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Preface

On the occasion that the Officers' Meeting and the Board Meeting of

ICIAM (International Council for Industrial and Applied Mathematics)

was held in Shanghai from May 26 to May 27,2006, many famous in-

dustrial and applied mathematicians gathered in Shanghai from different

countries. The Shanghai Forum on Industrial and Applied Mathemat-

ics was organized from May 25 to May 26, 2006 at Shanghai Science

Hall for the purpose of inviting some of them to present their recent

results and discuss recent trends in industrial and applied mathematics.

SOOeen invited lectures have been given for this activity. This volume

collects the material cOvered by most of these lectures. It will be very

useful for graduate students and researchers in industrial and applied

mathematics.

The editors would like take this opportunity to express their sincere
thanks to an the authors in this volume for their kind contribution. We

are very grateful to the Shanghai Association for Science and Technol-

ogy (SAST), Fudan University, the National Natural Science Founda-.

tion of China (NSFC), The China Society for Industrial and Applied

Mathematics (CSIAM), the Shanghai Society for Industrial and Applied

Mathmatics (SSIAM), the Institut Sino-Franc;aisde Mathematiques Ap-

pliquees (ISFMA) and the International Council for Industrial and Ap-

plied Mathematics (ICIAM) for their help and support. Our special
thanks are also due to Mrs. Zhou Chunlian for her efficientassistance in .

editing this book.

Rolf Jeltsch, Ta-Tsien Li, lan H. Sloan

April 2007
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Complementarity Problems: An Overview
on Existing Verification Procedures

Götz Alefeld

Institut für Angewandte Mathematik,

Universität Karlsruhe, 76128 Karlsruhe, Germany.

Email:goetz.alefeld@math.uni-karlsruhe.de

Abstract

In this paper we give an overview on verification procedures
for the solution of complementarity problems.

2000 MR Subject Classification 90C33, 65G30, 65KlO
Keywords Complementarity problem, enclosure of solutions,
verification, interval arithmetic

1 Introduction

Complementarity problems are finding more and more attention in ap-
plications as weIl as from a mathematical point of view. Especially
numerical methods for solving these problems are of great interest. As it
is usually the case with numerical methods the computed result delivers
an approximation and it has to be confirmed somehow that a solution
of the given problem really exists elose to the output of the computer.
This confirmation is done by the computer and is caIled verification.

In this survey paper we are mainly concerned with this last aspect.
After formulating the complementarity problem and mentioning some
weIl-known applications, we show by a simple example, that verification
is a must. We continue by introducing a general verification procedure
for complementarity problems. After that we show that for a special
elass of problems there exists a simple verification procedure. FinaIly
we consider problems with interval data which from a practical point of
view always have to be considered if one is taking into account rounding
errors, for example.

2 Complementarity Problems and Applications

Given a (nonlinear) mapping l : R+. -+ Rn, where R+. denotes the set of
vectors with nonnegative components, the problem
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"Find z E }Rnsuch that
z>O

}
l(z) > 0

zTl(z) = 0
(2.1)

(or to show that no such z exists)" is called (nonlinear) complementarity
problem (NCP).

Equivalent formulations are:

"Find w, z E }R"such that

W > 0,z > 0

}
w = l(z)
zT W = 0

(2.2)

(or to show that no such w, z exist)" ,
or:

"Find z > 0 such that

g(z) = min (z, l(z)) = 0, (2.3)

where the minimum is taken componentwite (or to showthat no such z
exists)" .

If

l(z) = Mz + q,

where M E }Rnxn and q E }Rnis a given matrix and a given vector,
respectively, then the problem is called linear (LCP).

Many problems in science, engineering and economics either arise
naturally or can be reformulated as a complementarity problem. We
consider a problem from optimization.

Example 1 (Quadratic programming (QP»

"Minimize

sub ject to
Ax>b

x > 0"- ,

where Q E }Rnxn is symmetrie, C E }Rn,A E }Rmxn and b E }Rm. If
Q = 0, then we have a so-called linear programming problem.
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It is well-known that if x E ]Rn is a locally optimal solution, then
there exists a y E ]Rnsuch that (x, y)T satisfies the Karush-Kuhn-Tucker
conditions

u = c + Qx - AT Y > 0 , X > 0 , xT U = O
}

(24)
V = - b + Ax > 0 , Y > 0 , yT V = 0 . .

