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Abstract. In this paper some conditions are given to ensure that for a jump homoge-
neous Markov process { X (), > 0} the law of the integral functional of the process:
=12 ]“j w(X (t))dt, converges to the normal law N (0, 0%) as T — oo, where wis a
mapping from the state space E into R,

1. Introduction

The central limit theorem is a subject investigated intensively by many well-
known probabilists such as Linderberg, Chung..... The results concerning cen-
tral limit theorems, the iterated logarithm law, the lower and upper bounds of
the moderate deviations are well understood for independent random variable
sequences and for martingales but less is known for dependent random variables
~tich as Markov chains and Markov processes.

The first result on central limit for functionals of stationary Markoy chain
with a finite state space can be found in the book of Chung [5]. A techunical
method for establishing the central limit is the regeneration method. The main
idea of this method is to analyse the Markov process with arbitrary state space by
dividing it into independent and identically distributed random blocks between
visits to fixed state (or atom). This technique has been developed by Athreya -
Ney [2], Nummelin [10]. Meyn - Tweedie [9] and recently by Chen [4].

The technical method used in this paper is based on central limit for mar-
tingales and ergodic theorem. The paper is ogranized as follows:

In Sec. 2, we shall prove that for a positive recurrent Markov sequence
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{ X5, n > 0} with Borel state space (£, B) and for ¢ : £ — R such that
plz) = f(x) — Pf(z) = f(x / Sl P, dy)

with f : B — R such that [, f?(2)11(dz) < oo, where P(x,.) is the transition
probability and I1(.) is the stationary distribution of the process, t,he distribution
of n= 12371 | (X;) converges to the normal law N(0,02) with 02 = [, (¢?(z)+
2¢(x) P f(2))1(dz).

The central limit theorem for the integral functional 7-1/2 [ w( X (1))dt of
jump Markov process { X (¢),1 > 0} will be established and pw\aud in Sec. 3.

Some examples will be given in Sec. 4

It is necessary to emphasize that the conditions for normal asymptoticity
of 1 ]“Z ", (X)) is the same as in [8] but they are not equivalent to the
ones established in [10, 11]. The results on the central limit for jump Markov
processes obtained in this paper are quite new.

2. Central Limit for the Functional of Markov Sequence

Let us consider a Markov sequence {X,,,n > 0} defined on a basic probability
space (€, F, ) with the Borel state space (£, B). where B is the o-algebra
generated by the countable family of subsets of E. Suppose that {X,,,n > 0} is
homogeneons with transition probability

P(z, A) = P(Xn4

-Xn — -'i-')-_ Ae B.
We have the following definitions

Definition 2.1. Markov process {X,,,n > 0} is said to be irreducible if there
erists a o- finite measure poon (F, B) such that for all A€ B

u(A) > 0 implies » " P"(x,A) >0, Vo € E
n=1
where
P.” (;,I,'“ﬁl}l = P(X'm.—i—'u = A|~er. == LL'}'

The measure p is called irreducible measure.
By Proposition 2.4 of Nummelin [10], there exists a maximum irreducible

measure p" possessing the property that if g is any irreducible measure then
jopt.

Definition 2.2. Markov process {X,,,n = 0} is said to be recurrent if

ZP” A) =00, Yz e E\YA€B: i*(A) >

n=1

The process is said to be Harris recurrent if

Py(Xp,€eAto)=1.
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Let us notice that a process which is Harris recurrent is also recurrent.

Theorem 2.1. If { X,,.n > 0} is recurrent then there exists a uniquely imvariant
measure 11(.) en (£,B) (up to constant multiples) in the sense

T(A) = /Fﬂ(d:x:)P(a:./-‘L_}, VA€ B, (1)

or equivalently
I(.) = I1P(.). (2)

(see Theorem 10.4.4 of Meyn-Tweedie, [9]).

Definition 2.3. A Markov sequence { X,,.n > 0} is said to be positive recurrent
(null recurrent) if the invariant measure 11 s finite (infinite).

