
A VLSI Implementation for Inter-Prediction Module in H.264/AVC

Encoders
Nam-Khanh Dang, Van-Mien Nguyen, Xuan-Tu Tran†

SIS Laboratory, VNU University of Engineering and Technology – 144 Xuan Thuy road, Hanoi, Vietnam

Email: †tutx@vnu.edu.vn

Abstract The H.264/AVC is known as the emerging video coding standard which provides better video quality at a lower

bit-rate than the previous ones thanks to many advances in coding technology. These prominent techniques are applied to remove

efficiently spatial and temporal redundancies. However, because many coding tools have been adopted it makes the encoding

system much more complex, especially the inter-prediction part of the coding system. This paper presents an efficient VLSI

implementation for Inter-Prediction in the H.264/AVC encoders with three key proposals: full search algorithm with bandwidth

efficient technique, pipelining technique, and data reuse strategy. With this approach, the Inter-Prediction has been efficiently

implemented with a low cost in terms of latency, hardware area and memory bandwidth.

Keywords H.264/AVC, Inter-Prediction, Motion Estimation, Motion Compensation, Encoder, Video Coding

1. Introduction

The H.264 Advanced Video Coding (H.264/AVC) is known as

the emerging video coding standard which provides better video

quality at a lower bit-rate than previous standards [3]. The stan-

dard is jointly developed by the ITU-T Video Coding Experts Group

(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG).

Compared with the previous standards such as MPEG-4, H.263, and

MPEG-2, the H.264/AVC can achieve respectively 39%, 49%, and

64% of bit-rate reduction [4] thanks to many advances in coding

technology equipped with the standard.

A conventional Inter-Prediction in the H.264/AVC is composed

of three main components: Integer Motion Estimation (IME), Frac-

tional Motion Estimation (FME), and Motion Compensation (MC).

The variable block-size IME predictes current macroblock (MB)

from search windows to finds 41 motion vectors (MVs) of 41 sub-

blocks. The FME refines 41 MVs with fractional components by in-

terpolation and then chooses the best mode of MB base on MVs and

distortion values. The MC block calculates predicted and residual

MBs by using the selected mode and MVs after motion estimation

step. Moreover, the Inter-Prediction also communicates with refer-

ence and current frames for prediction data and also encapsulates

the information in encoding process.

Many VLSI implementations of the inter-prediction of

H.264/AVC encoding systems have been recently proposed to get

high-throughput design for real-time high-definition (HD) video

applications such as in [1, 5, 6]. A conventional implementation

is normaly composed of Motion Estimation (including Integer

Motion Estimation and Fractional Motion Estimation) and Motion

Compensation (MC). Related to the Inter-Prediction, several works

presented in [1, 2, 6, 7, 9] had been implemented for IME, and the

designs of FME were appeared in [6, 8, 10]. However, most of

existing implementations do not explore efficiently the relationship

between these components.

In our work, we first explore the relationship between these three

main components in the inter-prediction. Then, we define a set of

solutions such as full search algorithm, pipelining technique, and

data reuse strategy to propose an efficient hardware architecture for

the inter-prediction. The architecture has been implemented with

a CMOS 0.18µm technology from ams AG and can encode CIF

resolution video at an operating frequency of 24MHz with an area

cost of 330KGates. For encoding HDTV video, the system requires

operating frequency of 215MHz.

The remaining part of the paper is organized as follows. Sec-

tion 2 is presented our proposed approach. An efficient hardware

architecture of the inter-prediction will be also presented in this sec-

tion. We also address the key techniques applied to the architecture.

THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS IEICE ICDV 2013

Copyright ©2013 by IEICE

ISBN: 978-4-88552-282-6 73

Section 3 will show the implementation results as well as the com-

parisons with the previous works. Finally, conclusions and remarks

will be given in Section 4.

2. Proposed Approach and Hardware Architecture

2.1. System Block Diagram
Figure 1 presents the block diagram of the full Inter-Prediction

module which consists of IME, FME, CMC (Chroma Motion Com-

pensation), EEI (Encapsulating Encoding Information), and several

memory buffers such as: Current MB RAM, Search Window RAM,

Motion Vectors Memory, and Residual/Predicted MB RAM. Be-

cause the YUV 4:2:0 raw video format down-samples chroma com-

ponents, only luma values are used for motion estimation.

