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Localization at countably infinitely many
prime ideals and applications/!

KAMAL BAHMANPOUR and PHAM HUNG QUY

Abstract

In this paper we present a technical lemma about localization at countably
infinitely many prime ideals. We apply this lemma to get many results about
the finiteness of associated prime ideals of local cohomology modules.

1 Introduction

In this paper, let R be a commutative Noetherian ring. Localization is one of the
most important tools in Commutative algebra. Notice that for any multiplicative
subset S of R, the canonical extension R — Rg is flat, and many problems in
Commutative algebra have good behavior under flat extensions. For a set of finitely
many prime ideals {py, ..., px} Wwith no containment relations, set S = R\ U p;,
we have Rg is a semilocal ring and Max(Rg) = {p1Rs, ..., pxRs}. This fact follows
from the well known prime avoidance lemma. This statement is false for countably
infinitely many prime ideals {p;};>1. For example, let R = Q[X,Y]| and {p; }ies is
the set of prime ideals of height one. Since R is UFD we have a prime ideal of height
one is principal. Moreover R is a countable set, so the set {p;};cs is countable. On
the other hand every non-constant polynomial must be contained in a prime ideal
of height one. Thus S = R\ Ujerp; = Q and so Rg = R. This paper is devoted to
the localization at countably infinitely many prime ideals after passing to a certain
flat extension. Concretely, we prove the following result.

Lemma 1.1. Let R be a commutative Noetherian ring and {p;}i>1 a countable set
of prime ideals of R with no containment relation. Consider the formal power series
ring R[[X]] and set S = R[[X]] \ Ui1p:R[[X]] and T = R[[X]]s. Then R — T is a
flat extension and Max(T') = {p;T}i>1.

The above lemma will be proved in the next section. In Section 3 we apply
Lemma [I.1l to get many results about the the finiteness of associated prime ideals
of local cohomology modules. Among them, is the following:
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Theorem 1.2. Let I be an ideal of R and M a finitely generated R-module. Then
for every i > 0 the set {p € AssgH(M) : ht(p/I) < 1} is finite.

Recall that, for any ideal I of R and any R-module M, the i*" local cohomology
module of M with respect to I is defined as

Hj(M) = lig Ext’(R/I™, M).

n>1

We refer the reader to [2] or [4] for more details about local cohomology.

2 Localization at countably infinitely many prime
ideals

We start this section with the well known result, countable prime avoidance lemma
(see [9, Lemma 13.2]).

Lemma 2.1. Let A be a Noetherian ring satisfying either of these conditions:

(i) A is a complete local ring.

(ii) There is an uncountable set of elements {pux}r € A such that py — iy is a unit
of A for every A # 7.

Let {p;}i>1 a countable set of prime ideals of A and I an ideal such that I C U;>1p;.
Then I C p; for some i.

The following technical lemma is the main result of this section.

Lemma 2.2. Let R be a commutative Noetherian ring and {p;}i>1 a countable set
of prime ideals of R with no containment relation. Consider the formal power series
ring R[[X]] and set S = R[[X]] \ Uis1p: R[[X]] and T = R[[X]|s. Then R — T is a
flat extension and Max(T') = {p;T }i>1.

Proof. 1t is clear that R — T is flat and p;7" € Spec(T') for all i > 1. We prove
that T satisfies the condition (ii) of Lemma 2l We consider the following subset
of elements in R[[X]]

B:={pux=bg+b X+ - +b,X"+--- : bj=0o0r 1 and puy # 0}.



Since R[[X]] is a subring of T, so B C T'. It is clear that B is an uncountable set.
For every puy # p, pair of distinct elements of B we have

A=y = o+ X A X

with a; = 0,1 or —1 and at least one a; # 0. Let k be the least integer such that
ar # 0. We have
[x — [y = X"+ ap X +--)

or
pia = g = XF(=14 ap X +---).

We have both 14+ ag1 X +--- and —1 + a1 X + - - are units in R[[X]] and so are
in T'. Since X ¢ p,T for all i > 1 we have X € S. Thus X is a unit in 7. Therefore
fx — [ty is a unit in T" for every puy # p,. Hence T satisfies the countable prime
avoidance lemma. Since U;>1p;T" is the set of non-units of T, we have I C U;>1p;T
for every proper ideal I of T. By the countable prime avoidance lemma we have
I C p;T for some i. Therefore Max(T") = {p;T};>1. The proof is complete. O

3 Applications

In this section, let I be an ideal of R and M a finitely generated R-module. In general
the i*" local cohomology module H%(M) is not finitely generated. Grothendieck
asked the following question: Is Hom(R/I, H:(M)) finitely generated for all 7 > 07?
The first counterexample was given by Hartshorne in [5]. In this paper he introduced
the notion of /-cofinite modules. An R-module L is called I-cofinite if Supp(L) C
V(I) and Extl(R/I, L) is finitely generated for all 4 > 0. Hartshorne proved that
Hi(M) is I-cofinite for all i > 0 if R is a complete regular local ring and I is a prime
ideal of dimension one. Hartshorne’s result was extended by many authors (see, [1],
[31, [7], [13]). In [I, Theorem 1.1] Bahmanpour and Naghipour proved the following
result (see also [12] Theorem 2.10]).

