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Abstract

Let (R,m) be a Noetherian local ring andM a finitely generated R-module
of dimension d. Let x = x1, ..., xd be a system of parameters of M and
n = (n1, ..., nd) a d-tuple of positive integers. In this paper we study the length
of generalized fractions M(1/(x1, ..., xd, 1)) which was introduced by Sharp
and Hamieh in [24]. First, we study the growth of the function Jx,M (n) =
ℓ(M(1/(xn1

1 , ..., xnd

d , 1)))−n1...nde(x;M). Then we give an explicit calculation
for the function Jx,M (n) in the case whereM admits a Macaulayfication. Most
previous results on this topic are now easy to understand and to improve.

1 Introduction

Throughout this paper, let (R,m) be a Noetherian local ring and M a finitely
generated R-module of dimension d. Let x = x1, ..., xd be a system of parameters
of M . In this paper we study the length of generalized fractions M(1/(x1, ..., xd, 1))
which was introduced by Sharp and Hamieh in [24]. It has been proved in [8, Lemma
2.3] that M/((x)limM ) is isomorphic to M(1/(x1, ..., xd, 1)), where

(x)limM =
⋃

n>0

(
(xn+1

1 , ..., xn+1
d )M : (x1...xd)

n
)
.

We call (x)limM the limit closure. If M = R we write (x)lim.
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cohomology; Macaulayfication; Hilbert-Kunz fuction.
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It should be noted that the Hochster monomial conjecture is equivalent to the
claim (x)lim 6= R for all system of parameters x.

Let n = (n1, ..., nd) be a d-tuple of positive integers and xn = xn1

1 , ..., xnd

d . We
consider the functions in n,

Ix,M(n) = ℓ(M/(xn)M)− e(xn;M),

Jx,M(n) = e(xn,M)− ℓ(M/(xn)limM ),

where e(x;M) is the Serre multiplicity of M with respect to the sequence x. In
several papers N.T. Cuong et als, showed that the least degree of all polynomials in n
bounding above Ix,M(n) is independent of the choice of x. It is called the polynomial
type of M , and denoted by p(M). The behavior of the function Jx,M(n) was studied
in [20] and [10]. In general Jx,M(n) is not a polynomial in n. Furthermore, the least
degree of polynomials bounding above Jx,M(n) is independent of the choice of x.
(see [7, Theorem 4.4]). It is called the polynomial type of generalized fractions of M ,
and denoted by pf(M).

These two functions are closely related. In general it was proved in [21, Theorem
4.5] that pf(M) ≤ p(M). Our first result proves that if M is unmixed and x is
a certain system of parameters, then Ix,M(n) ≤ 2d−2Jx,M(n), which implies that
pf(M) = p(M).

Our second result consist to study the function Jx,M(n) in the case where M
admits a Macaulayfication and we can express Jx,M(n) in terms of the Non Cohen-
Macaulay locus of M . As an application, in characteristic p > 0, we establish a
connection between Jx,M(n) and the Hilbert-Kunz function, and prove by using a
recent result of Brenner [1], the existence of a local ring and a system of parameters
such that the function Jx,M(n), with n = n1 = ... = nd, cant be defined by a finite
set of polynomials.

2 Preliminaries

First we recall the notion of polynomial type of a module. Let (R,m) be a Noetherian
local ring, M a finitely generated R-module of dimension d, x = x1, ..., xd a system
of parameters of M , and n = (n1, ..., nd) a d-tuple of positive integers. We set
xn = xn1

1 , ..., xnd

d and we consider the function in n

Ix,M(n) = ℓ(M/(xn)M)− e(xn;M),

where e(x;M) is the Serre multiplicity of M with respect to the sequence x. N.T.
Cuong in [3, Theorem 2.3] showed that the least degree of all polynomials in n
bounding above Ix,M(n) is independent of the choice of x.
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Definition 2.1. The least degree of all polynomials in n bounding above Ix,M(n) is
called the polynomial type of M , and is denoted by p(M).

The following basic properties of p(M) can be found in [3].

Remark 2.2. (i) We have p(M) = p(M̂) ≤ d − 1, where M̂ is the m-adic com-
pletion of M .