Current MB
RAM

Integer Motion
Estimation

Module

Fractional
Motion

Estimation
Module

Chroma
Motion

Compensation

CONTROLLER

Encapsulating
Encoding

Information

Motion Vectors
Memory

Residual/
Predicted MB

Memory

Encoding
Information

Residual/
Predicted Values

In
p

u
t

C
o

n
tr

o
l

Search
Window RAM

Current
Frame

Reference
Frame

Controlling
signalData signal

Figure 1: Block Diagram of Inter-Prediction.

The IME adopts the full-search algorithm for getting high ac-

curacy in motion estimation. Moreover, the full-search algorithm

also supports parallel variable block-size motion estimation for all

modes in the H.264/AVC standard. In the proposed design, we em-

ploy two memory optimization techniques to obtain low-bandwidth

solution. We also applied mode decision in IME to avoid memory

requirements for motion vectors or predicted pixels and allow low-

cost integrated chroma motion compensation in FME.

As the mode decision is integrated in IME, the FME only has to

refine motion vectors with fractional components. The interpolated

pixels are stored to be reused as predicted values. Therefore, the

motion compensation of luma components is integrated after the

motion estimation has been completed. In comparison with con-

ventional method (the motion compensation of luma components is

processed separately with the motion estimation), we are able to re-

duce the latency of re-generating sub-pixels and therefore optimize

the memory capacity.

Because the luma compensation is predicted by FME, the chroma

motion compensation only rebuilds the chroma components from

search windows. As the chroma is down-sampled, the predicted

chromas are generated via linear filter with three least significant

bits of motion vectors which defined in the standard [3].

In Encapsulating Encoding Information module, the motion vec-

tor difference and Macroblock Mode are packed as the standard,

and then are transferred to Entropy Coding block.

For memory organization, a data-reuse strategy is defined to op-

timize on-chip and off-chip data bandwidth. Both optimization

techniques exploit the similarity between two regions to avoid re-

reading data.

With all the above considerations, the Inter-Prediction can be ef-

ficiently implemented with a low cost in terms of latency, hardware

area and memory bandwidth. The followed section will describe the

methodology and the design of sub-modules inside Inter-Prediction.

2.2. Full Search Variable Block-size Integer Motion

Estimation
The IME executes exhaustive search in windows which are

mapped from current MB to reference frames. The design also

supports parallel variable block-size motion estimation and mode

decision.

The proposed design employs the full-search algorithm with a

snake scanning movement as illustrated in Figure 2. The moving

C
an

d
id

at
e

 #
1

C
an

d
id

at
e

 #
0

Candidate #n
Candidate #n-1

Difference Data =
1×16 pixels

Figure 2: Full Search Algorithm: fast switching between two neigh-

boring candidates in full search algorithm by read a row/column

1× 16 pixels.

strategy includes three kinds of candidate shifting : down, right and

up. By scanning column-by-column, this strategy covers all pos-

sible positions of the candidates with theirs Sum of Absolute Dif-

ISBN: 978-4-88552-282-6 74

ference (SAD) values. Moreover, this strategy is also suitable for

on-chip memory optimization with overlapped regions.

With each candidate of searching, the IME calculates SAD value

for each 4×4 block-size. The further block-sizes’ SAD are obtained

by accumulating of various blocks 4 × 4. Therefore, we obtain all

SAD values of all block-sizes. With SAD values, IME is able to

decide best motion vectors of block-sizes by indicating the smallest

SAD candidate.

After completing search process, all SAD values and MVs are

used for mode decision. Because the full search has the best accu-

racy, in our design the mode decision is integrated into the IME. The

best mode and its motion vectors are then sent to FME for refining

purpose.

The complete architecture of IME is presented in Figure 3. This

architecture includes the memories for Search Windows as de-

scribed in Section 2.5. The proposed searching strategy (as in

Figure 2) requires a caching module to re-order the data. In cod-

ing flow, the caching module receives the data then send them to

SAD matrix in three directions of caching. Current MB and Search

Windows data are used to calculate SAD values in a matrix of

16 × 16 processing element (PE). These SADs (distortion value)

are grouped in block-size of 4 × 4 and further block’s SADs are

obtain as summary of various 4 × 4 blocks. Base on these SADs,

minimum module selects the smallest SAD values of all possible

candidates to indicate the minimum distortion motion vectors. The

MVs and theirs SADs after the searching are used for deciding the

mode of MB via two stages: sub-partition mode and macroblock

mode, as illustrated in H.264/AVC standard.

