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Let R be a commutative Noetherian ring and M a finitely generated
R-module. We show in this paper that, for an integer ¢, if the local
cohomology module H;(M) with respect to an ideal a is finitely
generated for all i < t, then

Hi (M/xM) = HL (M) @ HiF (M)

for all a-filter regular elements x contained in a enough large
power of a and all i <t — 1. As consequences we obtain general-
izations, by very short proofs, of the main results of M. Brodmann
and A.L. Faghani [M. Brodmann, A.L. Faghani, A finiteness result for
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1. Introduction

A finitely generated module M of dimension d > 0 over a Noetherian local ring (R, m) is called
a generalized Cohen-Macaulay module (see [3]), if there exists a positive integer k such that
mfHE (M) =0 for all i <d, where Hi (M) is the i-th local cohomology module of M with respect
to the maximal ideal m. Then the following split property of local cohomology modules is useful in
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the theory of generalized Cohen-Macaulay modules (see [11]): For a parameter element x of M there
exists a enough large integer n such that Hi (M/x"M) = H! (M) @ HiX1 (M) for all i <d — 1. It should
be noted here that this integer n is in general dependent on the choice of the element x. It raises to
the following natural question.

Question. Let M be a generalized Cohen-Macaulay module. Does there exist a positive integer n such
that for any parameter element x of M contained in m", it holds H} (M/xM) = H. (M) & HLﬂ(M)
foralli<d—1?

The purpose of this paper is not only to find an answer to this question but also to prove a more
general split property of local cohomology modules as follows. Let R be a Noetherian ring (R is not
necessary to be a local ring) and a an ideal of R. An element x € a is called an a-filter regular element
of M if x ¢ p for all p € AssM \ V (a), where V (a) is the set of all prime ideals of R containing a.

Theorem 1.1. Let M be a finitely generated module over a Noetherian ring R and a an ideal of R. Let t and ng
be positive integers such that a™ H},(M) = 0 for all i < t. Then, for all a-filter regular element x € a2 of M, it
holds

Hy(M/xM) = H,(M) & H’C‘Jrl (M)
foralli <t—1,and

. ~ yt—1 .
0 THE (M /xM) ad"=H (M) @0 “HE, (M) a'o,

It is well known that every parameter element of M is an m-filter regular element, if M is a
generalized Cohen-Macaulay module. Therefore Theorem 1.1 gives a complete affirmative answer for
the question above, where the integer n is just n = min{k | m"Hin(M) =0, i=0,...,d —1}. The key
point for proving Theorem 1.1 is as follows. Let x and t be as in Theorem 1.1. From the short exact

sequence 0 — M/Hg(M) XM M/xM — 0 we obtain short exact sequences
0 — Hi(M) — HL.(M/xM) — Hi'(M) — 0, i=0,...,t—2. (%)

So for each i <t — 1 we can consider the short exact sequence (x) as an element of the group of
extensions Extk(HIH1(M), HL (M) (see, Chapter 3, [10]). Then, the splitting of sequence (x) is equiv-
alent to say that it is the zero-element of this group. We will give some properties of the (Bear) sum
and the R-module structure of this group of extensions in the next section. The proof of Theorem 1.1
will be done in Section 3. The last section is involved to find applications of Theorem 1.1. Especially,
we show that the main theorems of M. Brodmann and A.L. Faghani [2], and of H.L. Truong and the
first author [4] are immediate consequences of Theorem 1.1.

2. The extension module Ext!

In this section, let a be an ideal of a Noetherian ring R, and M a finitely generated R-module.
It is well known that for a positive integer t, HL(M) is finitely generated for all i <t iff there exists
a positive integer ng such that a”OHL(M) =0 for all i <t. An element x € a is called an a-filter
regular element of M if x ¢ p for all p € AssM \ V(a), where V (a) is the set of all prime ideals of R
containing a. It should be noted that there always exist a-filter regular elements. Moreover, if x € a0
is an a-filter regular element of M, then the short exact sequence

0— M -5 M — M/xM —> 0,

where M’ = M/Hg(M), reduces short exact sequences
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0 —> HL.(M) — HL.(M/xM) — H.F'(M') — 0,

for all i <t — 1. This situation is a special case of the following consideration: given an integer t, an
ideal a of R and a submodule U of M. Set M = M/U. We say that an element x € a satisfies the
condition () if 0:y x=U, and the short exact sequence

0— M—>M—> M/XxXM —> 0
reduces short exact sequences
0 — H (M) — H! (M/xM) — HF1(M) — 0
foralli<t—1.