(ii) An R-module M is Cohen-Macaulay if and only if p(M) = −∞. Moreover, M
is generalized Cohen-Macaulay if and only if p(M) ≤ 0.

Let ai(M) = AnnH i
m(M) for 0 ≤ i ≤ d − 1 and a(M) = a0(M) · · · ad−1(M).

We denote by NC(M) the non-Cohen-Macaulay locus of M i.e. NC(M) = {p ∈
supp(M) |Mp is not Cohen-Macaulay}. Recall that M is called equidimensional if
dimM = dimR/p for all minimal associated primes of M . The polynomial type of
a module can be well understood by the annihilator of local cohomology as follows.

Proposition 2.3 ([2], Theorem 1.2). Suppose that R admits a dualizing complex.
Then

(i) p(M) = dimR/a(M).

(ii) If M is equidimensional then p(M) = dim(NC(M)).

Although the function Ix,M(n) is not a polynomial in general, it has a good
behavior for some special systems of parameters.

Definition 2.4 ([4]). A system of parameters x1, ..., xd of M is called p-standard if
xd ∈ a(M) and xi ∈ a(M/(xi+1, ..., xd)M) for all i = d− 1, ..., 1.

Definition 2.5 ([17], [16]). (i) A sequence in R, x = x1, ..., xs is called a d-
sequence of M if (x1, ..., xi−1)M : xj = (x1, ..., xi−1)M : xixj for all i ≤ j ≤ s.

(ii) A sequence x = x1, ..., xs is called a strong d-sequence if xn = xn1

1 , ..., xns

s is a
d-sequence for all n = (n1, ..., ns) ∈ N

s.

For important properties of d-sequence, see [17] and [26].

Definition 2.6 ([5]). A sequence of elements x = x1, ..., xs is called a dd-sequence
of M if x is a strong d-sequence of M and the following conditions are satisfied:

(i) s = 1 or,

(ii) s > 1 and x′ = x1, ..., xs−1 is a dd-sequence of M/xn
s for all n ≥ 1.
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The function Ix,M(n) is a polynomial for a p-standard system of parameters or
dd-sequence of parameters (see [4, Theorem 2.6 (ii)] and [5, Theorem 1.2]).

Proposition 2.7. A system of parameters x = x1, ..., xd of M is a dd-sequence iff
for all n1, ..., nd > 0 we have

Ix,M(n) =

p(M)∑

i=0

n1...niei,

where ei = e(x1, ..., xi; 0 :M/(xi+2,...,xd)M xi+1) and e0 = ℓ(0 :M/(x2,...,xd)M x1). More-
over a p-standard system of parameters is a dd-sequence system of parameters.

In order to introduce the notion of polynomial type of generalized fractions we
recall the notion of limit closure of a parameter ideal.

Definition 2.8. Let x = x1, ..., xd be a system of parameters of M . Then the limit
closure of x in M is a submodule of M defined by

(x)limM =
⋃

n>0

(
(xn+1

1 , ..., xn+1
d )M : (x1...xd)

n
)
,

when M = R we write (x)lim for short.

For a study of limit closure we refer to [13].

Remark 2.9. (i) It is well known that (x)M = (x)limM if and only if x is an M-
sequence i.e. M is Cohen-Macaulay.

(ii) The quotient (x)limM /(x)M is the kernel of the canonical map

Hd(x;M) → Hd
m(M).

(iii) (see [6, Lemma 2.4]) If x1, ..., xd is a dd-sequence we have

(x)limM =
d∑

i=1

[
(x1, ..., x̂i, ..., xd)M :M xi

]
+ (x)M.

Similarly to the notion of polynomial type, we consider the function in n

Jx,M(n) = e(xn,M)− ℓ(M/(xn)limM ).

In general Jx,M(n) is not a polynomial in n (cf. [10]) but it is bounded by poly-
nomials. Furthermore, the least degree of polynomials bounding above Jx,M(n) is
independent of the choice of x (see [7, Theorem 4.4]).

4



Definition 2.10. The least degree of all polynomials in n bounding above Jx,M(n)
is called the polynomial type of generalized fractions of M , and denoted by pf(M).

Now we recall the notion of unmixed component of M which is closely related
with the limit closure and the polynomial type of generalized fractions.

