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Let R be a commutative Noetherian ring and M a finitely generated
R-module. We show in this paper that, for an integer t, if the local
cohomology module Hi

a(M) with respect to an ideal a is finitely
generated for all i < t, then

Hi
a(M/xM) ∼= Hi

a(M) ⊕ Hi+1
a (M)

for all a-filter regular elements x contained in a enough large
power of a and all i < t − 1. As consequences we obtain general-
izations, by very short proofs, of the main results of M. Brodmann
and A.L. Faghani [M. Brodmann, A.L. Faghani, A finiteness result for
associated primes of local cohomology modules, Proc. Amer. Math.
Soc. 128 (2000) 2851–2853] and of H.L. Truong and the first author
[N.T. Cuong, H.L. Truong, Asymptotic behavior of parameter ide-
als in generalized Cohen–Macaulay module, J. Algebra 320 (2008)
158–168].
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1. Introduction

A finitely generated module M of dimension d > 0 over a Noetherian local ring (R,m) is called
a generalized Cohen–Macaulay module (see [3]), if there exists a positive integer k such that
mk Hi

m(M) = 0 for all i < d, where Hi
m(M) is the i-th local cohomology module of M with respect

to the maximal ideal m. Then the following split property of local cohomology modules is useful in
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the theory of generalized Cohen–Macaulay modules (see [11]): For a parameter element x of M there
exists a enough large integer n such that Hi

m(M/xn M) ∼= Hi
m(M)⊕ Hi+1

m (M) for all i < d − 1. It should
be noted here that this integer n is in general dependent on the choice of the element x. It raises to
the following natural question.

Question. Let M be a generalized Cohen–Macaulay module. Does there exist a positive integer n such
that for any parameter element x of M contained in mn , it holds Hi

m(M/xM) ∼= Hi
m(M) ⊕ Hi+1

m (M)

for all i < d − 1?

The purpose of this paper is not only to find an answer to this question but also to prove a more
general split property of local cohomology modules as follows. Let R be a Noetherian ring (R is not
necessary to be a local ring) and a an ideal of R . An element x ∈ a is called an a-filter regular element
of M if x /∈ p for all p ∈ Ass M \ V (a), where V (a) is the set of all prime ideals of R containing a.

Theorem 1.1. Let M be a finitely generated module over a Noetherian ring R and a an ideal of R. Let t and n0
be positive integers such that an0 Hi

a(M) = 0 for all i < t. Then, for all a-filter regular element x ∈ a2n0 of M, it
holds

Hi
a(M/xM) ∼= Hi

a(M) ⊕ Hi+1
a (M)

for all i < t − 1, and

0 :Ht−1
a (M/xM)

an0 ∼= Ht−1
a (M) ⊕ 0 :Ht

a(M) an0 .

It is well known that every parameter element of M is an m-filter regular element, if M is a
generalized Cohen–Macaulay module. Therefore Theorem 1.1 gives a complete affirmative answer for
the question above, where the integer n is just n = min{k | mk Hi

m(M) = 0, i = 0, . . . ,d − 1}. The key
point for proving Theorem 1.1 is as follows. Let x and t be as in Theorem 1.1. From the short exact

sequence 0 → M/H0
a(M)

x−→ M → M/xM → 0 we obtain short exact sequences

0 −→ Hi
a(M) −→ Hi

a(M/xM) −→ Hi+1
a (M) −→ 0, i = 0, . . . , t − 2. (∗)

So for each i < t − 1 we can consider the short exact sequence (∗) as an element of the group of
extensions Ext1

R(Hi+1
a (M), Hi

a(M)) (see, Chapter 3, [10]). Then, the splitting of sequence (∗) is equiv-
alent to say that it is the zero-element of this group. We will give some properties of the (Bear) sum
and the R-module structure of this group of extensions in the next section. The proof of Theorem 1.1
will be done in Section 3. The last section is involved to find applications of Theorem 1.1. Especially,
we show that the main theorems of M. Brodmann and A.L. Faghani [2], and of H.L. Truong and the
first author [4] are immediate consequences of Theorem 1.1.