Proposition 2.1. Let M, U, M, a and t be as above. Suppose that x, y are elements in a such that x and xy
satisfy the condition (8), and yH!, (M) =0 for all i <t. Then, foralli <t — 1, we have

. - 1
Hg(M/xyM) = Ho (M) @ H™' (M).
Moreover, if H, (M) = H, (M), we have

0 :Ht;](M/xyM) X=0 :Ht‘;l(M) xd0 :H[u(M) X.
Proof. Since U =0 :); x =0 :); xy, we have the following commutative diagram

X b1

0 M M M/XxM —— 0
id y f\
0 M —— M —2» M/XyM — 0

with exact rows, pi1, p are natural projections, and f is the induced homomorphism. We get by
applying the functor H} (e) to the above diagram for all i <t — 1 the following commutative diagram

( 8
Hi (M) ——— Halbr) i [ (M/xM) —— H*1(M)

[l

1

L (p2)
HL (M) = H (M/xyM) — HL"(M)

0

0,

where 8%, 8; are connected homomorphisms. Moreover, since yHg(M) =0forali<t—1, H’;](f) o
H L(m) = 0. Therefore there exists a homomorphism

€' : HF1(M) = coker H', (p1) —> H',(M/xyM)

for all i <t — 1, which makes the following diagram
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; HL(p1) & i
0 Hi (M) Hi (M/xM) —— HIH1 (M) 0
. €l
yl H'a(f)l / idl
i iu(pz) i 5; i+1,77
0 Hi (M) —— Hi (M/xyM) —— H:1 (M) 0

commutative for all i <t — 1. Hence S; o€l =id, and so we get

Hi (M/xyM) = HE (M) @ HIFL (M),

foralli<t—1. .
In the case Hf](M) = HQ(M) and i =t — 1, we have the following commutative diagram

o HSY D o
0 Hy (M) —— H " (M/xM) —— Vgt ap X ——— 0
y HEY o
1 (py) 85!
0 HE (M) —— HL (M /xyM) —— Oyt iy X¥ ———— 0,

where o 0:pe 35 X = 0:pe ) Xy is injective. With similar method as used in the cases i <t —1,

there exists a homomorphism €'~ 1: 0,0 7 X — Hi ™' (M/xyM) such that 85 1oe'1 = . By applying
the functor Homg (R/(x), ) to the above diagram we can check that

0 O

T (yxymy X = 0ttt oy X O 0ye ) X-

If x € a satisfies the condition (f), for each i <t — 1 we can consider
0 — Hi (M) — H!(M/xM) — H:F'(M) — 0

as an extension of Hi (M) by HiF1(M), therefore as an element of Exth (HiF1 (M), HL (M) (see, Chap-
ter 3, [10]). We denote this element by EL. Especially, if HL(M) = HY (M), we have the short exact
sequence

0 — HYY(M) — H 1M /xM) — 0 e, iy X — O

Let np be a positive integer such that x € a™. Suppose that the short exact sequence above derives
the following short exact sequence

. n . n . _ n
0_>O'ch(‘(M) a'’® _>O'Hfg‘(1v1/xM) a’l— O.H%(M) a'o —s 0.

Then we can consider this exact sequence as an element of Extk(0 ey @70 i1y, @70), and
denote it by F,ﬂ;}( It should be noted here that an extension of R-module A by R-module C is split if
it is the zero-element of Ext}2 (C, A). The following result is important for the proof of Theorem 1.1.
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Theorem 2.2. Let M, U, M, a and t be as above and x, y € a. Then the following statements are true.

