
Cost-Efficient 130nm TSMC Forward Transform
and Quantization for H.264/AVC Encoders

Xuan-Tu Tran, Van-Huan Tran
SIS Laboratory, University of Engineering and Technology, VNU Hanoi.

144 Xuan Thuy road, Hanoi 10000, Vietnam. Email: {tutx, huantv}@vnu.edu.vn

Abstract—In this paper, we present a low cost Forward
Transform and Quantization (FTQ) implementation for
H.264/AVC encoders in mobile applications. To reduce the
hardware implementation overhead, the proposed design uses
only one unified architecture of 1-D transform engine to
perform all required transform processes, including discrete
cosine transform and Walsh Hadamard transform. This design
also enables to share the common parts among multipliers
that have the same multiplicands. The performance of the
design is taken into consideration and improved by using a fast
architecture of the multiplier in the quantizer, the most critical
component in the design. Experimental results show that our
architecture can completely finish transform and quantization
processes for a 4:2:0 macroblock in 228 clock cycles and the
achieved throughput is 445Msamples/s at 250MHz operating
frequency while the area overhead is very small, 147755µm2

(approximate 15KGates), with the 130nm TSMC CMOS
technology.

I. INTRODUCTION

The H.264 Advanced Video Coding (H.264/AVC) [1] is
known as the lastest and most efficient video compression
standard providing better video quality at a lower bit-rate
than previous standards. The standard is recommended by the
ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). It contains a rich
set of video coding tools to support a variety of applications
ranging from mobile services and video conferencing, digital
broadcast, to IPTV, HDTV and digital storage media. To
achieve high compression ratio, H.264/AVC has adopted sev-
eral advances in coding technology but it makes the hardware
implementation becomes more complex and costly. Many
designers have paid much attention to the complexity reduction
of motion estimation and/or entropy coding parts. However,
the implementation of forward transforms and quantization
(FTQ) part should also be considered for minimizing the
system hardware overhead.

By specifying a set of integer transforms for small block-
sizes, which are integer Discrete Cosine Transform (DCT) and
Walsh Hadamard transform, it has really reduced the compu-
tational complexity as important as blocking artifacts [2]. In
addition, thanks to the advanced procedures prensented in [3],
these transforms can be easily realized with some required
shifting and adding operations. In fact, in H.264/AVC standard,
the size of transforms is variable depending on the profile
used in the encoder, where 4× 4 block-size and 2× 2 block-
size transforms are primitive components. Larger transforms,

which used in adaptive block-size transforms (ABTs), are
more suitable for High-Definition (HD) video. In this paper,
only the 4× 4 block-size transforms will be discussed but the
same principle can be applied for the other sizes of transforms,
or even larger transforms can be converted to the 4×4 block-
size transforms [4].

Previous works have already been successes in hardware
implementation of transforms and quantization. Chih-Peng
Fan and Yu-Lin Cheng [5] proposed a design with a high
through-put and low latency architecture using Canonical
Signed Digit (CSD) multiplier for shared quantization/inverse-
quantization. In [6], Yu-Ting Kuo presented an area-efficient
architecture using direct 2-D transform method. Whereas,
in [7], [8], [9] is proposed a multi-transform architecture
used for variable adaptive block-size transforms. Generally,
these works used two separate 1-D transforms in cascading
to carry out a 2-D transform or to implement a direct 2-D
transform. Obviously, the advantage of these methods is that
they can achieve a high throughput in transforms. However,
the disadvantage is that their hardware implementation area
could not be significantly reduced, even in [9] the quantization
parts are intently integrated into transform steps. In addition,
the fact is that the bottleneck of encoders mostly comes
from motion estimation and/or entropy coding modules rather
than transforms and quantization. Optimizing the design for
throughput is therefore less important than other objectives
such as overal performance providing real-time processing
capacity or hardware implementation area of the whole system.

In this work, we propose a transform architecture using only
one unified 1-D transform module in order to trade-off be-
tween throughput and area overhead. With some improvements
in control part, this architecture is able to perform integer
DCT-based transforms as well as Hadamard transforms. In
addition, to improve the system performance and get more
area-efficiency, we also present a particular architecture of
multiplier in the quantizer. In where, a shared module (called
pre-multiplier) is intently used for multipliers have the same
multiplicands. The FTQ architecture is designed to be used as
part of a low power H.264/AVC encoder for mobile applica-
tions. The proposed architecture is then implemented using the
130nm TSMC CMOS technologies. It can completly finish the
transform and quantization processes for a 4:2:0 macroblock
in 228 clock cycles and therefore can achieve a throughput of
445Msamples/s at 250MHz operating frequency while the
area overhead is very small, approximate 15KGates.

