time delay caused by the mechanism of
empty detector. Our empty detector architecture is designed to
be able to predict the empty status of the FIFO, and it adds one
Tw to the value of Td1. Besides, 2*Tr delay two-flip-flop syn-
chronizer. ∆T depends on the propagation time of cycled sub-
circuit in Fig. 9. Fig. 12 describes an example of Td1 delay.

0 ˂ ∆T ˂ Tw + Tr (2)

Fig. 12. An example of Td1 delay.

The delay of the n-th data, denoted by Tdn, is calculated re-
lying on the delay of the “First Data” and is demonstrated in
Fig. 13.

Fig. 13. General data delay.

 Tdn = Td1 + Tr(1-n) − Tw(1-n) (3)

• Tr(1-n) = (n−1)∗Tr is the period to read (n-1) words.

• Tw(1-n) = (n−1)∗Tw is the period to write (n-1) words.

• n < N-1, N is the depth of FIFO.

As results, we the general delay form of the data which is
read in n-th from FIFO after empty flag de-asserted:

 Tdn = Td1 + (n-1)*(Tr − Tw) (4)

V. CONCLUSION

In this paper, we presented the design and implementation
of an efficient asynchronous FIFO architecture well suited for
synchronization unit in multi-synchronous NoCs. Thanks to a
set of techniques applied such as: token ring structure, register-
based memory, especially the modified AASD, the hardware
implementation area of the proposed asynchronous FIFO can
be reduced without any significant effect on communication
throughput. We have also built simulation environment to

check the functionalities of the proposed design. The asyn-
chronous FIFO (7×32) was then synthesized on CMOS 180nm
technology from AMS by using Synopsys Design Compiler to
find the maximum frequency which it can be work and other
information about the implementation. The practice shows that
the design can achieve a maximum throughput of 10.88Gbps at
the operating frequency of 340MHz in the worst case condition.
These obtained simulation results are analyzed and compared
with the previous works to demonstrate the efficiency of our
design. In next steps, the asynchronous FIFO will be integrated
synchronization unit in multi-synchronous NoC platform to be
validated in real-time conditions.

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation
for Science and Technology Development (NAFOSTED)
under grant number 102.01-2013.17 “Reconfiguration Solution
in Designing Network-on-Chip Architectures (ReSoNoC)”.

REFERENCES

[1] W. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proceedings of the 2001 Design
Automation Conference, 2001, pp. 684–689.

[2] Tung Nguyen, Duy-Hieu Bui, Hai-Phong Phan, Trong-Trinh Dang,
Xuan-Tu Tran, “High-Performance Adaption of ARM Processor into
Network-on-Chip Architectures,” in Proceedings of the 26th IEEE
System-on-Chip Conference (SOCC), pp. 222-227, September 2013.

[3] A. Sheibanyrad, I. Micro Panades, A. Greiner, "Multisynchronous and
fully Asynchronous NoCs for GALS architecture," in Design & Test of
Computers, IEEE, 2008, pp. 572-580.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68-73.

[4] Ran Ginosar, "Fourteen Ways to Fool Your Synchronizer," in
Proceedings of the Ninth International Symposium on Asynchronous
Circuits and Systems, 2003, pp. 89-97.

[5] Suk-Jin Kim, Jeong-Gun Lee, Kiseon Kim, "A Parallel Flop
Synchronizer for Bridging Asynchronous Clock Domains," in
Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced
System Integrated Circuits 2004, vol., no., pp.184,187, 4-5 Aug. 2004.

[6] I. Miro Panades, A. Greiner, "Bi-synchronous FIFO for Synchronous
Circuit Communication Well Suited for Network-On-Chip in GALS
Architecture," in Proceedings of the ACM/IEEE International
Symposium on Networks-on-Chip, Princeton, 2007, pp. 83-92.

[7] Clifford E.Cummings, Peter Alfke, "Simulation and Synthesis
Technique for Asynchronous FIFO Design with Asynchronous Pointer
Comparisons," in Proceedings of the SNUG_2002, 2002, pp. 1-18.

[8] Tiberiu Chelcea, Steven M. Nowick, "Robust Interface for Mixed-
Timing Systems," in IEEE Transactions on VLSI Systems, 2004, pp.
857-873.

[9] T. Ono, M. Greenstreet, "A Modular Synchronizing FIFO for NoCs," in
Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip, 2009, pp. 224-233.

[10] Amir-Mohammad Rahmani, Pasi Liljeberg, Juha Plosila, Hannu
Tenhunen, “Design and Implementation of Reconfigurable FIFOs for
Voltage/Frequeny Island-based Networks-on-Chip”, Microprocessors
and Microsystems, Vol. 37, Issues 4-5, June-July 2013.

