
An Efficient Architecture Design for VGA Monitor Controller

Van-Huan Tran, Xuan-Tu Tran
SIS Laboratory, University of Engineering and Technology, VNU Hanoi.

144 Xuan Thuy road, Hanoi 10000, Vietnam. Email: {huantv, tutx}@vnu.edu.vn

Abstract—In this paper, we present the design and implemen-
tation of an efficient hardware architecture for VGA monitor
controllers based on FPGA technology. The design is compatible
with PLB bus and has a high potential to be used in Xilinx
FPGA-based systems. The ability to provide multiple display
resolutions (up to WXGA 1280×800) and a customizable internal
FIFO make the proposed architecture suitable for several FPGA
devices. Furthermore, we have also offered a useful software
library to enable the text mode feature. These highlight features
have been validated through the demonstration of an application.

I. INTRODUCTION

VGA (Video Graphics Array) has become a well-known
standard interface in many embedded systems such as video
surveillance systems, ATM machines, or video players. It pro-
vides a simple method to connect a system with a monitor for
showing information/images, or for users to interact with the
system. Depending on the needs of these applications, some
systems may not require a high display quality. Therefore,
VGA monitor controller, which is a logic circuit to control
the VGA interface, can be easily realized by FPGA technology
with a low cost and high flexibility. However, when moving
to a higher display resolution, these FPGAs have to face with
timing issues as well as logic resources overhead.

Several FPGA-based designs of VGA monitor controller
have been released as commercial Intellectual Property (IP)
cores [1], [2], [3] or open source cores [4]. They provide
plenty of features and functionalities to be feasible in different
running modes. Most of them can support multiple display
resolutions and 24 bits color per pixel as the basic functions
of a VGA monitor controller. Some additional functions,
for example, the abilities to handle other color modes (e.g.
RGBX5551, RGB232, etc.) and to program video timing of
the design [2] might not commonly be used while they usually
take more hardware resources. On the other hand, the design
in [3] is more compact than the others, hence, it only works
in a fixed display standard; or the lack in design [1] to support
64 bits data width makes it less efficient in usage.

This paper introduces an efficient architecture for VGA
monitor controller with all necessary basic functions to work
in both graphical mode and text mode. The efficiency of this
design provides many choices for different FPGA devices,
where system designers can select a proper display mode
or configure the internal pixel buffer to be suitable with the
application requirements. The design is intently integrated with
Processor Local Bus (PLB) interfaces to be used in Xilinx
FPGA-based systems.

The rest of this paper is organized as followed. Section II

presents some basic ideas to design an efficient VGA monitor
controller and the proposed architecture. A developed model
to verify the design and its implementation are given in
Section III. Section IV introduces a simple method to enable
text display mode in the software driver. Section V presents an
experiment as a case study of using VGA monitor controller.
Finally, Section VI concludes some achievements of this work.

II. ARCHITECTURE DESIGN

A. Basic ideas and the needs of an efficient architecture
In order to display an image on screen, VGA monitor

controller has to read every pixel data of the image while
driving the color signals and synchronization signals of the
VGA interface. All pixels are scanned in raster order at a
frequency called pixel frequency. To ensure the visual quality,
whole image will be re-drawn at a rate determined by refresh
rate. The pixel frequency certainly depends on the display
resolution and the refresh rate, better resolution or higher fresh
rate will require higher pixel frequency. Some examples can
be seen in Table I.

TABLE I
DISPLAY STANDARD SPECIFICATION [5], [6]

Display standard Refresh rate Pixel frequency
(Hz) (MHz)

VGA 640× 480 60 25.175

SVGA 800× 600 60 40.000

XGA 1024× 768 60 65.000

WXGA 1280× 800 60 83.460

WXGA+ 1440× 900 60 106.47

The size of an image is usually larger than memory re-
sources available on FPGA devices. For example, a 640×480
pixels at 24bpp image has the size of 912.6 Kbytes while the
Spartan-3E family has only 81 Kbytes block RAM [7]. The
image therefore can not be stored totally inside the design
of VGA monitor controller. It should be held on an off-chip
memory (e.g. SDRAM) and transferred into this VGA unit by
small data blocks during the display time. For that reason, most
of VGA monitor controllers have an internal FIFO memory to
temporarily store these data blocks, e.g. [1], [3] or [4].