Lemma 3.1. Let I be an ideal of R of dimension one and M a finitely generated
R-module. Then Hi(M) is I-cofinite for all i > 0.
Now, we are ready to state and prove the first main result of this section, which

is an application of Lemma

Theorem 3.2. Let R be a Noetherian ring, I an ideal of R and M a finitely gen-
erated R-module. Then for every i > 0 and any j > 0, the set

{p € AsspBExt},(R/I, Hi(M)) : ht(p/I) <1}

1s finite.



Proof. Suppose there are ¢ and j such that the set
{p € AsspBExt},(R/I, Hi(M)) : ht(p/I) <1}

is not finite. We can choose an countable set {ps}r>1 € AssgExth(R/I, Hi(M))
and ht(py/I) = 1 for all k > 1. Let T' as Lemma [Z2] we have R — T is a flat
extension and

Max(T) = {pxT"}i>1-
By the flat base change theorem (see, [2, Theorem 4.3.2]) we have

Ext),(R/I, H(M))®RrT = Ext)(R/I@T, Hi(M)®rT) = Ext),(T/IT, Hip(M®gT)).

So piT € AssrExt)(T/IT, Hip.(M @g T)) for all k > 1 by [10, Theorem 23.2]. On
the other hand we have dimT/IT = 1 so Hj (M ®g T) is IT-cofinite by Lemma
B Thus the T-module Ext}.(T/IT, Hi(M ®r T)) is finitely generated and so the

set
AsspBExt)(T/IT, Hipn(M @5 T))

is finite, which is a contradiction. The proof is complete. O

Recall that Assp Hi(M) = AssgHom(R/I, Hi(M)) for all i > 0. So the following
result is an immediately consequence of Theorem 3.2

Corollary 3.3. Let I be an ideal of R and M a finitely generated R-module. Then
for every i > 0 the set {p € AssgHi(M) : ht(p/I) < 1} is finite.

The following results are other applications of Lemma to local cohomology
modules.

Corollary 3.4. Let R be a Noetherian ring, I an ideal of R andn > 1 be an integer
and M be a finitely generated R-module such that dim(M/IM) = n. Then for any
finitely generated R-module N with support in V (I +Anng(M)) and for anyi,j >0
we have the set

{p € Assp(Exti(N, Hy(M))) : dim(R/p) >n — 1}

18 finite.

Proof. Let J = Ann(M/IM). Then, we have V(J) = V(I + Anng(M)). It is not
difficult to see that Hi(M) = H%(M) for all i > 0. We can assume henceforth that
I = Ann(M/IM) and dim R/I = n. Notice that if K is an I-cofinite module, then
Extiz(N , K) is finitely generated for all finitely generated R-module N with support
V(I) (see [8 Lemma 1]). Now the proof is the same as Theorem 3.2 O



Corollary 3.5. Let R be a Noetherian ring, I an ideal of R andn > 1 be an integer
and M be a finitely generated R-module such that dim(M/IM) = n. Then for any
finitely generated R-module N with support in V (I + Anng(M)) and for anyi,j >0
we have the set

{p € Assp(Torf(N, H{(M))) : dim(R/p) >n —1}

1s finite.
Proof. Use [11, Theorem 2.1]. O

We prove the second main result of this section.

Theorem 3.6. Let R be a Noetherian ring, I an ideal of R and M an (not neces-
sarily finitely generated) R-module. Then for any integer t > 0, the set

S :={p € AsspH(M) : ht(p) =t} = {p € Supp(H;(M)) : ht(p) =t}

18 finite.

Proof. Tt follows from Grothendieck’s Vanishing Theorem, that each element of the
set {p € Supp(Hi(M)) : ht(p) =t} is a minimal element of the set Supp(H:(M))
and so is an associated prime ideal of the R-module Hi(M). Therefore

{p € Supp(H(M)) : ht(p) =t} €S C {p € Supp(H;(M)) : ht(p) = t}.

Hence
S = {p € Supp(H}(M)) : ht(p) = t}.
Let p be an arbitrary element of {p € Supp(H:(M)) : ht(p) = t} we have

Hig, (M,) # 0. Notice that dim R, = ¢ so by [2} Exercise 6.1.9] we have Hj, (M,) =
Hig, (Ry) ®pg, My. Hence Hip (R,) # 0. Thus for any R-module M we have

{p € Supp(H}(M)) : ht(p) =t} C {p € Supp(H(R)) : ht(p) = t}.

So it is enough to prove the assertion in the case M = R. Suppose that {p €
AsspHY(R) : ht(p) = t} is not finite. Then, we can choose a countable infinite
subset
{pitiz1 € {p € AsspH}(R) : ht(p) =t}.

Now set 7" as in Lemma 2.2l Then we have R — T is a flat extension and Max(7") =
{p;T}i>1. In particular, T is a Noetherian ring of dimension ¢ and p;T" € AssyHi(T)
for all ¢ > 1. But, in view of [I1, Proposition 5.1}, the T-module H},(T) is Artinian
and hence has finitely many associated primes, which is a contradiction. The proof
is complete.

O



Let T' be a subset of Spec(R). We denote
T,={peT: ht(p) =i}
The following is a direct consequence of Theorem [3.6l

Corollary 3.7. Let M be an R-module of finite dimension and I an ideal of R.

Then the set ‘
U(ASSRH}(M))Z-

>0

18 finite.

We close this paper with the following remark.

Remark 3.8. It is not known whether the set of minimal associated primes of a
local cohomology module is finite. It is equivalent to the question: Is the support
of local cohomology closed (see [6])? By Lemma 2.2l one can assume that the set of
minimal associated primes of H:(M) is just Max(R).
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