For a positive recurrent Markov sequence {X,,.n > 0}, its unique invariant
probability measure is called stationary distribution and is denoted by TI. Here-
after we always denote the stationary distribution of Markov sequence {X,,,n >
0} by IT and if v is the initial distribution of Markov sequence then P,(.), F,(.)
are denoted for probability and expectation operator responding to v. In par-
ticular, P,(.), E,(.) are replaced by P.(.), £.(.) if v is the Dirac measure at
i

We have the following ergodic theorem:
Theorem 2.2. If Markov sequence {X,,,n > 0} possesses the unique invariant
distribution T such that
Plx,.) < II(.), Vo € E, (3)

then { X, n = 0} is metrically transitive when initial distribution is the station-
ary distribution. Further, for any measurable mapping ¢ + £ x E :— R such that
Enle(Xo, X1)| < oo, with probability one

n—1
Tim n™h Y o(Xk, K1) = Eng(Xo, X1) (4)
k=0

and the limit does not depend on the initial distribution. (See Theorem 1.1 from
Patrick Billingsley [3]).

The following notations will be used in this paper: For a measurable mapping
p: F— R we denote

Iy = /! (o) {dr). Pp(x) = -/‘; e(y)Ple.dy) = E(p(Xn+1)| Xn = x),

Wﬂmzfgmwme:Ewuwmwmzw
J B
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For the countable state space I = {1,2,...} we denote

Py =B (7)) = P(Xng1 = j|Xa = 1), BY°
— pn (" {}}} = P(XH'H-H = :’an =)

my =T({5}), P=[Py.i,j € El, P™ =[P{,i,j € B] = P".

Then

e =" @li)m, Po(i) = e(k)Pik, P (i) =" w(k)P;; .
JEE

kel kel

If the distribution of random variable Y), converges to the normal distribution
N(p.0?) then we denote £y N(p.0?). The indicator function of a set A is
denoted by 14, where

l,, fweAd

0. else.

1A('w’)={

Finally, the mapping ¢ : E = {1,2,...} — R is denoted by column vector
o= (p(1),(2),...)7.
The main result of this section is to establish the conditions for
—~1/2 < - C . 2
nHEN " o(Xg) = N(p, o).
k=1

We need a central limit theorem for martingale differences as follows

Theorem 2.3. (Central limit theorem for martingale differences) Suppose that
{ug, k= 0} 4s a sequence of martingale differences defined on a probability
space (2. F, P) corresponding to a filter {Fi, k > 0}, i.e., E(upp|Fy) =0k =
0,1,2, -+ Further, assume that the following conditions are salisfied

(A1) nt ZE(H.E_[.‘H,._]} 2, 52,
k=1

(Az) n~! ZEf'”-f-l”ukgsﬁl|.?7:.-__1) = 0, for each = > 0 (the conditional Lin-
k=1
derberg’s condition).

Then
n2N g S N (0,62, (5)
k=1
(see Corollary of Theorem 3.2, [7]).

Remark 1. Theorem 2.3 remains valid for {ug, k > 0} being a m-dimensional
martingale differences where the condition (A, ) is replaced by

T
> Z Var (wg|Fi-1) g% = loijying = 1,2, m]
k=1
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with
Var ('”-A-|-7:k—1) = [E(uiku;jklfk—])nf‘nj =12, .m].

We shall prove the following theorem.

Theorem 2.4. (Central limit theorem for functional of Markov sequence) Sup-
pose that the following conditions hold:

(H1) The Markov sequence {Xn,n > 0} is positive recurrent with the transition
probability P(x..) and the unique stationary distribution I1(.) satisfying the
condition (3).