(i) Suppose that x, y, x + y satisfy the condition (), then Eiﬂ, = Ef( + Eg, foralli <t — 1. Furthermore,

if HY.(M) = HL(M) and F}, "}, Fi-l, are determined, then F,ﬂ;iw is also determined, and we have
t—1 -1 -1
F"o,x+y = Fltm,X + FftTovJ" ) ) _
(ii) Suppose that x, xy satisfy the condition (), then Ej(y = yEL foralli < t—1. Moreover, if H, (M) = H', (M)
and i) is determined, then F} '\, is also determined and Fj, |

foralli <t, then Fi ), =E), =0foralli <t —1.

A= yFi- . Especially, if yH, (M) =0,

Proof. (i) We consider the homomorphism ¢ : M — M & M, ¢(m) = (xm, ym). Because U =0:y x =
0:m y so we have short exact sequence

0—>M-%5MoM— N—0,
where N = coker(¢). The following diagram is commutative

2

o
=l

Mo M N 0

>

M id

XDy

Mo M

2]

Me&M — M/xM & M/yM ——— 0,

where Ay : M —- M@ M, A(m) = (m,m) is a diagonal homomorphism. Note that the derived ho-
momorphism of Ag; is also a diagonal homomorphism, the homomorphism AH’;(M) : H"G(M) —

Hi (M) @ Hi (M) is diagonal for all i > 0. Therefore, we get by applying the functor Hi(e) to the
above diagram the following commutative diagram

H (M) —— Hi (M)?

A i .
HY (M) id

. XDy .

where A2 =A@ A for an R-module A, and ¢ is derived from @. Since x, y satisfy the condition (f),
the homomorphism in the bottom row is zero, for all i <t, hence ¢' =0 for all i < t. Therefore, for
all i <t — 1, the following diagram is commutative

0 — Hi(M)? —————— HL(N) —————— HI|(M) ——0
id Ay (M)
0 — Hi(M)> —— Hi(M/xM) @ H\ (M/yM) — Hi*1(M)> —— 0.

For all i <t — 1, the exact sequence in the bottom row is just EL 5} Eg,. We denote the exact sequence
in the top row by E', so
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i i i .
E'= (Ex®E))Ayin ) (1)

foralli<t—1. .
Moreover, if H: (M) = HY (M), we have the following commutative diagram

0 —— H'(M)?> ———— HYY(N) Kexy) 0

| C

0 —— H (M) ——= H{T'(M/xM) & HT'(M/yM) — Ky & Ky —0,

where K y) =0 “HE (W) x,y), Kx=0 W (W) X Ky =0 e Ve and A: Kx,y) = Kx @ K defined by

A(c) = (c, c). Since
Homg (R/a™, Kx) = Homg (R/a™, Ky) = Homg (R/a™, Kx,y)) =0y ) a",

by applying the functor Ext’;2 (R/a™, o) to the above diagram we obtain the following commutative
diagram

0: ~. g0 b 1 no pt—1¢p2
HL () @7 — Extp(R/a™, H~ (M)7)

g :

8
(04, ) ™)? ——> Exth(R/a", H{™ (M)?),

where 81, 8 are connected homomorphisms. Because F,tlo_;, F,‘,gfy are determined, §; =0, so §; = 0.
Hence we obtain the following commutative diagram with exact rows

. ng . ng . — Mo
OH-O.Htu—l(M)zll 4>0.H:1(N)a %—O.me)a —0

idl l Ai
. n . n . _ n
0 ——= Oipran & —— Oyt mpmnon jymy @ ——= Ot a2 @0 —— 0.