2. The extension module Ext1

In this section, let a be an ideal of a Noetherian ring R , and M a finitely generated R-module.
It is well known that for a positive integer t , Hi

a(M) is finitely generated for all i < t iff there exists
a positive integer n0 such that an0 Hi

a(M) = 0 for all i < t . An element x ∈ a is called an a-filter
regular element of M if x /∈ p for all p ∈ Ass M \ V (a), where V (a) is the set of all prime ideals of R
containing a. It should be noted that there always exist a-filter regular elements. Moreover, if x ∈ an0

is an a-filter regular element of M , then the short exact sequence

0 −→ M ′ x−→ M −→ M/xM −→ 0,

where M ′ = M/H0
a(M), reduces short exact sequences
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0 −→ Hi
a(M) −→ Hi

a(M/xM) −→ Hi+1
a

(
M ′) −→ 0,

for all i < t − 1. This situation is a special case of the following consideration: given an integer t , an
ideal a of R and a submodule U of M . Set M = M/U . We say that an element x ∈ a satisfies the
condition (�) if 0 :M x = U , and the short exact sequence

0 −→ M
x−→ M −→ M/xM −→ 0

reduces short exact sequences

0 −→ Hi
a(M) −→ Hi

a(M/xM) −→ Hi+1
a (M) −→ 0

for all i < t − 1.

Proposition 2.1. Let M, U , M,a and t be as above. Suppose that x, y are elements in a such that x and xy
satisfy the condition (�), and yHi

a(M) = 0 for all i < t. Then, for all i < t − 1, we have

Hi
a(M/xyM) ∼= Hi

a(M) ⊕ Hi+1
a (M).

Moreover, if Ht
a(M) ∼= Ht

a(M), we have

0 :Ht−1
a (M/xyM)

x ∼= 0 :Ht−1
a (M)

x ⊕ 0 :Ht
a(M) x.

Proof. Since U = 0 :M x = 0 :M xy, we have the following commutative diagram

0 M M M/xM 0

0 M M M/xyM 0

� �x

�
id

�p1

�

y

�
f

�

� �xy �p2 �

with exact rows, p1, p2 are natural projections, and f is the induced homomorphism. We get by
applying the functor Hi

a(•) to the above diagram for all i < t − 1 the following commutative diagram

0 Hi
a(M) Hi

a(M/xM) Hi+1
a (M) 0

0 Hi
a(M) Hi

a(M/xyM) Hi+1
a (M) 0,

� �Hi
a(p1)

�
y

�δi
1

�
Hi

a( f )

�
id

�

� �Hi
a(p2) �δ

i
2 �

where δi
1, δ

i
2 are connected homomorphisms. Moreover, since yHi

a(M) = 0 for all i < t − 1, Hi
a( f ) ◦

Hi
a(p1) = 0. Therefore there exists a homomorphism

ε i : Hi+1
a (M) ∼= coker Hi

a(p1) −→ Hi
a(M/xyM)

for all i < t − 1, which makes the following diagram
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0 Hi
a(M) Hi

a(M/xM) Hi+1
a (M) 0

0 Hi
a(M) Hi

a(M/xyM) Hi+1
a (M) 0

� �Hi
a(p1)

�
y

�δi
1

�
Hi

a( f )

�
id

�
�

�
���

ε i

�

� �Hi
a(p2) �δ

i
2 �

commutative for all i < t − 1. Hence δi
2 ◦ ε i = id, and so we get

Hi
a(M/xyM) ∼= Hi

a(M) ⊕ Hi+1
a (M),

for all i < t − 1.
In the case Ht

a(M) ∼= Ht
a(M) and i = t − 1, we have the following commutative diagram

0 Ht−1
a (M) Ht−1

a (M/xM) 0 :Ht
a(M) x 0

0 Ht−1
a (M) Ht−1

a (M/xyM) 0 :Ht
a(M) xy 0,

� �Ht−1
a (p1)

�

y

�δt−1
1

�
Ht−1

a ( f )

�

α

�

� �Ht−1
a (p2) �δd−1

2 �

where α: 0 :Ht
a(M) x → 0 :Ht

a(M) xy is injective. With similar method as used in the cases i < t − 1,

there exists a homomorphism εt−1: 0 :Ht
a(M) x → Ht−1

a (M/xyM) such that δt−1
2 ◦εt−1 = α. By applying

the functor HomR(R/(x),•) to the above diagram we can check that

0 :Ht−1
a (M/xyM)

x ∼= 0 :Ht−1
a (M)

x ⊕ 0 :Ht
a(M) x. �

If x ∈ a satisfies the condition (�), for each i < t − 1 we can consider

0 −→ Hi
a(M) −→ Hi

a(M/xM) −→ Hi+1
a (M) −→ 0

as an extension of Hi
a(M) by Hi+1

a (M), therefore as an element of Ext1
R(Hi+1

a (M), Hi
a(M)) (see, Chap-

ter 3, [10]). We denote this element by Ei
x . Especially, if Ht

a(M) ∼= Ht
a(M), we have the short exact

sequence

0 −→ Ht−1
a (M) −→ Ht−1

a (M/xM) −→ 0 :Ht
a(M) x −→ 0.