(Hz) The mapping p : E — R can be represented in the form

e(z) = f(z) — Pf(z), = € E, (6)
where [ : E — R is measurable and I1f2 < oc.
Then )
n~23 " o(Xy) £ N(0,02) (7)
k=1

for any initial distribution, where

o* =1I(f* - (Pf)?) = I(¢? + 20PF). (8)

Proof. We have

WY p(Xi) = V2 S () ~ P (X))
=1 k=1

=712 [f(Xk) = PA(Xe)] + 0723 Pf(Xpy) — n 12 D Pf(Xy)

k=1 k=1 k=1

=n"Y2Y wp +n AP F(Xo) — PF(X),
k=1

where

up = f(Xi) = Pf(Xi—1) = f(Xi) = B(f(Xp)| Xi-1)

are martingale differences with respect to Fp = o(Xo, X1, - , X ), whereas
nY2[Pf(Xo) — Pf(Xn)] -0

by Chebyshev’s inequality. Thus, it is sufficient to prove that

T
Yo =023 " uy L4 N(0,07)
k=1
and the convergence does not depend on the initial distribution. For this pur-
pose, we shall show that the martingale differences {uy, k > 1} satisfy the con-
ditions (Ay), (As).
According to assumption (Hs) we have
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En|E(u}|Fo)) = En(ui) = Eulf(X1) — Pf(Xo)]* = Enf*(X1) — En[Pf(Xo)]*,
thus
En(u?) = I1f? - TI(Pf)? < ox. )
Therefore, by the ergodic Theorem 2.2, for any initial distribution with proba-
bility one
n
e Z E(u}|Fr-1) — Enud = o’
k=1
Thus the condition (A;) of Theorem 2.3 is satisfied.
On the other hand, by (9) we have

En(uiljju, ) — 0, (10)

as t | co. Again by the ergodic Theorem 2.2, for any initial distribution, with
probability one

no Z E(uiljuy >4 Fr-1) — En(uilju,|>1) (11)
=1

for each t > 0. By (11) and then (10) we have with probability one

0< limn™? Z En (I”"ﬁlll'”-klzf\/ﬁ])

00
k=1
"
< 1 —— Er(u2l )
< lim n o (gL [y, [>¢)
M—00 k;—] -

= E‘n(-ufl[|?$]|2,_l) — D ast T e ¢ B

Thus condition (Asy) is satisfied, hence by the central limit theorem for martin-
gale differences {uy. k > 1} (7) holds. ]

Remark 2. 1f the series
> Pro(a) = Z] o(y)P" (z, dy)
=0 n=0 o
converges, then we always have
wlz) = f(z) — Pf(z)
with

fl@) = Y Po(a).

=)

In fact. it is obvious that




Central Limit Theorem for Functional of Jump Markov Processes 449

f(z) = p(a +ZP” )+PZ Py o(z) + Pf(z).

n=>0

Furthermore, in this case

oo
=1I [-',»:'2 +2 Z @P"‘up]

n=0
Remark 3. 1f ¢ = f — P holds, then
Mg =I1f —1IPf = 0. (12)
So the condition (12) is necessary for p = f — Pf. Furthermore, in addition if
we have

hm Prf(z)=1I1f, Yz € E

then f(x) is also given by
z) =Y P"p(x)+I1f.
n=0
In fact. we have
p(z) = f(x) — Pf(z)
Py(x) = Pf(x) — P*f(a)

_!J”'tp(:ﬂ) _ P"‘f(w) o P-;r.+lf(w}_

Summing the above equalities we obtain
ZP" (z) = P f (@) — f(x) —TIf.

Remark 4. Function f given by (6) is defined uniquely up to an additional
constant if lim, .., P"g(x) = Ilg for all ¢ II- integrable.

In fact, suppose that fy, f2 are the functions satisfying (6). Then g = f; —
is a solution of the equations:

g(z) = Pg(z), g(z) = P(Pg(z)) = P*g(z) =---= P"g(z), V2 € E

for all n =1,2,---. Thus there exists the limit

g(x) = lim P"g(x) = 1lg (a constant).

n—oo
It also follows from Remark 4 and from (8) that if f satisfies the equation (6)
then o2 is defined uniquely, i.e., 02 does not change if f is replaced by f + C
with €' being any constant, since
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H[p? + 20P(f + C)) = N[? + 2pPf] + 2CTp = I[p* + 20 Pf).
Remark 5. 1f Tl # 0 we can replace ¢ by ¢* = ¢ — .