The sequence in the bottom row is just F,ﬂo’}( @ F,ﬁgly We denote the sequence in the top row by F,ﬂ;l,
so

Fro' = (Fiox ® Fio L) Ao, )

— q'o -
HL @D ¢

On the other hand, we consider the following commutative diagram

0 - —C s MaM N 0
idl VMl l
_ +

0 M——— M M/(x+ y)M — 0,
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where Vyy :M @& M — M, V(m,m’) =m +m’ is the codiagonal homomorphism. Since derived homo-
morphisms of Vy; are also codiagonal homomorphisms, so is the homomorphism VHL(M) CHL(M) @

HL(M) — HL(M) for all i > 0. Hence by applying the functor HL(.) to the above diagram we get the
following commutative diagram

E:0 HY (M) @ Hi (M) ——= Hi(N) HGF (M) 0
VH"u(M> id
Eiry:0 H (M) — HL(M/(x+ y)M) — HF1(M) 0,
for all i <t — 1. It follows for all i <t — 1 that
Exry=Vyi anE'"- 3)

Moreover, if H, (M) = H (M), we have

00— H{'M)? ————— H{'(N) ———— Kay)y —0

Vit l l © l

0 — HY (M) ——— H7 WM/ (x+ y)M) Kty 0,

where p is injective. By applying the functor Homg(R/a™, e) to the above diagram we get

0O—— (0 :Hi.”(M) a”°)2 — 0 :H%T‘<N) ao .0 :Htu(M) a’ o 0

V. ngy .
O.H[ail " ' l J : L

0o——=20 “HE (M) ao 20 HE (M (et y)M) alo o O:H‘C.(M) a'o,

t—1

no.xty 1S determined.

It follows from the existence of F,ﬁgl that the bottom row is exact, and hence F,
Therefore

t—1 _ t—1
an,x+y - VO:H‘JI(M)‘]"O Fno . (4)

Combining (1) and (3), we have

Eipy= le-a(M)(Eg< @ E'y)AHi;](M),

foralli<t—1.So Ei,, =E\+E foralli<t—1.
Combining (2) and (4), we have

=1 _ t—1 t—1
Fno,x+y - VO:H[uq(M)a”O (Fno,x ® Fno,y)AO:Hta(M)a”O .

So Fi~l = Ft-1 4 pt-1

no,x+y ng,x ne,y*
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(ii) The first and second claims of (ii) can be shown by the same method as used in the proof of
Proposition 2.1, and the last one follows immediately from the structure of R-module of the extension
group Ext!. O

3. The proof of the main result

First of all, we need some auxiliary lemmas.

Lemma 3.1. Let (R, m) be a Noetherian local ring, a, b ideals and p1, ..., p, prime ideals such that ab € p;
for all j <n. Let x be an element contained in ab but x ¢ y; for all j <n. Then there are elements ay, ..., ar €
a,bi, ..., br € b that we can write x =aiby + - - - 4+ arby such that a;b; ¢ y; and a1by + - - - +a;b; ¢ p; for all
i<r,j<n

Proof. It is sufficient to prove the assertion in the case p; ¢ p; for all i, j <n,i=# j. By the Prime
Avoidance Theorem, we can choose a system of generators a,bq, ..., a-b; of ab such that a; € a, b; €b
for all i <r, and a;b; ¢ p; for all i <r, j <n. Hence there exist s; e R, i=1,...,r, such that x =
siaiby + - - - + srarby. Rewrite x = a;(s1b1) + - - - + ar(s;b;), therefore we may assume without loss of
generality that x can be written in form x =aiby + axby + --- + ab, with a; € a, bj € b for all i <,
and a; ¢ pj foralli<r, j<n.

We prove the assertion by induction on r. The case r =1 is trivial. Assume that r > 1 and the
lemma is true for r — 1. Set | = {j: b, € pj}. By the Prime Avoidance Theorem we can choose u € b
such that u ¢ p; for all je J, and u e p;j for all j ¢ J. Since ay ¢ p; for all j <n, uay also has this
property. Therefore b, 4 uay ¢ p; for all j <n. We write x =aq (b1 —uay) +axby + --- + ar(br + uay),
so without loss of generality we can assume more that x =aiby +azby +--- 4+ a;b; and a;b; ¢ p; for
all j<n.Lletx =aiby+---+ar_1br—1, and set J'={j: X’ € p;}. Using the Prime Avoidance Theorem
again we can choose v € m such that v ¢ p; for all j€ J', and v e pj for all j ¢ J'. Because ay, ay, by ¢
p;j for all j <n, vaja;b; has the same property as v. Set x,_1 =X+ vajarb, = aq (b1 + vayb;) +azby +
-+~ 4 ar_1by_1 Then x,_1 ¢ p; for all j <n and x =x,_1 + arb;(1 — vay). Since arb;(1 — vay) ¢ p; for
all j < n, the conclusion follows from the inductive hypothesis for the element x,_;. O