The remaining part of this paper is organized as follows:
Section II briefly recalls some backgrounds of transform and
quantization algorithms in H.264/AVC coding. The proposed
architecture for a forward transform and quantization will
be presented in Section III. Experimental results will be
presented and discussed in Section IV. Finally, conclusions
and perspectives will be given in Section V.

II. FORWARD TRANSFORM AND QUANTIZATION
ALGORITHMS IN H.264/AVC

In H.264/AVC video coding standard, the residual frame
of the prediction, which is the difference of the original
frame and the predicted frame, is partitioned into fixed-size
of macroblocks. As usually, a macroblock is composed of
16 × 16 luminance (Y) samples, 8 × 8 chroma blue (Cb)
samples, and 8×8 chroma red (Cr) samples in the case of 4:2:0
chroma subsampling format. At a smaller level, macroblocks
are subdivided into blocks of 4 × 4 samples for encoding.
Each macroblock has its own information on quantization
parameters (QPs), coded type (Intra mode or Inter mode)
and prediction mode. The transform and quantization flow for
those blocks can be illustrated in Figure 1.

Fig. 1. Transform and quantization flow diagram.

According to this flow, the input block X is first transformed
using integer DCT-base method. The transformed coefficients
are then post-scaled and quantized. In the 16 × 16 Intra-
prediction mode, DC coefficients of all transformed residual
blocks are grouped into an array of 4× 4 before being sent to
Hadamard transform. Details of these processes are described
in mathematical models in the following.

A. 4× 4 forward transforms

• Integer DCT-based transform
The integer DCT-based transform, which applied to a

residual 4 × 4 blocks (denoted by matrix X), is defined in
H.264/AVC as the following:

Y = CXCT = C(CX)T (1)

Where,

C =

1 1 1 1
2 −1 −1 −2
1 −1 −1 1
1 −2 2 −1

• Hadamard transform
The Hadamard transform which applied to a 4×4 luminance

DC block (denoted by matrix WD) in 16×16 Intra-prediction
mode, is defined as the following:

YD = HWDH
T = H(HWD)T (2)

Where,

H =

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 /2
In general, both integer DCT-based transform and Hadamard

transform are normally formed by two duplicated cores of 1-
D transform, where the core is a matrix multiplication either
CT or HT . The 2-D transforms are carried out by applying
the input block to the core; the immediate results are re-
arranged by transposing operations and then re-applied to the
core. Obviously, the specification of the matrixes C and H in
which only coefficients of ±1 and/or ±2 are available. These
transformations are multiplication-less and purely require a
few of add and logical shift operations. On the other hand, the
dynamic range of data is also estimated to reduce the overhead
in computating processes. With 8-bit precision of the pixel
data, the dynamic range of outcomes of integer DCT-based
transform is 16-bit.

In here, we have already modified the matrix H by scaling
of 1/2 to preserve the arithmetic operations of Hadamard trans-
form in 16-bit precision as of integer DCT-based transform.
Then, in the quantization process of the DC blocks, the result
will be rescaled of 2. By this way, all 4×4 forward transforms
are completely handled in 16-bit precision.

Figure 2 shows a hybrid and fast 1-D transform diagram for
processing 4 samples. The diagram is in the shape of butterfly
diagram and is used for two types of transform. There are
some multiplexers to select the shift factors (or scaled factors)
in computations of each transform type. This diagram is a great
inspiration to design the architecture of transform module.

Fig. 2. Hybrid 1-D transform architecture for integer DCT-based and
Hadamard transforms

B. Quantization

H.264/AVC standard defines a set of 52 values of quanti-
zation steps (Qstep). These values are indexed by QP and

TABLE I
MULTIPLICATION FACTOR (MF)

QP%6 Positions Positions Other

(0,0), (2,0), (2,2), (0,2) (1,1), (1,3), (3,1), (3,3) positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

to be determined in the range of 0 to 51. As introduced
above, the values of quantization parameters are associated
with macroblocks (also blocks within a macroblock). Thanks
to the wide range of QP, an encoder is able to accurately
and flexibly control the trade-off between its bit-rate and
quality [10].