Definingthe block matrix

M= (~~T)
and the block vectors

respectively, (2.4) can be written as

z>O

}
Mz+q>O ,
zT(Mz+q)=0

which is an (LCP).

If Q is not only symmetric but also positive semi-definite (Le., fex)
is convex), then (2.4) is not only necessary but also suflicient for x to be
a globally optimal solution of the (QP).

Aseries of further problems which lead to or which can be formu-
lated as a complementarity problem, are the following: contact problem,
porous flow problem, obstacle problem, journal bearing problem, elastic
plastic torsion problem. For details see [7].

3 Verification of Solutions of Complementarity
Problems

We start with a simple example which shows that verification of solutions
is a must if one has computed an approximation.

Example 2 (see [1])

Let l(z) = Mz + q where

M =
(

~ ~ ~

)
and q =

(
~

)
.

-1 -1 0 - 10-6
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We consider the formulation (2.2) of the complementarity problem.

For the "approximate solution"

(

10-6

) (

3

)
z = 10-6 , W = 2 ,

1 10-6
(3.1)

one obtains

Ill(z) w 1100= 11 Mz + q - w 1100 = 4 . 10- 6

and
ZT W = 6 . 10- 6.

In many iterative methods (e.g. for interior-point-methods) the condi-
tion

max {zTw, 11Mz+q - w 1100}< €

is used as a stopping criteria for some fixed given €. A pair (z, w)T
which fulfils this inequality is then called an "€-approximate solution" .
In this sense the given vectors z, w form a 6.10- 6-approximate solution.
However, it can be shown that there is no exact solution of the (LCP)
within an 11.1100distance of 0.25 from this €-approximate solution with
€ = 6.10- 6. We will come back to this statement later, again.

Our starting point for the verification of solutions is the equivalent
formulation (2.3) of a complementarity problem.

However, we start by explaining the general idea, which is indepen-
dent of the underlying equation (2.3):

Assume that we have given a continuous mapping

H : D C Rn --+Rn

and an interval vector [x]CD. A mapping

8H : [x] x [x] --+Rnxn

is called slope, if

(A) H(x) - H(y) = 8H(x, y)(x - y) , x, Y E [x]

holds. Assume that there exists an interval matrix 8H(x, (x]) such that

(B) 8H(x, y) E 8H(x, [x])
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for all y E [x] and some tixed x E [x].
Define for a nonsingular matrix A E JRnxn the interval vector

L(x, A, [x)) : = x - A-1 H(x) + (1 - A-1c5H(x, [x)))([x]- x).

Then, the following hold:

a) If L(x, A, [x)) c [x], then there exists an x* E [x] such that
H(x*) = o.

b) If L(x,A, [x))n[x]= 0(emptyset), thenH(x) -I Oforallx E [x].

In Moore [9] these results were obviously the first time applied to
verify the existence of a zero x* of a mapping H in a given interval
vector [x]. A proof of the statements a) and b), can also be found in [2].
We are now going to apply these statements to the problem (2.3), that
is we replace the general case H (x) = 0
by

g(z) = min(z, l(z)) = 0,

where l(z) is given. First of all we have to find a slope c5g(x,y) for which

(A) g(x) - g(y) = c5g(x,y)

for all x, y E [x] holds, where [x] is some given interval vector. Forther-
more, we have to bound the slope by an interval matrix c5g(x, [x)):

(B) c5g(x,y) E c5g(x,[x))

for some tixed x E [x] and all y E [x].

We first consider (A): Define for each i E {I, 2,. . ., n} the sets

st = {x E [X]lli(X) > Xi},

Si = {x E [xJlli(X) < Xi},

S?= {x E [x] I li (x) = Xi},
where l(x) = (li(X)). Then

gi(X) =
{

~(~),
li(X)= Xi,

xE S7t
x E S-:-t
x E S~t .