Corollary 3.2. Let (R, m) be a Noetherian local ring and a an ideal of R. Let M be a finitely generated R-
module and x € a® an a-filter regular element of M. Then we can find a-filter regular elements a1, ..., ar,
bi,...,b; € a of M such that x =a1by + --- + a;b; and a1by + - - - + a;b; are also a-filter regular elements
of M foralli<r.

Proof. It follows from Lemma 3.1 with a = b and Ass(M) \ V(a) for the set of prime ideals
{p1,....pn}. O

The following result is somehow known. The proof of this lemma follows easily from the commu-
tativity of localizations and the functor Hom of finitely generated modules, therefore we omit it.

Lemma 3.3. Let A, B, C are finitely generated R-modules. Then the sequence
0—A—B—C—0
is a split exact sequence if and only if the sequence
00— Ay —Byw—Cyh—0

is exact and split for all maximal ideal m of R.
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Proof of Theorem 1.1. Keep all notations as in Section 3 with U =_H2(M). Then every a-filter regular
element x € a™ satisfies the condition (#). Since H, (M) = H} (M) for all i > 0, H, (M) is finitely
generated, so is 0 “HE, (V) a™ by Theorem 1.2, [1]. Using localizations at maximal ideals we may assume

by Lemma 3.3 that (R, m) is a Noetherian local ring. Let x € a2, There are by Corollary 3.2 a-filter
regular elements a;, b; € a™, i <r such that x=a1by +--- +a;b, and a1by + --- + ajb; are a-filter
regular elements for all 1 < j <r. Then, by virtue of Theorem 2.2(i) we have

i _ i _ri i i
EX - Ea1b1+"‘+arbr - Ealbl + Ea2b2 +oot E‘arbr'

Therefore

Ey=mE}p +aE, +--+aE, =0

by Theorem 2.2(ii) for all 0 <i <t — 1. Thus we have
. o = -
HL(M/xM) = HL (M) @ H;F' (M) = HL (M) @ H;P (M)

for all 0 <i <t — 1. On the other hand, by Proposition 2.1 F;;l

ajb; are determined for all j <r. It

follows by Theorem 2.2(i) that Fi } = F;;L1b1+<~~+arbr is determined and

Ft-1_pt=1 o pr-1

No,X ™ " ng,aibq no,arbr

Therefore Ff '} =0 by Theorem 2.2(ii), so

. ~ yt—1 .
0t pany 47 = HY (M) @0 3, 0™,

since 0 : " =HT(M). O

H o @

4. Some applications

The first immediate consequence of Theorem 1.1 is an affirmative complete answer for the question
posed in the introduction.

Corollary 4.1. Let M be a generalized Cohen-Macaulay module over a local ring (R, m) of dimension d > 0,
and ng the least positive integer such that m™H} (M) = 0 for all i < d. Then for any parameter element
x € m?", we have

Hi (M/xM) = HE (M) ® HiF1 (M),

foralli <d —1, and

~ pyd—1 .
0 "0 = HIT (M) @040 4y ™.

“He T vyxmy ™
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The next application of Theorem 1.1 is somehow strange to the authors and it can be used to
derive many consequences.