Basically, forward quantization can be defined as follows:

Zij = round

(
Yij

Qstep

)
, 0 ≤ i, j ≤ 3 (3)

To avoid division operations, this equation can be repre-
sented in another way [3]:

Zij = round

(
Wij ×

MF

2qbits

)
, 0 ≤ i, j ≤ 3 (4)

In consequence, the quantization can be computed as fol-
lows:

|Zij | =
(
|Wij | ×MF + f

)
� qbits,

sign
(
Zij

)
= sign

(
Wij

)
, 0 ≤ i, j ≤ 3 (5)

In where, qbits = 15 + floor(QP/6), MF is a multi-
plication factors matrix (see Table I) and f is an additional
factor, f = 2qbits/3 if the block is coded in Intra mode, and
f = 2qbits/6 if the block is coded in Inter mode.

Especially, the quantization for a DC block is implemented
as follows (it has already rescaled by 2 due to scaling by 1/2
in transform):

|ZD(ij)| =
(
|YD(ij)| ×MF00 + 2f

)
� qbits,

sign
(
ZD(ij)

)
= sign

(
YD(ij)

)
, 0 ≤ i, j ≤ 3 (6)

Where MF00 is the multiplication factor at position (0, 0).
The innovation of quantization in H.264/AVC is the defini-

tion of Qstep. In where, Qstep is non-uniform (or non-linear
according to QP) and doubled in size if QP increases by
6. Therefore, whenever QP is changed by the encoder, the
values of MF factor matrix is also changed as consequence,
but it absolutely depends on the value of QP%6 (as shown in
Table I). Besides, it does not require a lot of memory elements
to store MF factors, only 18 values for full range of QP .

Similar to the transform part, the quantization has also been
simplified to obtain low-complexity in a manner of avoiding
division and floating point operations.

III. THE PROPOSED ARCHITECTURE

In this section, we present a hybrid architecture for DCT
and Hadamard forward transforms and quantization of 4 × 4
blocks. While the design of transform is only intended to
area-efficiency by using 1-D transform module for all trans-
formations of 4×4 blocks, the design of quantizer is carefully
taken into account in order to improve on both performance
and implementation area. This design is capable to process
4 samples at the same time. The details will be described as
follows:

A. Transform module

By sharing the only 1-D transform module, the second 1-D
transform process could not be started until the first 1-D trans-
form process had finished on the entire block. Therefore, it is
necessary to have a memory buffer for storing and transposing
the temporary data. Figure 3 shows the architecture of forward
transform module with the sample-width of the datapath.

Fig. 3. Architecture of forward transform.

The architecture is simply composed of three main compo-
nents: 1-D Transform module, Transpose RAM module, and
DC RAM module. In addition, there are other components
included in this architecture such as multiplexer and de-
multiplexer for arbitrating the dataflow. The input data and
output data of the transform module are 4 samples, equivalent
to 64-bit (4×16-bit). To have better view, some detail control
signals have been hidden.

The activity of the module can be easily realized through
the list of all states (corresponding to the dataflow):

• State_1: Input ⇒ 1-D Transform ⇒ Transpose RAM
• State_2: Transpose RAM ⇒ 1-D Transform ⇒ Output
• State_3: DC RAM ⇒ 1-D Transform ⇒ Transpose RAM
These states have a length of 4 clock cycles. By controlling

the sequence of these states, a general block will be executed
in the order of two states {state_1; state_2}, while a DC block
will be executed in the order of two other states {state_3;
state_2}.

• 1-D transform
The 1-D transform module is a hybrid transform as illustrated
in Figure 2. All multiplexers in this module are controlled by
a selection signal which configures the module’s activities as
integer DCT-based transformation or Hadamard transforma-
tion. The responsibility of this module is one clock and the
throughput is therefore 4samples/clock. A higher throughput

can be easily obtained by using several 1-D transforms in
parallel.