Corollary 2.1. Assume that a Markov chain {X,,,n > 0} is irreducible, ergodic
with the countable state space £ = {1,2,---} and with the ergodic distribution
IT = (my, 72, -+ ) and the following condition is satisfied

(H3) The mapping v : ' — R takes the form

ple) = f(z) — Pf(x), Ve e E
with f: E — R being measurable such that I1f? < oc. Pul
o® =1[f* — (Pf)?] = U[¢* + 20P].
Then )
':;._l-”z;p(Xk) i N(0,0%) as n — oc.
k=1
3. Central Limit for Integral Functional of Jump Markov Process

3.1, Jump Markov Process

Let {X(#).t > 0} be a random process defined on some probability space
(2, F, P) with measurable state space (£, B).

Definition 3.1. The process { X (t),t > 0} is called jump homogeneous Markov
process with the state space (K, B) if it is a Markov process with transition prob-
ability

P(t,z,A)=P(X(t+s) € AlX(s)=2), 8,t >0
satisfying the following condition

}ill{l}P(t,E, {£}) =1, Yz € E. (13)

We suppose also that {X(¢),# > 0} is right continuous and the limit (13) is
uniform in x € E.

By Theorem 2.4 in [6] the sample functions of { X (¢),t > 0} are step functions
with probability one, and there exist two g— functions ¢(.) and g(...) being Baire
functions where ¢(x,.) is finite measure on Borel subsets of E \ {z}, ¢(z) =
qla, E\ {z}) is bounded. Further

. (1—=P(t,z,{x}) _

1151[1} : g(x),
e BB b A
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uniformly in A ¢ E\ {«}.

If g(x) > 0 Va € E then the process has no absorbing state. We assume also
that ¢(z) is bounded from 0.

Since {X(t),t > 0} is right continuous and step process, the system starts
out in some state Z;, stays there a length of time p;, then jumps immediately
to a new state Zs, stays a length of time ps, ete. Therefore there exist random
variables Zy, Z;, -+ and py, pa, - such that

X(t)=2,, if 0<t<py,
X(t)=2Zn, if pr++pp_1<t<pi+-+ + P, 1> 2,
pn's are all finite because we have assumed that g(z) > 0 Va € E.
Let »(t) be the random variable defined by
v(t) =max{k: py + -+ pp <t}

then »(t) is the number of jumps which occur up to time .
It follows from the general theory of discontinuons Markov process (see [6].
p.266) that {Z,,n > 1} is a Markov chain with transition probability

a(a, A)
Py A) =211 14
S q(x) S
furthermore
Plpn+1 > 8lp1yo+ cpns Zaye o vy Zpyr) = e W Ent1ds | 5 5 ) (15)
P(Znir € Alpry -+ s pus 2, , Zn) = P(Z, A). (16)

The function ¢(.,.) is called the transition intensity.

It follows from (15), (16) that {(Z,,p,).n > 1} is a Markov chain on the
cartesian product E'xR*, where Rt = (0, oc). This chain is called the imbedded
chain with the transition probability

Q(z,8,A x B) = P(Zu41 € A, pns1 € B|Z, = 2, pp = )

:/ P(:r._(.’.y)/ q(y)e 1y,
JA JB

A x B € B x B(R"), where B(R") denotes the Borel o- algebra on R*. This
transition probability does not depend on s and we rewrite it by Q(z. A x B) or
formally by

Q. dy x du) = P(z, dy)q(y) exp(—q(y)u)du.

Definition 3.2. The probability measure II* on (E x R*, B x B(R")) is called
the stationary distribution of the imbedded chain {(Z,, pn),n > 1} if

IT*(A x B) :/ II*(dz x ds)Q(z, A x B), Ax Be€BxB[RY). (17)

ExR+
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Letting B = R*, then II* is the stationary distribution of the imbedded
chain if and only if