Definition 2.11. The largest submodule of M of dimension less than d is called
the unmixed component of M and it is denoted by UM(0).

It should be noted that if ∩p∈AssMN(p) = 0M is a reduced primary decomposition
of the zero submodule of M , then UM (0) = ∩p∈AsshMN(p), where AsshM = {p ∈
AssM | dimR/p = dimM}.

Remark 2.12. (i) In [13, Theorem 4.1] it is proved that UM(0) = ∩n(x
[n])limM for

any system of parameters x of M , where we denote x[n] = xn
1 , ..., x

n
d .

(ii) (cf. [11, Theorem 3.1]) Suppose that R admits a dualizing complex then
pf(M) = −∞ (resp. pf(M) ≤ 0) if and only if M/UM (0) is Cohen-Macaulay
(resp. generalized Cohen-Macaulay).

Recently, N.T. Cuong and the second author study the splitting of local coho-
mology (cf. [12], [14]), this will provide the main tool for the proof of our first result
in this paper. We collect here some results which we need in the sequel. Set

b(M) =
d⋂

x;i=1

Ann(0 : xi)M/(x1,...,xi−1)M ,

where x = x1, ..., xd runs over all systems of parameters of M . By [23, Satz 2.4.5]
we have

a(M) ⊆ b(M) ⊆ a0(M) ∩ · · · ∩ ad−1(M).

We have the following splitting property.

Theorem 2.13 ([14], Corollary 3.5). Let x ∈ b(M)3 be a parameter element of M .
Let UM (0) be the unmixed component of M and set M = M/UM(0). Then

H i
m(M/xM) ∼= H i

m(M)⊕H i+1
m (M)

for all i < d− 1.

Lemma 2.14. Let N ⊆ H0
m(M) be a submodule of finite length. Then b(M) ⊆

b(M/N).
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Proof. Let x1, ..., xd be an arbitrary system of parameters of M/N . It is also a
system of parameters of M . By definition of b(M/N), we need only to prove that

b(M) ⊆ Ann
[(x1, ..., xi−1)M +N ] : xi

(x1, ..., xi−1)M +N

for all i ≤ d. Choose a positive integer n0 such that xn0

i N = 0 and for all n ≥ n0 we
have

(x1, ..., xi−1)M : xn
i = (x1, ..., xi−1)M : xn0

i ,

[(x1, ..., xi−1)M +N ] : xn
i = [(x1, ..., xi−1)M +N ] : xn0

i .

So

[(x1, ..., xi−1)M +N ] : xn0

i ⊆ (x1, ..., xi−1)M : x2n0

i ⊆ [(x1, ..., xi−1)M +N ] : x2n0

i .

Hence (x1, ..., xi−1)M : x2n0

i = [(x1, ..., xi−1)M +N ] : x2n0

i and we have

Ann
[(x1, ..., xi−1)M +N ] : xi

(x1, ..., xi−1)M +N
⊇ Ann

[(x1, ..., xi−1)M +N ] : x2n0

i

(x1, ..., xi−1)M +N

= Ann
(x1, ..., xi−1)M : x2n0

i

(x1, ..., xi−1)M +N

⊇ Ann
(x1, ..., xi−1)M : x2n0

i

(x1, ..., xi−1)M

⊇ b(M).

The following notion of system of parameters is closed related with p-standard
and dd-sequence system of parameters and very useful in this paper.

Definition 2.15. A system of parameters x1, ..., xd is called a C-system of param-
eters of M if xd ∈ b(M)3 and xi ∈ b(M/(xi+1, ..., xd)M)3 for all i = d− 1, ..., 1.

We call C-system of parameters in honor of Professor N.T. Cuong. If (R,m) is the
quotient of a Cohen-Macaulay ring then we always have that dimR/a(M) < dimM
for every finitely generated R-module M . So every finitely generated R-module M
admits a C-system of parameters.

Lemma 2.16. Let x1, ..., xd be a C-system of parameters of M . Then

(i) x1, ..., xd is a dd-sequence.

(ii) xn1

1 , ..., xnd

d is a C-system of parameters of M for all n1, ...., nd ≥ 1.
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(iii) For all i ≤ d we have x1, ..., xi−1, xi+1, ..., xd is a C-system of parameters of
M/xiM .