To handle the data transfer operations, there are two solu-
tions could be addressed:

• The first solution is to attach a bus master interface
to VGA unit to access data on the external memory.
Hence the data transfer between memory and VGA unit is
continuous, the bus master interface should support burst
transfer mode to speed up this process. In general, this



method may give VGA unit more complex due to the
appearance of the bus master interface.

• The second solution is to use a Direct Memory Access
(DMA) unit to cooperate with VGA unit. The VGA
unit therefore does not need to include any bus master
interfaces. Every data transfer from the external memory
to VGA unit is handled by the DMA. This DMA core
can be reused from an existing IP delivered by Xilinx [8],
so we can reduce the development time for VGA unit. A
processor, however, has to initiate the operation of the
DMA core and handle its interrupt during active time of
VGA unit. Consequently, these issues will affect software
applications.

In our design, we prefer the first solution to gain the
portability and elegance for VGA unit, by using the PLB
Master Burst [9] as the bus master interface.

Furthermore, one of the most challenges in the design of
VGA unit is to estimate the size of FIFO memory within the
core and the buffering strategy. Our goal is to minimize the
size of FIFO while it has to ensure a good display quality
(without flickering or fragmenting effect). To select a suitable
FIFO, there are some factors should be considered, including
pixel clock, operating system clock, data bus width, and the
bus occupation of the system which contains VGA unit.

Obviously, the communication throughput depends on the
operating system clock, data bus width, bus latency, and
bus occupation. The throughput required by VGA unit is
equivalent to the pixel clock. To successfully display, the first
throughput must be higher than the second one. If the first
throughput is much higher than the second throughput, we
can use a small FIFO. Otherwise, we need a bigger.

In addition, to adapt with several SoCs on different FPGA
devices, a good design of VGA monitor controller should
provide multiple display standards, resizable data bus width
and a customizable FIFO memory (which is able to change
its depth or data width).

B. Overall architecture

To deal with those things above, we propose an efficient
architecture for VGA monitor controllers as presented in
Figure 1. It is composed of the following modules:

• PLB Master Burst, which supports burst transfer mode,
is used for fast transfer data from an external memory to
the FIFO module.

• PLB Slave Single serves the read/write operations from/to
VGA monitor controller.

• VGA Registers is a set of registers to hold the control
data and other information such as width, height or base
address of an image. The accesses to these registers are
performed via PLB Slave Single interface.

• VGA BRAMS (FIFO) is a dual-port RAM to temporarily
store pixel data during display time. The depth of this
FIFO is parameterized to be 64/ 128/ 256/ 512 bytes.
The read and write pointer controllers are implemented
within VGA Controller.

VGA Controller

VGA BRAMS
(FIFO)

V
G

A
 D

at
a 

A
lig

ne
r

P
LB

_
M

a
st

e
r_

B
u

rs
t

V
G

A
 In

te
rf

ac
e

M
o

ni
to

r

P
LB

 B
us

P
LB

_
S

la
ve

_
S

in
g

le

Pixel clockSystem clock

V
G

A
 R

eg
is

te
rs

sys_clk pixel_clk

Fig. 1. VGA monitor controller architecture.

• VGA Data Aligner (VDA) aligns data between the output
of the FIFO module and the input of the VGA Interface
module.

• VGA Interface directly drives the color signals and syn-
chronization signals of the monitor.

• VGA Controller generates video timing according to
an expected display standard and controls the operation
of other modules, exception of the two bus interface
modules.

There are two clock domains in this design: system clock
(sys_clk) and pixel clock (pix_clk). The system clock is the
source clock for the side of bus interface while the pixel
clock is used for the side of VGA interface. The pixel clock
frequency is required according to the display standard (as
provided by [5] or [6]). It can be driven by an on-chip clock
generator (using Digital Clock Manager and PLL blocks of
FPGA chips) or an off-chip clock generator.

Currently, the architecture can treat with 32 bits or 64 bits
data width of the bus master interface without any functions
of the Bus Width Adapter (a module inside the PLB Master
Burst). There are different architectures for some modules to
be feasible in both 32 bits mode and 64 bits mode, especially
for the FIFO and the VGA Data Aligner. For the FIFO module,
its data width is always equal to the data width of the bus
master interface. Most of the changes take place in the VGA
Data Aligner. The next section will give more details about its
architecture.