() = II*(. x RY) (18)

is the one of {Z,.n > 1} with the transition probability P(z, A) = Q(x, AxR™)
and

IM"(A x B) = / (da)Q(x, A x B).
JE

Since [1P(.) = TI(.), we have

(Ax B)= / {dax) / r,dy) / qly) exp(—qly)u)du
= / (/ H((i:::)P(;r:.dy))/ q(y) expl—q(y)u)du
Ja e B

or
(4 x B) = [ 1) [ atw)exp(-awdn (19)
JA B
or in differential form
T (dy x du) = I{dy)q(y) exp(—q(y)u)du. (20)
Thus we have the following proposition:
Proposition 3.1. If the Markov chain {Z,,.,n > 1} with the transition probabil-

ity P(x, A) has the stationary distribution II then the imbedded chain possesses
also the stationary distribution 11 defined by (19) or (20).

Proposition 3.2. If P(z,.) < l(.) Vx € E, where I1 is the stationary distribu-
tion of {Zn,n > 1} then the transition probability Q(x..) of the imbedded chain
is also absolutely continuous with respect to the stationary distribution 11, i.c.

Qz,.) < II*(.), Yz € E.
(see [3], p.66).
Here and after we shall denote by II,ITI* the stationary distributions of

Markov chain {Z,,n > 1} and the imbedded chain {(Zy,pn).n = 1}, respec-
tively.

3.2. Functional Central Limit Theorem
We have the following ergodic theorem for the imbedded chain
Theorem 3.1. (Ergodic theorem for the imbedded process) If Markov chain

{Z,,n > 1} with the transition probability P(x,.) having the stationary distri-
bution 11 such that
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Pla, ) < II(.) Vz € E,

and if (Z1, p1;y Z2, p2) 1s the random variable possessing the finite expectation p
w.r.t. the probability measure Pr-, then for any initial distribution

T

: i =k ; . h — i 9
-n]lr-l-_!c_- n Z 2y prs Zhs1s Prs1) = p5 a8, (21)
k=1
In particular, if g~ < > then
lim n! Zpk = / O(dy)(q(y)) ' =g " a.s. (22)
AN r—1 JE
Furthermore
{
lim ] ={llg 1)} =20 > 0as (23)
t—oc 1

and (21), (22) remain valid if in the limits n is replaced by v(t), then limits are
taken as t — oc.

Proof. (21) follows from the ergodic theorem for Markov chain {(Z,,, p,, ), n > 1 },

and (23) follows from (22) by the same argument as in the renewal theory. m

Applying Theorem 2.4 for the imbedded chain {(Z,.p,),n > 1} we obtain
the following theorem.

Theorem 3.2. (Central limit theorem for the imbedded chain) Assume that the

Jollowing conditions (Ch),(Cy) are satisfied:

(C1) The jump Markov process {X (t),t > 0} has the imbedded chain {(Z,, pn),
n > 1} such that the Markov chain { Z,,,n > 1} has the transition probability
Pla,.) with the stationary distribution 11 satisfying the following condition

Pz, )< TII(.) Ve € E.
(C'3) The funetion ¢ : E x RY — R takes the form
Yz, s) = flz.s) — Qf(a.s),
where f: ExRY — R is B x B(R")- measurable and

Qf(@) = Qf@.5) = [ Plady) [ (0 uaty) expl-ay)u)du.
JE B+
Furthermore, the function f has the following property

w= [ [ ol en-amude <. @0

Then we have

n~4? Z W(Zie, i) —= N(0,07) (25)
k=1
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for any initial distribution, where

o? =II"(f2 — (Qf)%) = I"(¥* + 20Q). (26)

The goal of this section is to investigate the limit law of the integral functional
T=12 [T (X (t))dt as T — oc.
Let us at first notice that

T v(T)
| =3 ez + oG =i, @)
) k=1

where
M=pP1, 2= +pP2 s Tn=m+p2+ ..+ ponye

are the jump times of the process {X ().t > 0}.
In what follows we suppose always that the condition (C)) is satisfied.
We need the following lemmas.