Using this representation of gi(X) we obtain the nine cases from table 1
for the i-th row c5gi(x,y) of the slope matrix c5g(x,y), where ei denotes
the i-th unit vector.
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Table 1: ~9i(X,y)

Furthermore, ~li(x, y) denotes a slope (vector) of the i-th component
of the mapping l(x):

and

We prove this for the ,case x E si, y E Si, for example. The proof for
the rem~inin~ cases can be performed similarly. H x E si, y E Si, then

9i(X) - 9i(Y)= Xi -li(Y)

=Yi -li{Y) + er{x - y)

Yi -li{y)(~li{X, y) - er){x - y) T
{ )= +e. x-y

(~li(X,y) - er)(x - y) I

=(ai(~li{x, y) - er) + er)(x - y)

=~gi(X,y)(x - y).

Concerning (B), let x E [x]be fixed and consider the nonlinea.r program-
ming problems

"

x\y st S-:- S9I I I

8t er ai(li(x, y) - er) + er erI I I

S-:- ßi(li(X, y) - er) + er li(X, y) li(X, y)I

S9 er li(x, y) erI I I
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and

max{Yi -li(Y)}.
yE[x]

Let yi,l and yl,2, respectively, be solutions of these problems, then if

Yi,2 E S7 U S9t t

c5li(x,[x]) , yi,l E Si U S?

[0, Cti](c5li(x, [x]) - er) + er, x E si U S?,
yi,2 E Si

x ESi,
yi,l E Si

(B) holds. For details see [1].

Exploiting the preceding ideas we get the following algorithm for the
verification of a solution:

AIgorithm:

Let r > 0 be a given tolerance and let x be an approximate solution of

9 (z) = min(z, l(z)) = O.

Define the interval vector

[x] = (x+r [-e,e])nR+

where e = (1,1,..., l)T.

Choose a nonsingular A and compute L(x, A, [x]).

If L(x, A, [x]) ~ [x] then g(z*) = 0 for some z* E [x].

If L(x, A, [x])n [x]= 0(empty set), then g(z) i- 0 for all z E [x].

In [1] this algorithm was applied in order to prove the conclusion from
example 1. In [3] there are also numerical results for the nonlinear case.

4 Special Complementarity Problems

In certain cases it is possible to avoid the laborous bounding of the slope
given by the elements of table 1. Starting again with the formulation
(2.3), we easily see that a nonnegative solution of (2.3) is a fixed point
of the mapping
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where

p(x) = max{O,x - D .l(x)}

and where D = diag (di) is a diagonal matrix with positive elements in
the main diagonal. The maximum is again taken componentwise. Please
note that the preceding statement is not true in general for a nonsingu-
lar, nonnegative matrix, which is not a diagonal matrix.

Assume now that l' has a so-called interval arithmetic evaluation

l'([x]), that is l'(x) E l'([x)) holds for all x E [x] and an interval vector
[x]. (Such an l'([x)) exists and can be computed if the Jacobian of l
exists and can be evaluated for the given interval vector. For details see
any book on interval arithmetic.)

Let now [x] be given. Let l'([x)) denote the interval arithmetic eval-
uation of l' over [x]. If

r(x, [x],D) : = max{O,x- D .l[x] + (I - Dl'([x]))([x]- x)}

is contained in [x],rex, [x],D) C [x], where x E [x] is fixed, then there
exists a solution z* of (2.3) in rex, [x],D) (and therefore also in [x)). All
solutions of (2.3) contained in [x]are also contained in rex, [x],D). Prom
the last statement it follows that there is no solution of (2.3) in [x] if
r(x, [x],D) n [x]= 0. (In the definition of r(x, [x],D), there appears an
interval vector [x]and the maximum of the zero vector 0 and an interval
vector, say [y],has to be performed. This maximum is defined as follows:
Let the interval vector [y]have the lower bound y and the upper bound
y, respectively. Then max{O, [y]} is the interval vector with lower bound
max{O,y} and upper bound max{O,y}, respectively. The maximum of
two real vectors is formed componentwise.)

If the problem is linear,

l(z) = Mz +q

with a given H-matrix M with positive diagonal elements, it is easy to
find an interval vector [x] and a diagonal matrix with positive elements
in the main diagonal such that rex, [x],D) c [x]. Furthermore we have
a simple iterative method which computes a sequence of interval vectors,
all containing the (in this case for arbitrary q) unique solution z*, and
converging to Z*.