C. VGA Data Aligner
From the overall architecture of VGA unit, the FIFO can

output 4 or 8 bytes data per clock cycle (corresponding to the
two modes, 32 bits and 64 bits data width of the bus master
interface, respectively. However, the VGA Interface module
can only push 3 bytes data (or three color components of a
pixel) per clock cycle. The VGA Data Aligner therefore will
aim to adjust the data flow between FIFO and VGA Interface.
On the other hand, it also has to ensure the pixel order (first
in, first out).



Basically, VGA Data Aligner is formed as the second FIFO
of VGA unit. It has two different architectures for the 32
bits mode and the 64 bits mode, as depicted in Figure 2 and
Figure 3. For the 32 bits mode, the FIFO has the size of 12
bytes and this size will be 24 bytes for the 64 bits mode. The
read and write pointer controllers of this FIFO are controlled
by the VGA Controller module. The read address and write
address specified for each memory cell are shown in every
square of these figures, where the read address is on the right
and the write address is on the left. The output data width is
always 3 bytes, which is equivalent to three color components
RGB.

R0
10/00

R3
11/01

R6
00/10

R9
00/11

R1
10/00

R4
11/01

R7
00/10

R10
10/11

R2
11/00

R5
11/01

R8
00/10

R11
10/11

W
R/

00

10

11

4

Input

R
D /

00

01

10
3

Output
11

Fig. 2. VGA Data Aligner for 32 bits mode.

R3
011 /001

R9
000 /011

R15
010 /101

R21
010 /111

R4
011/001

R10
000/011

R16
010/101

R22
011/111

R5
011 /001

R11
000 /011

R17
010 /101

R23
011 /111

W
R/

010

111

8

Input R
D /

000

001

…
3

Output111

R0
011 /000

R6
000 /010

R12
000 /100

R18
010 /110

R1
011/000

R7
000/010

R13
000/100

R19
010/110

R2
011 /000

R8
000 /010

R14
010 /100

R20
010 /110

000

Fig. 3. VGA Data Aligner for 64 bits mode.

D. VGA Controller
Operations of those modules inside VGA unit are controlled

by VGA Controller module. For a selected display standard,
VGA Controller will determine horizontal and vertical timing
parameters to generate corresponding video timing and to drive
synchronization signals. During the display time, PLB Master
Burst requests the bus to transfer data from external memory
to the FIFO module. The addresses to access the memory
and the burst length in every transfer session are calculated
by VGA Controller. It also makes a handshake with the bus
master interface to control read/write operations of the FIFO
and VGA Data Aligner modules.

To handle these tasks, VGA Controller includes the fol-
lowing functional modules: Video Timing Generator, Video
Address Calculator, FIFO Read/Write Pointer Controller, VDA
Read/Write Pointer Controller, as shown in Figure 4. These
modules are driven by a finite state machine (FSM).

III. HARDWARE VERIFICATION AND IMPLEMENTATION

A. Verification model
The VGA monitor controller is implemented at RTL

(VHDL) and simulated by ModelSim simulator. The verifi-
cation model is created by using the IBM PLB Bus Func-
tional Model (BFM) toolkit [10]. This package offers a set

FSM
Video Timing 

Generator

FIFO Read/Write 
Controller

VDA Read/Write 
Controller

Video Address 
Calculator

FIFO Address

vsync

hsync

VDA Address

RAM 
Address

Fig. 4. Composition of the VGA Controller module.

of verification IPs, includes three main components: Master
BFM (plbv46_master_bfm), Slave BFM (plbv46_slave_bfm)
and Monitor BFM (plbv46_monitor_bfm) to simulate systems
which contain the PLB bus (version 4.6). The model is
depicted in Figure 5.

PLBv4.6

plbv46_monitor_bfm

vga_wrapper

VGA monitor controller

Arbiter

plbv46_master_bfm
(Processor)

plbv46_slave_bfm
(Memory)

Fig. 5. Verification model for VGA monitor controller.

In this model, the Master BFM is a bus master core which
functions as a processor to initiate and control the operation
of VGA unit. The size of an image and its base address will
be written to VGA unit by this processor. The Slave BFM is a
bus slave core which functions as a memory. A sample image
is stored in this memory and will be read by VGA unit during
simulation. The monitor BFM checks for bus compliance or
violations and notifies warnings or errors to the simulator.