(iv) Let N ⊆ H0
m(M) be a submodule of finite length. Then x1, ..., xd is a C-system

of parameters of M/N .

Proof. (i) is [14, Proposition 4.6], (ii) is [14, Corollary 4.5] and (iii) is [14, Lemma
2.10].
(iv) For each i ≤ d we have M/((xi+1, ..., xd)M + N) is a quotient module of
M/(xi+1, ..., xd)M by a submodule of finite length. So b(M/(xi+1, ..., xd)M) ⊆
b(M/((xi+1, ..., xd)M +N)) by Lemma 2.14. Thus

xi ∈ b(M/(xi+1, ..., xd)M)3 ⊆ b(M/((xi+1, ..., xd)M +N))3.

3 On the polynomial type of generalized fractions

Since p(M) and pf(M) do not change after passing to the completion. In this section
we assume that (R,m) is the image of a Cohen-Macaulay local ring. For each system
of parameters x = x1, ..., xd set

Ix,M = ℓ(M/(x)M)− e(x;M)

and
Jx,M = e(x;M)− ℓ(M/(x)limM ).

It should be noted that Ix,M is much easier to understand than Jx,M .

Lemma 3.1. Let M be a generalized Cohen-Macaulay module and x = x1, ..., xd a
standard system of parameters of M . Then

(i) Ix,M =
∑d−1

i=0

(
d−1
i

)
ℓ(H i

m(M)).

(ii) Jx,M =
∑d−1

i=1

(
d−1
i−1

)
ℓ(H i

m(M)).

Proof. For the definition of standard system of parameters and the proof of (i) see
[27], (ii) follows from [7, Theorem 5.1].

Lemma 3.2. Let x = x1, ..., xd be a system of parameters of M and UM (0) the
unmixed component of M . Set M = M/UM(0) we have

(i) Jx,M = Jx,M .
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(ii) Jx,M(n) = Jx,M(n) for all n.

(iii) pf(M) = pf(M).

Proof. (i) Since dimUM(0) < d we have e(x;M) = e(x;M). For each n ≥ 1 we
set x[n] = xn

1 , ..., x
n
d . By Remark 2.12 we have UM (0) = ∩n≥1(x

[n])limM . By [13,
Proposition 2.6] we have

ℓ(M/(x)limM ) = ℓ(M/(x)lim
M

).

Therefore Jx,M = Jx,M .
(ii) follows from (i) and (iii) follows from (ii).

By the above lemma, we can assume that M is unmixed i.e. UM(0) = 0, for the
computation of either the function Jx,M(n) or pf(M). The following is important
for our inductive technique.

Remark 3.3. Let M be an unmixed finitely generated R-module of dimension d.
Then

(i) H1
m(M) is finitely generated provided d ≥ 2 (for example see [15, Lemma 3.1]).

(ii) The set

F(M) = {p ∈ Spec(R) | dimMp > 1 = depthMp, p 6= m}

is finite (cf. [15, Lemma 3.2]).

(iii) Let x = x1, ..., xd be a C-system of parameters of M . Then

F(M) = AssUM/xdM(0) \ {m}

and x1 /∈ p for all p ∈ F(M). Hence AssM/x1M ⊆ AsshM/x1M ∪ {m}, so
UM/x1M(0) ∼= H0

m(M/x1M) (cf. [14, Proposition 4.11, Remark 4.12]).

Lemma 3.4. Let M be an unmixed finitely generated R-module of dimension d ≥ 2
and x = x1, ..., xd a C-system of parameters of M . Then x1.H

1
m(M) = 0 and

ℓ(H1
m(M)) ≤ Ix,M .

Proof. Set Md = M/xdM . Since M is unmixed, by Theorem 2.13 we have H1
m(M) ∼=

H0
m(Md). By Lemma 2.16 we have x′ = x1, ..., xd−1 is a dd-sequence of Md so

H0
m(Md) = 0 :Md

x1. Hence x1.H
1
m(M) = 0. Moreover the properties of dd-sequences

imply that H0
m(Md) ∩ (x′)Md = 0. Thus

ℓ(Md/(x
′)Md) = ℓ(H0

m(Md)) + ℓ(Md/(x
′)Md) ≥ ℓ(H1

m(M)) + e(x′;Md)

= ℓ(H1
m(M)) + e(x′;Md),
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where Md = Md/H
0
m(Md). Therefore

ℓ(H1
m(M)) ≤ Ix′,Md

= Ix,M .