We first repeat some properties of H-matrices. Then we consider the
iterative method and finally we construct an interval vector containing
z* . Define for the given matrix M = (mij) the so-called comparison
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matrix M = (mij)
by

37

_

{
Imiilifi=j

mij =
I I

.f . -'- . .
- mij 1 ~ I J

11 is called an H-matrix ifI there exists a positive vector d such that
Md>O.

The diagonal elements of an H-matrix are different from zero. There-
fore, if M is real, they are either positive or negative. If the diagonal
elements of a (real) H-matrix are all positive, then this matrix belongs
to the set of so-called P-matrices (see [7]). If M is a P-matrix then the
(LCP) has a unique solution for each q.

We now assume that M is an H-matrix with positive diagonal ele-
ments mii > 0, i = 1,2,..., n. Since l'(x) = M in this case, we obtain

f(x, [x],D) = max{O,x - D(Mx + q) + (I - DM)([x]- x)}.

Assume now that

f(x, [x],D) c [x]

for some given [x]. Define [xO]: = [x] and consider the iterative method

(4.1)

where

is the center of [xk].

Then the following hold:

a) If the (unique) solution z* of (2.3) is contained in [xO]then the
iteration method (4.1) is well-defined and limk_oo [xk] = z*.

b) If z* fj. [xO]then the intersection becomes e~pty after a finite
number of steps.

For details see [5], where also the method for finding [xO]with z* E
[xO]is discussed. In that paper also a couple of numerical examples are
presented.

5 Interval Data

Representing the given data of a given complementarity problem on a
computer usually implies rounding of the data. Hence on the computer
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a problem different from the given one has to be solved. One can over-
come this difficulty by endosing the data by intervals on the computer
and by considering a whole set of complementarity problems. Then the
problem consists of computing the set of the solutions ofall problems.

Another interesting case, in which interval data have to be consid-
ered, was given by Schäfer [10,11]. He showed that discretizing a certain
free boundary problem leads in a natural manner to a complementarity
problem with interval data if the discretization error is taken into ac-
count.

After the formulation of the pr~bleIn we consider some iterative meth-
ods for the indusion of the solution set and show convergence of these
methods for a certain dass of problems.

. Let there be given an interval matrix [M) = ([Tni;]) E mnxn and an
interval vector [q] E ([qi]) E mn. Then we consider the .set E of the
solutions of all possible linear complementarity problems:

L : = {z E JRn Iz > 0, .q-tMz > 0, zT(q+Mz) = 0, ME [M], q E [q]}.

The problem consists of finding an (as small as possible) interval vector
[xl E mn, such that E c [x].

We now consider the case, that the given interval matrix is a so-
called (interval) H-matrix. For the definition of an H-matrix in the
interval case we generalize first the definition of the comparison matrix
of a"given matrix (see section 3). .

Given the interval ~trix [M] = ([mi;]), where [Tni;) = [mij' Tni;),
the comparison matrix M E JRnxn is a real matrix With

.. mij =
{

min{ITnijll mij E [ffiij]}, i =j

~ /[TnijJl, i 1=j,

where the absolute value of the interval [ffilj] is areal number defined
by I [mij] I =max {I !l!i; I , I ffiij I}. The interval matrix [M) is called
interval H-matrix if the comparison matrix is an H-matrix, that.. is, if
there exists a positive.vector, such that Md> o.

Now assume that the .given interval matrix [M] = {[ffiij])is an inter-
val H-matrix with!l!ii > 0, i = 1,2, . . . ,n. Wesplit [M]into its diagonal
part [D] and its off-diagonal part -[R]: [M] = [D] - [R].. Define the
diagonal matrix [D] by

A. 1
[D] : =diag (-[ ]

).
t'nii
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Then we consider the iteration method

[Xk+l]= max {O, [D]([R][xk]- [q]} , k = 0,1,2, ... . (T)

(T) has the following properties:

a) limk_oo [xk]= [x*]with

[x*] = max {O, [D] ([R] [x*] - [q])};

[x*] is unique.

b) E c [x*].