Corollary 4.2. Let M be a finitely generated module over a Noetherian ring R and a an ideal of R. Let t and nq

be positive integers such that a™ HL(M) =O0foralli <t.Letxq,...,x: be an a-filter regular sequence of M
contained in a?"o. Then for all positive integer k <ngandall j =1, ...,t, HomR(R/ak, M/(x1,...,xj)M) are
independent of the choice of the sequence X1, ..., x;. Moreover, we have

j .
. J
Homg (R/a*, M/(x1.....x))M) = €D Homg (R/d", Hi (V) @
i=0
Proof. We proceed by induction on j. From Theorem 1.1 we have
Homg (R/a¥, HL(M/x;M)) = Homg (R/a*, H\,(M)) ® Homg (R/a*, HL™ (M)
for all i <t — 1. Therefore
Homg (R/a¥, M/(x1)M) = Homg (R/a*, HY(M/x; M))

= Homg (R/a*, HS(M)) ® Homg (R/a*, HL (M),

and the corollary is proved for j = 1. Suppose that j > 1. By Theorem 1.1 we have a0 HL(M/)qM) =0

for all i <t — 1. It follows from the inductive hypothesis for the sequence x;,...,x; and M/x;M that
j—1 j-1
Homg (R/a¥, M/(x1, ..., x;)M) = @) Homg (R /a, HE, (M /x, M) (1)
i=0

j
= (P Homg (R /o, H )@
i=0

as required. O

Let M be a finitely generated module over a Noetherian local ring (R, m) and g a parameter ideal
of M. The index of irreducibility of ¢ on M is defined by Ng(q, M) = dimg, Soc(M/qM), where
Soc(N) Z0:y m =ZHom(R/m, N) for an arbitrary R-module N. It is well known that if M is a Cohen-
Macaulay module then Ng(q, M) is a constant independent of the choice of g. In the case M is
a Buchsbaum module, S. Goto and H. Sakurai proved in [5] that for large enough n the index of
irreducibility Ng(q, M) is a constant for all parameter ideals q contained in m". And they conjectured
that this result is also true for generalized Cohen-Macaulay modules. H.L. Truong and the first author
have given an affirmative answer for this conjecture in [4]. Now, in virtue of Corollary 4.2 we can
prove a statement which is a slight generalization of the main result of [4] as follows.

Corollary 4.3. Let M be a generalized Cohen-Macaulay module of dimension d and no a positive integer such
that m" H, (M) = 0 for all i < d. Then, for every parameter ideal q of M contained in m2™ and k < no, the
length £ ((qM :p m¥)/qM) is independent of the choice of q and given by

d

eul(aM i w)/aM) = 3 () 0034, 0 )

i=0
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In particular, the index of irreducibility Ng(q, M) is a constant independent of the choice of q and

d
d .
Ng(q, M) = Z (1) dimg/m Soc(Hy, (M)).

i=0

Proof. It follows immediately from Corollary 4.2 and the fact that Homg (R/mk, M/qM) =
(@M :p m*)/qM and Homg (R/m", H{y(M)) Z0:yyi ¥ for alli. O

In [6] C. Huneke conjectured that the set Ass HL(M) is a finite set for any ideal a and all i. The
conjecture was settled by G. Lyubeznik [9] and C. Huneke, R.Y. Sharp [7] for regular local rings con-
taining a field. Although M. Katzman [8] has given an example of a Noetherian ring and an ideal a
such that Hﬁ(R) has infinitely many associated primes, the conjecture is still true in many interesting
cases. The following result is an immediate consequence of Corollary 4.2, which is an extension of the
main result of M. Brodmann and A.L. Faghani in [2].

Corollary 4.4. Let M be a finitely generated R-module and a an ideal of R. Let t and ng be positive integers
such that a™ H{ (M) = 0 for all i < t. Then for every a-filter regular sequence x1, . ..., X; of M contained in a2,
we have

j
(L JAss HL (M) = Ass(M/(x1. ... x;M)) (| V (a)
i=0

forall j=1,...,t. Inparticular, H, (M) has only finitely many associated primes.

Proof. Since Hi (M) is a-torsion, Ass Hi (M) = AssHomg(R/a, Hi (M)). It follows from Corollary 4.2
that for all j=1,...,t,

j
| JAss HL (M) = Ass HY(M/(xa. ... x))M) = Ass(M/(x1.....x))M) NV (a). O
i=0
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