For the last equality notice that since xd is M-regular we have e(x;M) = e(x′;Md).
The proof is complete.

Lemma 3.5. Let M be an unmixed finitely generated R-module of dimension d ≥ 3
and x = x1, ..., xd a C-system of parameters of M . Set M1 = M/x1M and x′ =
x2, ..., xd we have Ix,M ≤ 2Ix′,M1

, where M1 = M1/H
0
m(M1).

Proof. Since x1 is M-regular we have e(x;M) = e(x′;Md). So Ix,M = Ix′,M1
. By

Lemma 2.16 we have x′ = x2, ..., xd is a C-system of parameters of M1. Similar to
the proof of the previous result we have

Ix′,M1
= Ix′,M1

+ ℓ(H0
m(M1)).

Thus we need only to prove that ℓ(H0
m(M1)) ≤ Ix′,M1

. Consider the following short
exact sequence

0 −→ M
x1·−→ M −→ M1 −→ 0.

By Lemma 3.4 we have x1.H
1
m(M) = 0. So by applying the local cohomology functor

to the above short exact sequence we have H0
m(M1) ∼= H1

m(M) and

0 −→ H1
m(M) −→ H1

m(M1).

Thus
ℓ(H0

m(M1)) = ℓ(H1
m(M)) ≤ ℓ(H1

m(M1)).

On the other hand by Remark 3.3 we have M1 is unmixed, and x′ is a C-system of
parameters of M1 by Lemma 2.16. So

ℓ(H1
m(M1)) = ℓ(H1

m(M 1)) ≤ Ix′,M1

by Lemma 3.4. Thus ℓ(H0
m(M1)) ≤ Ix′,M1

. The proof is complete.

Proposition 3.6. Let M be an unmixed finitely generated R-module of dimension
d and x = x1, ..., xd a C-system of parameters of M . Then Ix,M ≤ 2d−2Jx,M .

Proof. We proceed by induction on d. The case d = 1 is trivial since M is Cohen-
Macaulay. For d = 2 by Lemma 3.1 we have

Ix,M = ℓ(H1
m(M)) = Jx,M .

Assume that d ≥ 3 and the assertion was proved for d − 1. Set M1 = M/x1M and
x′ = x2, ..., xd we have

Ix,M ≤ 2Ix′,M1
(By Lemma 3.5)

≤ 2d−2Jx′,M1
(By induction)

= 2d−2Jx′,M1
(By Lemma 3.2).

9



Since x1 is M-regular we have e(x;M) = e(x′;M1). On the other hand we have

(x′)limM1
=

⋃

n

[(x1, x
n+1
2 , ..., xn+1

d )M :M (x2, ..., xd)
n]/x1M ⊆ (x)limM /x1M.

So ℓ(M/(x)limM ) ≤ ℓ(M1/(x
′)limM1

). Thus Jx′,M1
≤ Jx,M . Therefore we get the assertion

Ix,M ≤ 2d−2Jx,M .

Theorem 3.7. Let (R,m) be the image of a Cohen-Macaulay local ring and M
an unmixed finitely generated R-module of dimension d. Then pf(M) = p(M).
Moreover pf(M) = dimR/a(M).

Proof. By [21, Theorem 4.5] we have pf(M) ≤ p(M). Thus we need only to prove
pf(M) ≥ p(M). Let x = x1, ..., xd be a C-system of parameters of M . By Lemma
2.16, for all d-tuples of positive integers n = (n1, ..., nd) we have xn = xn1

1 , ..., xnd

d is
also a C-system of parameters. By Proposition 3.6 we have

Ix,M(n) = Ixn,M ≤ 2d−2Jxn,M = 2d−2Jx,M(n)

for all n = (n1, ..., nd) ∈ N
d. Thus p(M) ≤ pf(M). The last assertion follows from

Proposition 2.3. The proof is complete.