2.3. Fractional Motion Estimation with Integrated

Luma Motion Compensation

Because the IME already decided the mode of MB, we have pro-

posed a Fractional Motion Estimation (FME) architecture which

only refines integer motion vectors with fractional elements. In ad-

dition, we integrates the motion compensation for luma components

into this module.

As in H.264/AVC standard, the FME interpolates sub-pixels and

refines in two steps using FIR model [3]. The first iteration gen-

erates 8 half-pixels and compares their SAD values to select the

smallest SAD positions. After half-pixel generating stage, next iter-

ation continues generating 8 quarter-pixels around a seleted position

by reusing the previous sub-pixels. The best matched position also

has the smallest SAD value. In addition, the sub-pixels after the

second generating step is stored in RAM and will be reused as pre-

dicted values. Therefore, we integrated motion compensation for

luma components inside FME.

In the other hand, if we put mode decision after FME, the inte-

grated motion compensation requires all block-size sub-pixels val-

ues. Because the H.264/AVC standard supports 7 block-sizes, we

can save 7 times of RAM capacity for motion compensation. In

the other hand, the separate motion compensation also requires the

same interpolating function which costs similar latency with only-

refine FME and more memory space than our design for motion

compensation.

Figure 4 shows the proposed FME architecture with three stages:

half-pixel, quarter-pixel, and compensation. In half and quarter-

pixel stages, the pixels are read, and then interpolated to obtain sub-

pixels. The integer-pixels and half-pixels will be used to interpolate

half-pixels and quarter-pixels respectively. Because FME only re-

fines the motion vectors, we integrated the motion compensation for

luma components at the last stage.

Current MB

Half-Pixel
Interpolator

16

Half-Pixel
Decision

Half-Pixel
RAM

Quarter-Pixel
Decision

Quarter-Pixel
Interpolator

Quarter-
Pixel RAM

Luma Motion
Compensation

Search WindowsSearch Windows

4

Predicted Image

I,V,D,H

C,P,S,HP

Residual
Calculator

Residual Image

Half-Pixel Stage

Quarter-Pixel
Stage

Motion Compensation
Stage

Figure 4: FME block diagram.

The result of FME includes residual/predicted pixels and the pre-

diction information are packaged and transmitted to the following

block in the coding flow. The chroma values (residual and pre-

dicted) are also calculated and transmitted via chroma motion com-

pensation module.

2.4. Chroma Motion Compensation and Encapsulat-

ing Encoding Information
The chroma motion compensation generates predicted chroma

elements for current MB base on mode and motion vectors from

FME. In our design, a linear filter has been used in motion com-

ISBN: 978-4-88552-282-6 75

C
u

rr
en

t
M

B
Se

ar
ch

 W
in

d
o

w
s

Se
ar

ch
 W

in
d

o
w

s

C
A

C
H

E

D
EM

U
X

SAD Matrix

4×4

4×8

8×4

8×8

8×16

16×8

16×16

minimum

minimum

minimum

minimum

minimum

minimum

minimum

Sum SAD

Sum SAD

Sum SAD

Sum SAD

Sum SAD

Sum SAD

Sum SAD

Su
b

-P
ar

ti
ti

o
n

 D
ec

is
io

n

M
o

d
e

D
ec

is
io

n

 In
fo

rm
at

io
n

 t
o

 F
M

E

4

16 16 16

16

16

16 SADs

Figure 3: IME block diagram.

pensation to calculate sub-pixels as depicted in H.264/AVC stan-

dard [3].

In order to interface the Inter-Prediction with another functional

modules of the H.264/AVC encoder, the Encapsulating Encoding

Information (EEI) module communicates inside encoder and trans-

mits the information to the following block in the coding flow. This

module defines the prediction types of MBs, the position of MBs

from the information stored in system’s registers, and then encapsu-

lates the residual/predicted values and prediction information. The

motion vectors and residual/predicted values are stored in memory

to support the pipeling technique in encoder system.