Lemma 3.1. If [1p?q 2 < oc then
1 P
ﬁ‘p(zu{’]"}-l—l)(T = Ty(r)) — 0 (28)
Jor any initial distribution.

Proof. Noticing that for i(z, s) = ¢(x)s we have
w4 = [ i) || o) exo(-awu)d
;) JR
—2 [ a2y = Mg < o0
E

and p(T") — oc as. as T'— oo by (23). By those and by the ergodic Theorem
3.1

v(T)+1

D)+ 17" Y |e(Z)orl* — 92 aus.
k=1

as T"— oc. Hence with probability one
T) + 1) e(Zury +1)Pumy s> — 0
and (28) follows from

v(T)+1 - _ .
AL L )41yl By oyl = 0

1
—=le(Zury 1 )(T=70(m)| < (
VT
a.s. =

Lemma 3.2. Suppose that {uy, Fy,k > 1} defined on (2, F, P) are the square
integrable martingale differences such that




cn
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mn
sup (n Z Eu})=C <> (29)
= k=i

and that {u(t),t > 0} is a random process valued in {1,2,---} such that {v(t) =
kY € Fi ¥t >0 and

2
fl_'lfll i(f—J =a>0as. (30)
Then
v(T) [aT) .
WJZ“* Zuk‘ 2088 T - . (31)

k=1

Proof. 1t follows from condition (30) that: for all ¢ > 0, and T sufficiently large
we have

v fT)

P(l—==-a|>€e*) <¢
or
P(la—)T <u(T) < (a+e>T) > 1 —e. (32)
Putting
Ae = {a—e*)T < y(T) < (a+*)T},
we have
: w(T) [aT] v(T) [nT]
(T 2 wup — .*ml > .:") < P(AS) + P {T f’ Z Uk — u;,' > E} ﬂAE)
[T
< —-3 _
_£+P(T e [rBIIdJJi:cJT‘Z (rs Zuk! )
T}
<ot (g ul> ) )

where a = [aT'] — [€°T], b = [aT] + [*T] with [r] denoting the integer part of
the numbm T,
By Kolmogorov's inequality for a martingale

N N
2 1
max Up| > )\ - E[ " J = Fu?,
1<u<; IZ k 2 ; k /\d; L

we have
2[Te)+a

(JE%,‘ Z u;.' > —-—) 2 '*TE[ Z u,J < 8eC. (34)

It follows from (33), (34) that (31) holds. m




456 Nguyen Van Huu, Vuong Quan Hoang, and Tran Minh Ngoc
Corollary 3.1. Assume that the martingale differences {up, k > 1} take the
form

ur = f(Xg) — E(f(X)[Xk-1), k=1,2,...
where { X, k > 0} is a Markov chain with the stationary distribution 11 such
that T1f% < 0o. Then (31) holds for any initial distribution.
Proof. 1t is obvious that

Enui < Enf*(Xp-1) =I1f? < oo,

therefore

T

En(n~! Z ui) < IIf? = C, ¥m,n.

k=m

Denoting the quantity in the left-hand side of (31) by 5y, by Lemma 3.2 we
obtain

Tliln Pr(lnr| 2e)=0¥e >0
or .
Tlim / P(lnr| =2 e)ll(dx) =0 Ve > 0.
—o0 f g
It follows that there exists a subset A C E such that TI(A) = 0 and
T]im Pilpr| =e)=0 Vee E\A.
Since P(z,.) < II(.) Yo, P(z, E\ A) =1 Vx € E.

On the other hand, letting Ay = {|np| > €}, we observe that Ap € Up>y,F,
with np > 1, where F,, = a(Xy. k > n). Then by Markov property:

P_,_\(AT) = E(J.AT|XQ = .'IJJ = E[E(IAT|X1}|X{1 = fITI

= / E(14.| X, = y)P(x. dy) = Ey(14.)P(z,dy).