The next result is a consequence of the above Theorem and Lemma 3.2.

Corollary 3.8. Let (R,m) be the image of a Cohen-Macaulay local ring and M a
finitely generated R-module with the unmixed component UM(0). Then

pf(M) = p(M/UM(0)).

Recall that an R-module M is called pseudo (generalized) Cohen-Macaulay if
pf(M) = 0 (resp. pf(M) ≤ 0). As a consequence of Corollary 3.8 we get a
generalization of the main result of [11].

Corollary 3.9. Let (R,m) be the image of a Cohen-Macaulay local ring and M a
finitely generated R-module with the unmixed component UM(0). Then M is pseudo
Cohen-Macaulay (resp. pseudo generalized Cohen-Macaulay) iff M/UM(0) if Cohen-
Macaulay (resp. generalized Cohen-Macaulay).

It is natural to raise the following question.

Question 3.10. Let M be an unmixed finitely generated R-module of dimension d
and x = x1, ..., xd a C-system of parameters of M . Is it true that that the function
Jx,M(n) is a polynomial in n when n1, ..., nd ≫ 0?

It should be noted that [9, Theorem 4.5] gives an affirmative answer for this
question in the case pf(M) ≤ 1.
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4 The case M admits a Macaulayfication

Definition 4.1. Let M be a finitely generated R-module of dimension d. We say
that M admits a Macaulayfication M ′ if we have an exact sequence

0 → M → M ′ → N → 0,

where M ′ is a finitely generated Cohen-Macaulay R-module and dimN ≤ d− 2.

Remark 4.2 (see for example [19], [23]). Let (R,m) be a Noetherian complete local
ring and M a finitely generated R-module of dimension d. We recall that if M is
unmixed, the module Dd(Dd(M)) (where Dd(M) is the Matlis dual of M) satisfies
the condition S2 and we have an exact sequence :

0 → M → Dd(Dd(M)) → N → 0

with dimN ≤ d − 2. Moreover if there exist a finitely generated R-module M ′ of
dimension d, satisfying the condition S2 and an exact sequence :

0 → M → M ′ → M ′/M → 0

with dimM ′/M ≤ d − 2, then M ′ ∼= Dd(Dd(M)). That is, if M is unmixed
the Macaulayfication is unique up to isomorphism (if exist). In this is the case,
Supp(M ′/M) is the non Cohen-Macaulay locus of M .

We can state the main result of this section.

Theorem 4.3. Let M be finitely generated R-module of dimension d. Suppose
that M has a Macaulayfication M ′. Let x = x1, ..., xd be an arbitrary system of
parameters of M . Set N = M ′/M , then

Jx,M(n) = ℓ(N/(xn)N)

for all d-tuples n = (n1, ..., nd).

Proof. For any system of parameters y = y1, ..., yd, the short exact sequence

0 → M → M ′ → N → 0

11



induces the following commutative diagram with the last two columns exact

Hd−1(y;N) Hd−1
m (N) = 0

0 (y)limM /(y)M Hd(y;M) Hd
m(M)

0 Hd(y;M ′) Hd
m(M

′)

Hd(y;N) Hd
m(N) = 0

0.

✲

❄ ❄

✲ ✲
β

❄

✲

❄

α
❄

✲ ✲

❄ ❄

✲

❄

Both the second and the third rows are exact by Remark 2.9. Therefore we have
α ◦ β = 0. Thus we have the following commutative diagram

0 M/(y)limM Hd
m(M)

0 M ′/(y)M ′
Hd

m(M
′)

N/(y)N)

0

✲ ✲
π

❄

α
❄

σ

✲ ✲
τ

❄

❄

with the middle column is exact. Moreover we have both π and τ are injective and
σ is bijective. Therefore τ ◦ α = σ ◦ π is injective and so is α. Hence we have the
following short exact sequence

0 → M/(y)limM → M ′/(y)M ′ → N/(y)N → 0.

Thus
ℓ(M/(y)limM ) = ℓ(M ′/(y)M ′)− ℓ(N/(y)N).