2.5. Memory Organization

One of the essential aspects of our proposal is the optimization

for memory space of Inter-Prediction. We have considered to two

optimizing techniques: off-chip technique which transfers data be-

tween the integrated circuit (IC) and an external DDR memory, and

on-chip which communicates inside H.264/AVC encoder IC.

With the off-chip memory cost, an analysis in [1] points out that

the Inter-Prediction costs more than 90% of data-bandwidth from

RAM to encoding process and leads to bottle-neck affect inside the

encoding system. In our proposal, we has defined search windows

by a centerized mapping method from the current MB to the refer-

ence frame. Thus, the search windows of two neighboring MBs has

overlapped area which is exploited to decrease the off-chip band-

width.

The Figure 5 shows the overlapped area between two neighbor-

ing MBs (#1 and #2). In general, the search window is defined as

SRH ×SRW pixels with SRH is height of search range and SRW

is width of search range. As shown in the figure, the search windows

#2 can be obtained by reusing the region of SRH × (SRW − 16)

pixels from search windows #1 and read a new SRH × 16 pixels.

For example, with a search range of 48 × 48, we can save at least

60% of the off-chip data bandwidth while only extend 33% memory

capacity.

CMB #1 CMB #2

SR
H p

ixels

16 pixelsSRW pixels

Search Window #1

Search Window #2

Figure 5: Overlapped region between two neighboring search win-

dows.

To optimize on-chip bandwidth, the search engine employs the

caching between two candidates of a search as illustrated in Fig-

ure 2. To obtain the overlapped region between two candidates,

we use a scanning method with only one pixel movement. With

this scanning, we can switch between the previous candidate to the

current candidate by reading only a row or a column of 1 × 16

pixels. Therefore, IME can obtain a maximum speed of search if

the data bandwidth from internal RAM to search engine obtain 16

pixels/second.

ISBN: 978-4-88552-282-6 76

Bank 0

Bank 1

Bank 2

Bank 3

CACHING

IDLE

IDLE

IDLE

READY

CACHING

IDLE

IDLE

IN-USE

CACHING

IN-USE

IDLE CACHING

IN-USE

IN-USE

IN-USE CACHING

IN-USE

IN-USE

IN-USE CACHING

IN-USE

IN-USE

IN-USE

CACHING

IN-USE

IN-USE

IN-USE CACHING

IN-USE

IN-USE

IN-USE

Start of Frame Caching
Tasks

Parallel Caching & Encoding

Timeline

MB 1st 2nd 3rd 4th (N)th (N+1)th

...

...

...

...

Figure 6: Caching strategy for Search Window RAM.

The strategy of memory reusage for inter-prediction is shown in

Figure 6. In order to overlap the search windows, system uses model

of “circular shift memory” as shown in Figure 5. In our design

specification, the search windows is 48× 48 which is equivalent to

3 × 3 macroblocks. Therefore, we use 4 banks of memory to cach

data, in which 3 banks is used for prediction and 1 bank is used to

read the next different pixels between 2 serial search windows.

3. Implementation Results and Comparisons

The proposed design has been modeled in VHDL at RTL level,

and then synthesized with a CMOS 0.18µm technology from ams

AG. With the search range of 48 × 48 and 1 reference frame per

list, maximum computing capability is a real-time Main Profile CIF

video encode at a frequency of 24MHz or an HD video at a fre-

quency of 215MHz. Table 1 shows the total hardware cost of our

design compared with Cheng et al.’s [1] and Lin et al.’s [6] de-

signs. Our design implementation consists of both motion estima-

tion steps, motion compensation, memories, and interfacing mod-

ules while the implementation results of both mentioned designs

only include motion estimation. Moreover, our design can provide

Main Profile encoding process with bi-predictive, which requires

double RAMs for Inter-Prediction and also costs double time for

searching. In comparison, the proposed design costs medium area

which is equivalent to a half of Cheng et al’s design and approx-

imates Lin et al.’s design while we integrated additional functions

inside. With the off-chip memory optimization and fast mode de-

cision techniques, the proposed design costs only 16.7KBytes for

full search while Cheng et al.’s required 27Kbytes. The design of

Lin et al.’s required 8Kbytes approximately with multi-resolution

search and 2-candidates on FME but it lacks motion compensation

and residual/predicted memories. Moreover, the algorithm of Lin et

al.’s design lacks of the accuracy in comparison with the full-search

algorithm. In summary, our proposed Inter-Prediction design can

achieve a low area cost, high accuracy, and the design is suitable for

mobile applications. The design has been finally integrated into a

hardware H.264 video encoding system.