JE JE\A

Therefore
0 < limsup Pp(Ay) = limsup P, (Ap)P(z,dy)
T—o0 T—oc JE\A
= / lim P,(Ar)P(x,dy) = 0.
JE\A T—00

So

Tlim Pr(A7) =0V
and hence

Tlim P(|nr|=ze)= Tlim / Py(|nr| = e)v(de) = 0.
A ey 2
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This implies (31). ™

Lemma 3.3. Assume that the following equation has a solution g(x)
(I — P)g(x) = Ppq~*(x). (35)
Then, putting
f(z,8) = p(x)s + g(a), (36)
we have the representation
pla)s = f(x,s) — Qf (@), (37)
where Qf(x) = g(x).

Proof. At first let us notice that for ¢ : £ x Rt — R given by (x,s) = p(x)s
we have

Qg(x) = ‘/‘;‘g(y')f’(ir.dy)/w q(y) exp(—q(y)u)du
_ /F 9(y)P(x, dy) = Py(x),

Qi(x) = /; J'\P(:U)P(:r.dy) /R - ug(y) exp(—qly)u)du
o [cv(y)r;"l('y)P(ﬂ:=dy) = Ppq~ ().

In order to prove (37) we shall prove that if g(xz) is a solution of (35) then
glz) = Qf(z). In fact, by (36)

Qf(#) = Qui(x) + Qa(x) = Ppq~(x) + Py(x) = g(v). .

Remark 6. A necessary condition for the existence of a solution of (35) is
g~ =0. (38)

In fact, applying operator IT on both sides of (35) we have Ilg — [1Pg = 0 =
g~

Let us notice that the condition (38) is satisfied if the function ¢ is repre-
sented in the form

p(z) = p*(z) — ollp*q™"

where ¢* : E — R, « is given by (23).

Lemma 3.4. Assume that the following equation has a solution g
(I - P)g(z) = Ppq ()

and that Tlp?q 2 < o0, [lg? < oc. Furthermore, if the condition (C) of Theorem
3.2 are satisfied then
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w(T)
T3 Z (Zx)pk £, N(0, ad?) (39)
Jor any initial distribution, where v is given by (23) and
8% = 20U~ + g~ g).
Proof. By Lemma 3.3, we have the representation
U(Zk, pr) = o(Zi)pk = [(Z, pr) — Qf (Zk)

= f(Zk, px) — Qf (Zk-1) + Qf (Zk—1) — Qf (Zi)
=k + 9(Zk-1) — 9(Zk)

where {ur = f(Zk, pr)—Qf(Z;—1), k > 1} are martingale differences. Therefore

(T v(T) w(T)
‘“Z (Zg)pp =T VZZH;A-T “22 (Zr-1) — 9(Zy))
k=1 k=1
v(T)
=712 Z g + T_sz.(}(zt]) - 9(Zu(1))- (40)
k=1

Since I1g? < oo, by the same argument as in the proof of Lemma 3.1, we can
show that

T~%(9(20) = 9(Zuir))) = 0 (41)
for any initial distribution.
Furthermore, we have by (36)
IT* f2 < 211" (2 + ¢°) = 2(Ilp?q~% + 11g?) < oo,
hence by Corollary 3.1, (31) holds for any initial distibution.
Applying Theorem 3.2 for the imbedded chain {(Zy, p), k = 1} we obtain
] r
T2 " = N(0,06%) (42)
k=1

with

& =1I"(f2 - (Qf)*) =" (f* - ¢%)
= [I*(¢* + 24g) = 21(p%q ™2 + pgq™").

Finally. it follows from (40), (31). (41). (34). (42) that (39) holds for any initial
distribution. ™

Now we state and prove the main theorem as follows
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Theorem 3.3. Assume that the condition (C'y) of Theorem 3.2 and the following

condition (C's) are satisfied
(C3) (i) Mp?q? < 00 and, (ii) The following equation has a solution g

(I - P)g(x) = Ppq~(x)

with Tg? < oc.
Then,

T
T-*»’z[ o(X (1))dt =+ N(0, a8?)
Jo
Jor any wnitial distribution, where

8% = 2M(*q~% + pgq ™).