• Transpose RAM and DC RAM
The purpose of Transpose RAM is to store and transpose data
for transformation processes. DC RAM is used to store lumi-
nance DC coefficients of a transformed macroblock. Basically,
Transpose RAM and DC RAM are matrices of 4 × 4 16-
bit registers (as shown in Figure 4). The input and output
of Transpose RAM are 4 samples width for reading/writing
accesses to a row/column data. Whereas the input of DC RAM
is only one sample width for writing one DC coefficient at a
time and the output is 4 samples width as Transpose RAM’s.

Fig. 4. Transpose RAM (left) and DC RAM (right).

The writing operations of Transpose RAM are enabled
whenever valid data are ready at the output of 1-D transform
module. These occur in 4 succesive clock cycles of the first
1-D transform process. The reading operations occur in next 4
clock cycles to get out the column-wise data for the second 1-
D transform process. The registers in a row of Transpose RAM
are connected in series. Thus, the data stored in a register will
be automatically shifted into the back register in next clock.
By this means, Transpose RAM will be filled up with new
data in 4 clock cycles of the writing operations.

DC RAM is a bit different from Transpose RAM in their
structures where the registers are independent from each other.
This buffer is useful and will be active in 16 × 16 Intra
prediction mode. In that case, the DC coefficients of any
transformed luminance blocks are extracted and written into
DC RAM. Therefore, the writing operations of DC RAM take
place in only one clock cycle at the time where the earliest data
is valid. The reading operations are enabled in 4 clock cycles
when the last block of a luminance macroblock is completely
transformed. Besides, the reading/writing address signals of
DC RAM are directly controlled by FTQ controller.

Comparing with the cascading architecture using two sepa-
rate 1-D transform modules [11], our architecture is required
a bit challenging in designing the controller module but it has
absolutely saved the hardware resource by the total cost of an
1-D transform module.

B. Quantizer module

The quantizer can be easily realized from equations 5 and 6,
as depicted in Figure 5. It consists of four quantization cores

and some common parts: MF_ROM module, DIVIDER_BY_6
module, and F_CALC module. These common modules are
shared to the 4 quantization cores. Actually, DIVIDER_BY_6
module is possible to share with de-quantizer module.

Fig. 5. Quantizer architecture.

DIVIDER_BY_6 module is a combinational block to cal-
culate the value of QP%6 and floor (QP/6) as well. In
some related works, it was designed as common look-up-tables
(LUTs), such as [5]. This design may take lots of memory
utilization because we have up to 52 values of QP . MF_ROM
module is a ROM block for storing 18 constant values of
MF factors. Accessing to a batch of MF factors is addressed
by QP%6 signal. F_CALC module is a combinational block
to calculate the additional factor f based on the coded mac-
roblock type (either Intra mode or Inter mode) and the block
type (residual block or DC block).

Regarding to the multiplier design, when the size of mul-
tipliers are large (15-bit of qdat_i and 14-bit of MF), it can
mostly impact to the performance of the quantizer as a result of
large latency. For this reason, we have deeply investigated the
design of multiplier, which will be presented in next paragraph
to minimize the quantization latency.

• A fast and highly shared multiplier
The fast multiplier that we proposed is a conditional mul-

tiplier. The idea is to build a basic element (called pre-
multiplier) which is multiplier of MF factor with all possible
3-bit numbers (as shown in Figure 6), where Ai = i ∗MF ,
with 0 ≤ i ≤ 7. In fact, we do not need to carry out A0, A1,
A2, and A4 on this module when these signals can be directly
driven from MF signal.

Fig. 6. The pre-multiplier element.

Consequently, the 15-bit multiplier using the pre-multiplier
element is explored as Figure 7. Each group of 3-bit vector

(so it has 5 groups) is multiplied with the multiplicand W
by controlling a multiplexer to select the equivalent result
from the pre-multiplier element. There are some registers are
inserted at the adders’ outputs to cut down the combinational
paths of the multiplier. By this way, we have improved the
performance of the multiplier.

Fig. 7. Multiplier for quantizer using the pre-multiplier element.

Obviously, the pre-multiplier can be shared among 5 groups
of 3-bit multipliers. Since the pre-multiplier takes 4 adder
blocks, we save (4× 4 = 16) adder blocks. In addition, from
the MF factors table (Table I), qdat_i[0] and qdat_i[2] have
the same MF factor, qdat_i[1] and qdat_i[3] have the same
MF factor, therefore the pre-multiplier is also possible to
share between two quantization multipliers which have the
same MF factor. In consequence, our quantizer can be totally
saved up to 2 × (16 × 2 + 4) = 72 adder blocks. Certainly,
several multiplexers will be required to replace these adders
but the hardware utilization is significantly reduced.