Table 1: Comparison of Inter-Prediction module

Spec [1] [6] This work

Technology 0.18µm 0.13µm 0.18µm

Freq (MHz) 81/108 28.5/128.8 24/215

Gate Count 700K 208.6/282.6K 330K

RAM 27 KBytes 7.78/8.54 KBytes 16.7 KBytes

IME Full Search Multi-Resolution Full Search

FME

17 candidates 6 candidates 17 candidates

2-iteration 1-iteration 2-iteration

interpolation interpolation interpolation

Resolution SDTV/HDTV 720p/1080p CIF/HDTV

Profile
Baseline Baseline Main Profile

(4/1 ref.(s)) (1 ref.) (2 lists × 1 ref.)

4. Conclusions

This paper represents a VLSI implementation for Inter-

Prediction in H.264/AVC encoders. We applied the full-search al-

gorithm with bandwidth efficient techniques. In addition, the fast

mode decision provides better performance and leads to integrated

motion compensation inside estimation block. With search range of

48 × 48 and bi-predictive support, the proposed architecture costs

300KGates and 16.7KBytes RAM capacity. With this architecture,

ISBN: 978-4-88552-282-6 77

the real-time HD and CIF video encoding can be obtained at fre-

quencies of 215MHz and 24MHz, respectively. Therefore, the pro-

posed architecture provides an efficient solution for Inter-Prediction

in H.264/AVC encoders with low bandwidth, high performance, and

high accuracy.

Acknowledgment
This work has been done in the framework of project

No.QGDA.10.02 (VENGME), funded by Vietnam National Uni-

versity, Hanoi. The project aims at developing a hardware for video

encoding system based on the H.264/AVC standard, targeted to mo-

bile applications. We would like to express special thanks to Synop-

sys for providing EDA tools, CMP and AMS for providing CMOS

0.18µm technology libraries.

References

[1] Tung-Chien Chen et al. Analysis and architecture design
of an HDTV720p 30 frames/s H.264/AVC encoder. IEEE
Transactions on Circuits and Systems for Video Technology,
16(6):673–688, 2006.

[2] Tung-Chien Chen et al. Fast algorithm and architecture de-
sign of low-power integer motion estimation for H. 264/AVC.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 17(5):568–577, 2007.

[3] ITU. ITU-T Recommendation H.264: Advanced video coding
for generic audiovisual services, 2006.

[4] A. Joch et al. Performance comparison of video coding
standards using lagragian coder control. In IEEE Interna-
tional Conference on Image Processing, 2002, pages 501–
504. IEEE, 2002.

[5] Jae Hun Lee and Nam Suk Lee. Variable block size mo-
tion estimation algorithm and its hardware architecture for H.
264/AVC. In Proceedings of the 2004 International Sympo-
sium on Circuits and Systems, 2004, volume 3, pages III–741.
IEEE, 2004.

[6] Yu-Kun Lin et al. A Hardware-Efficient H.264/AVC Motion-
Estimation Design for High-Definition Video. IEEE Transac-
tions on Circuits and Systems I: Regular Papers, 55(6):1526–
1535, 2008.

[7] Marcelo Schiavon Porto et al. An efficient ME architecture
for high definition videos using the new MPDS algorithm. In
Proceedings of the 24th symposium on Integrated circuits and
systems design, SBCCI ’11, pages 119–124, New York, NY,
USA, 2011. ACM.

[8] G.A. Ruiz and J.A. Michell. An Efficient VLSI Architecture
of Fractional Motion Estimation in H.264 for HDTV. Journal
of Signal Processing Systems, 62(3):443–457, 2011.

[9] G.A. Ruiz and J.A. Michell. An efficient VLSI proces-
sor chip for variable block size integer motion estimation
in H.264/AVC. Signal Processing: Image Communication,
26(6):289 – 303, 2011.

[10] Changqi Yang, S. Goto, and T. Ikenaga. High performance
VLSI architecture of fractional motion estimation in H.264 for
HDTV. In 2006 IEEE International Symposium on Circuits
and Systems, pages 4 pp.–, 2006.

ISBN: 978-4-88552-282-6 78