For simulating, we pre-configure the VGA unit to run in a
specific mode whose the FIFO depth is 256 bytes and display
mode is SVGA 800 × 600. A small image is initialized in
the memory. The processor then writes the image properties
(width, height, base address) to the VGA unit and makes
it active. Bus transactions are described by bus functional
language. They will be translated to bus stimulus to run the
simulation in ModelSim.

B. Implementation results
The VGA monitor controller has been implemented on

different Xilinx FPGA devices with a FIFO depth of 256
bytes. To have a fair comparison of performance and resource
utilization, we implemented our design and some related works
(with minimized functionalities) on Xilinx Spartan3E-1600E.
The result comparison is shown in Table II. Our design uses
less logic and memory resources in comprared with the designs
in [1] and [4] while it can achieve a higher performance than
the others. Actually, the design [1] provides some additional



TABLE III
COMPARISON OF SUPPORTED DISPLAY STANDARD AND BUS TECHNOLOGY

Display standard Bus technology
Design QVGA VGA SVGA XGA WXGA Higher resolution PLBv4.6 AHB WISHBONE

CAST [1] " " " " " " - " -
Oc_vga [4] " " " - - - - - "

Xl_tft [3] - " - - - - " - -
Proposed " " " " " - " -

functions such as Integrated Test mode and Built-in Power
Save mode; or [4] can support hardware cursor and color look-
up-table. All these stuffs are the causes of logic consumption.
The design [3] has a better result than ours but it only supports
VGA standard, its logic circuit is therefore much simpler
than the others. Table III shows the comparison of display

TABLE II
PERFORMANCE AND RESOURCE UTILIZATION BENCHMARKS ON XILINX

SPARTAN3E (XC3S1600E-5-FG484)

Design Slices LUTs Block Fmax
RAMs (MHz)

CAST [1] 1009 N/A 2 95
Oc_vga [4] 844 1302 2 130
Xl_tft [3] 519 521 1 141
Proposed 690 701 1 141

standard and the bus technology supported by these works.
The design [1] uses AMBA Advanced High-performance Bus
(AHB), then it can work with higher resolutions than WXGA.
The design [4] uses the open source WISHBONE bus while
our design and [3] support CoreConnect PLB bus.

IV. ENABLING TEXT MODE

Displaying information as text is very useful in many
applications. On the basic of the hardware design of VGA
unit, we develop a set of methods in its software driver to
enable text mode. In some context, it can be realized by
hardware model, e.g. [11] and [12]. However, it is obvious
that the implementing a character generator by software is
much easier and more flexible than by hardware. For instance,
we can easily change the attributes of text such as font table,
size and color of characters, etc. In addition, the supporting
a character generator in VGA unit may introduce more logic
resources as well as memory overhead on FPGA devices.

To generate a character, a standard font (on Windows or
Linux operating system) is converted to bitmap format. Every
character is described as a matrix of pixels. Bit ‘0’ presents
a pixel in the background and bit ‘1’ presents a pixel in
the foreground of character. Figure 6 shows an example of
character “A” with the size of 8 × 12 pixels. The image of
character “A” is converted to the binary format and represented
as an array in C language.

Based on these matrices, display a character can be handled
by modifying the memory space which corresponds to the
position of the character on the screen.

������������������������������������������������������������������������
���������������	
���
	����
	���
	����������
	����
	����
	����������������

���������������������������������������������������������������������������������������������������
Fig. 6. The representation of character “A”.

V. APPLICATION – A CASE STUDY

The VGA monitor controller can be used in several systems
which have video output, such as portable video systems,
video games, or digital cameras with video capabilities. In this
section, we provide an FPGA-based system which uses VGA
monitor controller as a functional module to display visual
data in both graphics mode and text mode. This system plays
a role as a remote camera system.

To build such system, we create a simple system-on-chip
with the architecture presented in Figure 7. It is composed of:
a PowerPC processor; Ethernet controller unit to communicate
with other system via computer network; a memory controller
unit, namely MPMC, to interface with an external memory;
PS/2 unit to interface with a PS/2 keyboard; VGA unit; and
UART unit. The system uses a channel of PLBv4.6 bus to
interconnect these components. The VGA unit is configured to
operate in XGA mode, the pixel clock is driven by an internal
clock generator. In order to provide good display quality and
also meet the timing constraints, we implement the system on
Xilinx Virtex-4 ML410 development kit.