The proof of a) . f~llows by application of the B~nar.h fixed poirit
theorem to the mapping

9([X])= max {O, [D] ([R] [x] - [q])}

using the fact that the spectral radius of the real matrix I [D]II [R]/ 1s.

less than one. The second part b) follows by simple interval arithmetic
manipulations.

The introduced method (T) can be considered as a straight forward
generalization of the well-~own total step method to complementarlty
problems (with interval data). Another choice would be to consider the
Gauss-Seidel-method (GS) and its generalization. It has 'been shown
in [4] that under *e conditions assumed for (T), (GS) is also conver-
gent (to the same limit [x*] as (T». Introducing a so-called relaxation
parameter w in order to speed up (GS) by the successive over relaxation
method (SOR) is not advantagoous if interval data are considered since
in this case the fixed point [x*rof (T) may be infiated for certain values
of w. For details see [4].. .

It is interesting to raise the question whether the limit [x*]of (T) is
the smallest interval vector (with respect to inclusion).for which E C
[x*]holdS.In general this is not the case under our assumption that [M]
is an interva1 matrix with!!!j, > 0 , i = 1,2, . . . ,n. However,by restrict-
ing the set of matrices further, this is actually true: H we assw:i1ethat
for the giveninterval H-matrix not only mal > 0 but also 1näj< 0 , i ~ j
(Sucha matrix is called an interval M(inkowski)-matrix),.then [x*] is
optimal in the sense that there exists no smaller interval vector with
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respect to inclusion such that b) holds.

For a proof see [4], where also a couple of numerical examples with
interval data can be found.

6 Newton's Method

In this section we apply the idea ofNewton's method to the (NCP) from
(2.1).

Define the linearized mapping lk by

Then we consider the following algorithm, which may be considered as
a generalization of Newton's method for the solution of nonlinear equa-
tions:

{

Choose zoo

(NM) For k = 0,'1,... compute the solution zk+1 of the (LCP)

_ z > 0 , lk(z) > 0 , zTlk(z) = O.

Concerning the existence and convergence"of the sequence {zk}~o the
following result has been proven by Z. Wang [12]:

Let D eRn be open and R+ C D. Assume that 1 : D ~ Rn is
differentiable, Do C D is convex and that

IIl'(x) -l'(y)lIoo < 1'lIx- ylloo,x,y E Do.

Suppose there exists a starting point zo E Do such that l'(zO) is an
H-matrix with positive diagonal elements and

where the bar denotes the comparison matrix. Denote by z1 the first
iterate of (NM) starting with zO. Let IIz1 - zOlloo < 1J. H h = ß1'1J < !
and S(zO, r*) C Do, where r* = (1 - VI - 2h)j ß1', then the sequence
{zk} is well defined, remß.1ngin S(zO,r*) and converges to a solution
z* of (NCP) which exists in the ball S(zO, r*). z* is unique in the ball
S(zO, r**), where r*-*= (1 + vl- 2h)j ß1'. The error estimation
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holds. The preceding statements also hold for the I-norm.

H l'(x) is positive definite, let l'(x) = !(l'(x) + (l'(x»T). H l'(xO)is-- .

replaced by l'(xO), the preceding statements also hold in the 2-norm.

Using the error estimation for zk - z*, the verificationof a solution
in a ball can be verified.

7 Further Results

In the paper [8], Mathias and Pang have shown that for the unique
solution z* of the (linear) complementarity problem (2.1) with l(z) =
Mz + q, where M is a .so-calledP-matrix, the estimation

IIz - z*lIoo < 1 +_!I~lIoo IIr(z)lIoo

with

r(z) = min{z,Mz+q},

holds for all z E ]RR. However, c(M) is not easy to find for a given
approximation z of z*. .Therefore the following estimation by X. Chen
and S. Xiang [6] is of great importance: For each p > 1 it holds for all
zERR

where D = diag (dI,..., eIn). Furthermore

max 11(1-D+DM)-IlIoo
DE[O,I]" .

max{I,IIMlloo} 1+ IIMlloo< =
- c(M). c(M).

min{I,IIMlloo}
c(M)
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