Now for each n = (n1, ..., nd), applying the above assertion for the system of param-
eters xn = xn1

1 , ..., xnd

d we have

ℓ(M/(xn)limM ) = ℓ(M ′/(xn)M ′)− ℓ(N/(xn)N).

12



Since M ′ is Cohen-Macaulay we have

ℓ(M ′/(xn)M ′) = e(xn;M ′) = e(xn;M).

Therefore Jx,M(n) = ℓ(N/(xn)N) for all d-tuples n = (n1, ..., nd). The proof is
complete.

The length ℓ(N/(xn)N) is much easier to understand than the function Jx,M(n).
In many cases we can see that it coincides with a polynomial or a finite number of
polynomials for n ≫ 0. The following Corollary extends [10, Lemma 2.4].

Corollary 4.4. Let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 3,
x1, ..., xd a system of parameters of R. Let M = (x1, ..., xd−v), v ≤ d− 2. Then for
the system of parameters x = x1 + xd, x2, ..., xd of M we have

Jx,M(n) = ℓ(R/(x1, ..., xd)) nd−v+1...nd−1 min{n1, nd}

for all n1, ..., nd ≥ 1. Therefore Jx,M(n) is not a polynomial.

Proof. Since dimR/M ≤ d− 2, R is a Macaulayfication of M . By Theorem 4.3 we
have

Jx,M(n) = ℓ(R/(x1, ..., xd−v, (x1 + xd)
n1 , xn2

2 , ..., xnd

d )

for all n1, ..., nd ≥ 1. Hence

Jx,M(n) = ℓ(R/(x1, ..., xd−v, x
nd−v+1

d−v+1 , ..., x
nd−1

d−1 , x
min{n1, nd}
d )

= ℓ(R/(x1, ..., xd)) nd−v+1...nd−1 min{n1, nd}

for all n1, ..., nd ≥ 1.

The next result follows from Theorem 4.3 and Proposition 2.7.

Corollary 4.5. Let M be a finitely generated R-module of dimension d. Suppose
that M has a Macaulayfication M ′ with dimM ′/M = t. Let x = x1, ..., xd be any
system of parameters of M such that x1, ..., xt forms a dd-sequence of N = M ′/M
and xt+1, ..., xd ∈ AnnN . Then Jx,M(n) is a polynomial in n for all n1, ..., nd ≥ 1.
Moreover

Jx,M(n) = n1...nte(x1, ..., xt;N) +

t−1∑

i=0

n1...niei,

where ei = e(x1, ..., xi; 0 :N/(xi+2,...,xt)N xi+1) and e0 = ℓ(0 :N/(x2,...,xt)N x1).
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5 Relation with the Hilbert-Kunz function

By considering all explicit examples, it can be expected that Jx,M(n) coincides with
finitely many polynomials in n (cf. [10], [20]). As we will see this is not always
the case. More precisely, we will give an example in characteristic p such that the
function Jx,M(n) can not be controlled by finitely many polynomials. This question
is closely related to the Hilbert-Kunz function.
Let (A, n) be a Noetherian local ring containing a field of positive characteristic p.
Let I be an ideal of A and a prime power q = pe we define I [q] = (f q|q ∈ I) as the
e-th Frobenius power of I. If I is an n-primary ideal we always have that A/I [q] has
finite length. So we have a function

fHK(I) : q 7→ ℓ(A/I [q]),

called the Hilbert-Kunz function, which was first studied by E. Kunz in [18]. In [22],
P. Monsky proved that the limit

eHK(I) = lim
q→∞

ℓ(A/I [q])

qdimA

exists as a real number; it is called the Hilbert-Kunz multiplicity of I, and the
Hilbert-Kunz multiplicity of n is also called the Hilbert-Kunz multiplicity of A. It
is natural to ask whether the Hilbert-Kunz multiplicity of an n-primary ideal is
always a rational number. There are many positive partial answers to this question.
However, recently H. Brenner disproved this question by the following celebrate
result.

Theorem 5.1 ([1], Theorem 8.3). There exists a Noetherian local domain whose
Hilbert-Kunz multiplicity is an irrational number.

We are ready to prove the main result of this section.