C. Pipeline operation

To achieve better performance, the proposed architecture is
controlled to operate in pipeline mode. Figure 8 shows the
timeline of the whole coding process.

Fig. 8. Three states of pipeline operation.

The pipeline has three states as identified by S_1, S_2, and
S_3. In where, S_1 (4 clock cycles) launches the first stage of
1-D transform on block B1 while previous block B0 is still
quantized to the end. S_2 (4 clock cycles) launches the second
stage of 1-D transform while starts quantizing block B1. S_3
(1 clock cycle) prepares loading new block B2 into transform

module while block B1 is still quantized, valid data at the
output are ready. Therefore, it normally takes 12 clock cycles
to complete transform coding for a block.

Summary, by the pipelined schedule, our design will take
9 clock cycles on average to process a block and this is
equivalent to 228 clock cycles to complete the transform and
quantization processes for all 4 × 4 blocks within a 4:2:0
macroblock.

IV. VERIFICATION AND IMPLEMENTATION

The architecture was modeled using VHDL language and
simulated on Synopsys VCS tool. To verify the functionality
of the design, we developed a simple simulation environment
as described in Figure 9. Then, this environment is also used to
verify the design before and after the layout implementation.

Fig. 9. Verification model for the design.

In this environment, we developed a software model of FTQ
architecture on Matlab, which is used for testing purpose only.
The input data used in this simulation is a PGM (portable
graymap format) image. This image is provided to both Matlab
model and hardware model. Then, the outputs of the both
hardware and Matlab-based model will be compared to each
other by using the developed testbench.

The proposed design was first prototyped on a Virtex-II
Xilinx FPGA (XC2V1500-6) and then implemented using the
130nm CMOS technology from TSMC. The achieved operat-
ing frequency is 115MHz with the FPGA implementation,
and 250MHz with the 130nm TSMC CMOS technology.
In both cases, the design takes 228 clock cycles to complete
the transform and quantization processes for the entire 4:2:0
macroblock. The transformation and quantization throughput
is estimated of 204Msamples/s and 445Msamples/s, re-
spectively. The implementation area of the proposed design is
147755µm2 with the 130nm TSMC CMOS technology.

Table II shows the implementation report of different de-
signs on hardware overhead, operating frequency, and through-
put. From this report, our design has a much higher through-
put and a lower hardware overhead compared to the design
presented in [9], while both the designs have the same data
width (4-bit). The designs presented in [5], [12], [8] have
higher throughputs than our design but the data width of
these designs are 4 times (even 8 times) larger than the data
width of our design (16-bit, 16-bit, and 32-bit, respectively).

TABLE II
IMPLEMENTATION REPORT ON HARDWARE OVERHEAD, OPERATING FREQUENCY, AND THROUGHPUT BETWEEN DIFFERENT DESIGNS

Design name Technology Data width Operating freq. HW overhead Throughput

(bit) (MHz) (gates) (Msamples/s)

Pastuszak [8] TOWER 0.18µm 32 77 162,122 2,464

Chih-Peng Fan [5] (using CSD multipliers) Xilinx XC2V1500 16 99.15 135,306 1,586

Kordasiewicz [12] (area-optimized) TSMC 0.35µm 16 68 51.619 644

Heng-Yao Lin [9] TSMC 0.35µm 4 32 30,785 273

Tasdizen [13] ASIC 0.18µm 1 210 23,162 21.5

This work (FPGA) Xilinx XC2V1500 4 115 24,052 204

This work (ASIC) TSMC 0.13µm 4 250 15,033 445

Certainly, these designs therefore occupy much more hardware
implementation areas than our design. In particular, the design
presented in [13] with 1-bit data width but the hardware over-
head is higher than ours while the throughput is much lower
than our proposal. With the achieved throughput, our design
totally responses to the need of H.264/AVC encoders/decoders
while it is very suitable for efficient hardware implementation.