Proof. The conclusion of Theorem 3.3 follows from Theorem 3.2 and Lemmas
3.1, 34 -

4. Examples

Erample 1. Assume that the jump Markov process { X (¢),t > 0} with the state
space £ = {1,2,3} has the transition intensity matrix

[—1 05 0.5]
Q=104 —1 06
108 02 —1]
Then the Markov chain {Zy, k > 1} has the transition probability matrix
[0 05 0:5]
P=104 0 06
08 0.2 0
It is easy to see that {Zy, k > 1} possesses the ergodic distribution as follows

IT=[0.38596 0.26316 0.35088],

whereas the sequence {px, k > 1} is the sequence of independent, exponentially
indentically distributed random variables with the parameter ¢ = 1 (i.e., g(x) =

1 for all # € ) and hence o = 1.
Let us consider ¢* = [1, 2, 4]7, i.e. ¢*(1) = 1,¢*(2) = 2,¢*(3) = 4. Then

Ilp* = 2.3158, p = ¢* — Ilp* = [-1.3158 —0.3158 1.6842]" .
We shall prove that as 1" —
1 [T c ;
— | (p*(X(t)) — 2.3158)dt —=» N(0,0?). 43
VT Jo ( ( (43)

For this purpose, we try to find a function g = [g1. go. g3]” satisfying the following
equation
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(I - P)g= Poq~' = Py

or in detail

1 -05 —05] [¢ 0.6842
04 1 —06] |g2| =] 04842
08 -02 1 g3 ~1.1158

The above algebraic equation has the following solution
g =|[1.15788 0.94735 0].
Since E has a finite number of elements, Ig? and T1p? are finite. By Theorem
3.3 we have (43) with
0% = §* = 2M(p* + ¢g) = 2.046.

Frample 2. Let us consider the integral functional of the jump Markov process
with the state space F = {1,2,---} delined by:

T
T,i = / 1{‘\'{”:?:}‘ 'F € E.
S0

This integral is the total time length during which the process visits the state ¢.
Assume that this process satisfies the condition ().

For each state i, put p*(x) = 1;,—; then allp*q™! = (r:rrfq,-'l. Let us
consider () = ¢ (x) — amq "

Suppose that the equation

(I - P)g(a) = Poq~'(z) (44)

has a solution g such that ITg? < oo. Then by Theorem 3.3

17 1 q* - .
7_,}-]( -\,;‘(X{t))d!.:ﬁ/(; (Lx =iy — amig; )dt -5 N(0, 06?)
A ] i

where 62 = 2I1(%¢ =% + pq~'g).
In particular, for the case where
g _ [=quo g _[“ 1} .
— 2 o - :
E={12}, Q [ 2 _W}, P=17 o] 2:e>0
we have the stationary distribution IT = (1/2,1/2) and
v Lyl o Isn=t Zqug
== (2 1) - 2
(g ™) 2\ g q + g2
Put *(x) = 1{,—1), then

1 2

~1 .
=aniq = ey w(r)

q2
=Trocqy— ;
= g+ g

ally'q™

and

L/T (1 __n )dt £, N(0,ad?) (45)
vT Jo skt o+ o i
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for any initial distribution. In order to find 4% we have to solve the equation

(44) for i =1, i.e.
— = gy |
5 3 ()= [Pen)] (o)

with notice that

o1 —q2/ (g1 + q2))g? =il -
[ﬁfg‘lgﬂ B [{1) [11} [“—(q;;{é: + qf;));ﬂ] ] h [ ll/{r(;rfl:qgi)]

(46) has a solution gy = —1/(qy +4g2), g> = 0. Hence, by Theorem 3.3, we obtain
(45) with
1

8% = AMM(p?q 2 + 0 g) = ———.
(0 I Prarem

We obtain from (45)

— T (2 . 2016
VI(Z = —2—) £ N0, 2% 5)-
T (¢ +q) (1 +q2)
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