PLBv4.6PLBv4.6

DDR2 Monitor Keyboard

Virtex-4Virtex-4

VGA UnitMPMC PS/2

PowerPC Ethernet UART

Fig. 7. FPGA-based system for the application.

A remote desktop PC, which connects to a camera, is
used to capture images and send them to the FPGA board.



Communication between this PC and the FPGA board is
performed on a LAN network. Figure 8 presents the sequence
diagram of the whole remote camera system.

Remote PCFPGA BoardUsers

1.1.2: Send image()

1.1.1: Capture image()

1: Make request()

1.1: Send request()

1.2: Decode image()

1.3: Display()

Fig. 8. Sequence diagram of the remote camera system.

To start, the users first make a capturing request on the
FPGA board, and then the FPGA board dispatches this request
to the PC. Whenever PC receives a proper request, it captures
an image from camera, and then sends it back to the FPGA
board. After successfully receiving the image, the testing board
will decode and display it on the screen.

The software application on the FPGA board provides a
command-line interface (CLI) to interact with users. Users
thereby can invoke a capturing request by executing a specific
command on this interface.

Figure 9 presents the result of the experiment, the captured
image is shown on both PC application and the FPGA board.
The contents (image and text) on the screen of the FPGA board
are displayed in 24 bits color – XGA resolution (1024×768).

This application is just a case study for demonstrating how
this VGA monitor controller can be used in a real system. Its
result has already evaluated the functionalities of the VGA unit
in both graphics mode and text mode. The design is also used
in developing a system-on-chip platform as presented in [13].

VI. CONCLUSIONS

We have presented an efficient hardware architecture for
VGA monitor controller which has a high potential to be
used in Xilinx FPGA-based systems. The highlighted features
such as multiple display resolutions supporting capability,
customizable internal FIFO memory, 32/64-bit data bus width,
independence to system clock and pixel clock. . . , make the
design suitable for several FPGA devices and able to meet
different requirements of targeted applications. In addition, a
software library to enable text mode is also introduced. These
useful features of the design have been validated through real-
application demonstrations.

(a)

(b)

Fig. 9. Captured images on PC application (a) and FPGA application (b).

ACKNOWLEGMENT

This work is partly supported by Vietnam National Univer-
sity, Hanoi (VNU) under the research projects, No. PUF.08.06
and No. QGDA.10.02 (VENGME).

REFERENCES

[1] CAST. High Resolution Display Controller – Datasheet. Technical
report, October 2010.

[2] Think Silicon Ltd. Think LCD Display Controller – Product Specifica-
tion. Technical report, 2010.

[3] Xilinx. XPS Thin Film Transistor (TFT) Controller v1.00a. Technical
report, Product specification, July 2008.

[4] Richard Herveille. VGA/LCD Controller v2.0. Technical report, 2009.
[5] VESA. Monitor Timing Specification Version 1.0 Rev. 0.8. Technical

report, September 1998.
[6] SECONS Ltd. VGA Signal Timing. Technical report, 2008.
[7] Xilinx. Spartan-3E FPGA Family: Data Sheet. Technical report, August

2009.
[8] Xilinx. XPS Central DMA Controller (v2.00b) – Product Specification.

Technical report, April 2008.
[9] Xilinx. PLBV46 Master Burst (v1.01a) – Product Specification. Tech-

nical report, May 2008.
[10] Xilinx. BFM Simulation in Platform Studio – User Guide. Technical

report, 2009.
[11] Guohui Wang, Yong Guan, and Yan Zhang. Designing of VGA

Character String Display Module Based on FPGA. In International
Symposium on Intelligent Ubiquitous Computing and Education(IUCE),
pages 499–502, 2009.

[12] Javier Valcarce Garcia. Monochrome Text-Mode VGA Video Display
Adapter. Technical report, 2009.

[13] Van-Huan Tran and Xuan-Tu Tran. CoMoSy: a Flexible System-on-Chip
for Embedded Applications. Journal for Research, Development and
Application on Information and Communication Technology, 2, 2011.