V. CONCLUSION

We presented in this paper a cost-efficient and high-
performance forward transform and quantization hardware
implementation for real-time H.264/AVC encoders in mo-
bile applications. To minimize the hardware overhead, the
proposed design used only one unified architecture of 1-D
transform engine to perform all required transform processes,
including discrete cosin transform and Walsh Hadamard trans-
form. In addition, the detail architecture is also investigated
carefully to optimize as much as possible both area cost and
performance. The proposed architecture is then implemented
on both FPGA and ASIC technologies. It is experimentally
verified to work at 115MHz on a Xilinx Virtex II FPGA
and to work at 250MHz on a TSMC 130nm CMOS im-
plementation. The area overhead of this design is very small,
147755µm2 (approximate 15KGates) with ASIC implemen-
tation. In addition, the design is able to complete transform and
quantization processes for a macroblock in 228 clock cycles.
Consequently, the achieved throughput is 204Msamples/s
and 445Msamples/s for FPGA and ASIC implementations,
respectively, while the data width is 4-bit. The proposed FTQ
architecture is therefore proved to achieve a high performance
with a lower area cost than the previous works.

ACKNOWLEDGMENT

This work is supported by Vietnam National University,
Hanoi (VNU) through research project No. QGÐA.10.02
(VENGME). The authors would like to thank Synopsys’
experts for their technical supports, TRIG-B project for travel
grant.

REFERENCES

[1] ITU-T Recommendation and International Standard of Joint Video
Specification. ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, March 2005.

[2] Detlev Marpe, Thomas Wiegand, and Gary J. Sullivan. The
H.264/MPEG4 Advanced Video Coding Standard and its Applications.
IEEE Communications Magazinel, pages 134–143, August 2006.

[3] H.S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky. Low-
Complexity Transform and Quantization in H.264/AVC. IEEE Trans-
actions on Circuits and Systems for Video Technology, pages 598–603,
2003.

[4] Joo-Kyon Lee and Ki-Dong Chung. DCT Block Conversion for
H.264/AVC Video Transcoding. In Euro-Par 2005 Parallel Processing,
pages 919–927, Lisbon, Portugal, September 2005.

[5] Chil-Peng Fan and Yu-Lin Cheng. FPGA Implementations of Low
Latency and High Throughput 4x4 Block Texture Coding Processor for
H.264/AVC. Journal of the Chinese Institute of Engineers, 32(1):33–44,
2009.

[6] Yu-Ting Kuo, Tay-Jyi Lin, Chih-Wei Liu, and Chein-Wei Jen. Architec-
ture for Area-Efficient 2-D Transform in H.264/AVC. In Proceedings
of the 2005 IEEE International Conference on Multimedia and Expo,
Amsterdam, Netherlands, July 2005.

[7] Javier D. Bruguera and Roberto R. Osorio. A Unified Architecture for
H.264 Multiple Block-Size DCT with Fast and Low. In Proceedings
of the 9th EUROMICRO Conference on Digital System Design (DSD),
pages 407–414, Cavtat near Dubrovnik, Croatia, August 2006.

[8] Grzegorz Pastuszak. Transforms and Quantization in the High-
Throughput H.264/AVC Encoder Based on Advanced Mode Selection.
In Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, pages 203–208, Montpellier, France, April 2008.

[9] Heng-Yao Lin, Yi-Chih Chao, Che-Hong Chen, Bin-Da Liu, and Jar-
Ferr Yang. Combined 2-D Transform and Quantization Architectures
for H.264 Video Coders. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), volume 2, pages 1802–
1805, May 2005.

[10] I.E.G. Richardson. H.264/MPEG-4 Part 10: Transform and Quantization.
VCodex Ltd White Paper, March 2003.

[11] Tu-Chih Wung, Yu-Wen Huang, Hung-Chi Fang, and Liang-Gee Chen.
Parallel 4x4 2D Transform and Inverse Transform Architecture for
MPEG-4 AVC/H.264. In Proceedings of the 2003 International Sympo-
sium on Circuits and Systems (ISCAS), pages 800–803, May 2003.

[12] R. C. Kordasiewicz and S. Shirani. ASIC and FPGA Implementations
of H.264 DCT and Quantization Blocks. In Proceedings of the 2005
IEEE International Conference on Image Processing (ICIP), pages III–
1020–3, September 2005.

[13] Ozgur Tasdizen and Ilker Hamzaoglu. A high performance and low cost
hardware architecture for h.264 transform and quantization algorithms.
In 13th European Signal Processing Conference, pages 4–8, September
2005.