Theorem 5.2. There exist a regular local ring (R,m) of dimension d with m gen-
erates by a regular system of parameters x = (x1, ..., xd) and a finitely generated R-
module M , dimM = d such that the function Jx,M(n) = nde(x;M)− ℓ(M/(x[n])limM )
can not be represented by finitely many polynomials in n, where x[n] = xn

1 , ..., x
n
d .

Proof. Let (A, n) be the ring of characteristic p whose Hilbert-Kunz multiplicity
is irrational as Brenner’s result. Replacing A by its completion, notice that the
Hilbert-Kunz multiplicity does not change, we can assume that (A, n) is complete.
By the Cohen structure theorem we have that A is the image of a regular local ring
(R,m) of dimension d. Since eHK(A) is irrational we have A is not regular and so
dimR−dimA ≥ 1. If dimR−dimA = 1 we replace R by R[X ](m,X)R[X]. Henceforth
we can assume that dimR − dimA ≥ 2. Let the R-module M be the kernel of the
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canonical map R → A, we have dimM = d. Choose a regular system of parameters
x = x1, ..., xd generates m. By Theorem 4.3 we have

Jx,M(n) = ℓ(A/(x[n])A)

for all n ≥ 1. For all i = 1, ..., d we denote by ai the image of xi in A. We have the
sequence a = a1, ..., ad generates the maximal ideal n of A. Now we assume that
there are only finitely many polynomials P1(n), ..., Pr(n) such that for each n ≥ 1
we have Jx,M(n) = Pi(n) for some i and find a contradiction. We consider the case
n is a prime power q = pe we have

Jx,M(q) = ℓ(A/a[q]) = ℓ(A/n[q]).

Since there are infinitely many q, we must have a polynomial, says P1(n), such that

ℓ(A/n[q]) = P1(q)

for infinitely many q = pe. It should be noted that if a polynomial takes integer
values at infinitely many integer numbers, then all of its coefficients are rational.
Thus the leading coefficient of P1(n) is a rational number and degP1(n) = dimA.
So

eHK(A) = lim
q→∞

ℓ(A/n[q])

qdimA
= lim

q→∞

P1(q)

qdimA

is a rational number. It is a contradiction with our assumption about A. The proof
is complete.

For the next result we need the concept of the principle of idealization. Let
(R,m) be a Noetherian local ring and M a finitely generated R-module. We make
the Cartesian product R×M into a commutative ring with respect to component-
wise addition and multiplication defined by (r,m) · (r′, m′) = (rr′, rm′ + r′m). We
call this the idealization of M (over R) and denote it by R ⋉M . The idealization
R⋉M is Noetherian local ring with identity (1, 0), its maximal ideal is m×M and
its Krull dimension is dimR. If x = x1, ..., xd is a system of parameters of R then
(x, 0) = (x1, 0), ..., (xd, 0) is a system of parameters of the idealization R⋉M .

Lemma 5.3 ([10], Lemma 2.6). Let dimM = dimR = d and S = R ⋉ M . Let
x = x1, ..., xd is a system of parameters of R. Then we have

ℓ(S/(x, 0)limS ) = ℓ(R/(x)limR ) + ℓ(M/(x)limM ).

Now we prove the last result of this paper.
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Corollary 5.4. There exists a Noetherian local ring (S, n) of dimension d and a sys-
tem of parameters y = y1, ..., yd such that the function Jy,S(n) can not be represented
by finitely many polynomials in n.

Proof. We choose (R,m) and M as in Theorem 5.2. Let x = x1, ..., xd be a regular
system of parameters of R. Let S = R⋉M and y = (x1, 0), ..., (xd, 0). We can check

that e(y;S) = e(x;R) + e(x;M). Since R is regular we have (x[n])limR = (x[n]) for all
n. So

ℓ(R/(x[n])limR ) = ℓ(R/(x[n]) = nde(x;R).

Combining with Lemma 5.3 we have

Jy,S(n) = ℓ(S/(y[n])limS )− nde(y;S)

=
(
ℓ(R/(x[n])limR ) + ℓ(M/(x[n])limM )

)
− nd

(
e(x;R) + e(x;M)

)

= ℓ(M/(x[n])limM )− nde(x;M)

= Jx,M(n).

The assertion now follows from Theorem 5.2. The proof is complete.
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