Let n0 be a positive integer such that x ∈ an0 . Suppose that the short exact sequence above derives
the following short exact sequence

0 −→ 0 :Ht−1
a (M)

an0 −→ 0 :Ht−1
a (M/xM)

an0 −→ 0 :Ht
a(M) an0 −→ 0.

Then we can consider this exact sequence as an element of Ext1
R(0 :Ht

a(M) an0 ,0 :Ht−1
a (M)

an0 ), and

denote it by F t−1
n0,x . It should be noted here that an extension of R-module A by R-module C is split if

it is the zero-element of Ext1
R(C, A). The following result is important for the proof of Theorem 1.1.
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Theorem 2.2. Let M, U , M,a and t be as above and x, y ∈ a. Then the following statements are true.

(i) Suppose that x, y, x + y satisfy the condition (�), then Ei
x+y = Ei

x + Ei
y for all i < t − 1. Furthermore,

if Ht
a(M) ∼= Ht

a(M) and F t−1
n0,x, F t−1

n0,y are determined, then F t−1
n0,x+y is also determined, and we have

F t−1
n0,x+y = F t−1

n0,x + F t−1
n0,y .

(ii) Suppose that x, xy satisfy the condition (�), then Ei
xy = yEi

x for all i < t −1. Moreover, if Ht
a(M) ∼= Ht

a(M)

and F t−1
n0,x is determined, then F t−1

n0,xy is also determined and F t−1
n0,xy = yF t−1

n0,x. Especially, if yHi
a(M) = 0,

for all i < t, then F t−1
n0,xy = Ei

xy = 0 for all i < t − 1.

Proof. (i) We consider the homomorphism ϕ : M → M ⊕ M , ϕ(m) = (xm, ym). Because U = 0 :M x =
0 :M y so we have short exact sequence

0 −→ M
ϕ−→ M ⊕ M −→ N −→ 0,

where N = coker(ϕ). The following diagram is commutative

0 M M ⊕ M N 0

0 M ⊕ M M ⊕ M M/xM ⊕ M/yM 0,

� �ϕ

�

�M

�

�
id

�

�
� �x⊕y � �

where �M : M → M ⊕ M , �(m) = (m,m) is a diagonal homomorphism. Note that the derived ho-
momorphism of �M is also a diagonal homomorphism, the homomorphism �Hi

a(M) : Hi
a(M) →

Hi
a(M) ⊕ Hi

a(M) is diagonal for all i � 0. Therefore, we get by applying the functor Hi
a(•) to the

above diagram the following commutative diagram

· · · Hi
a(M) Hi

a(M)2 · · ·

· · · Hi
a(M)2 Hi

a(M)2 · · · ,

� �ϕ i

�

�
Hi

a(M)

�

�

id

� �x⊕y �

where A2 = A ⊕ A for an R-module A, and ϕ i is derived from ϕ . Since x, y satisfy the condition (�),
the homomorphism in the bottom row is zero, for all i < t , hence ϕ i = 0 for all i < t . Therefore, for
all i < t − 1, the following diagram is commutative

0 Hi
a(M)2

id

Hi
a(N) Hi+1

a (M)

�
Hi+1

a
(M)

0

0 Hi
a(M)2 Hi

a(M/xM) ⊕ Hi
a(M/yM) Hi+1

a (M)2 0.

For all i < t − 1, the exact sequence in the bottom row is just Ei
x ⊕ Ei

y . We denote the exact sequence

in the top row by Ei , so
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Ei = (
Ei

x ⊕ Ei
y

)
�Hi+1

m (M)
(1)

for all i < t − 1.
Moreover, if Ht

a(M) ∼= Ht
a(M), we have the following commutative diagram

0 Ht−1
a (M)2

id

Ht−1
a (N) K(x,y)

�

0

0 Ht−1
a (M)2 Ht−1

a (M/xM) ⊕ Ht−1
a (M/yM) Kx ⊕ K y 0,

where K(x,y) = 0 :Ht
a(M) (x, y), Kx = 0 :Ht

a(M) x, K y = 0 :Ht
a(M) y, and � : K(x,y) → Kx ⊕ K y defined by

�(c) = (c, c). Since

HomR
(

R/an0 , Kx
) ∼= HomR

(
R/an0 , K y

) ∼= HomR
(

R/an0 , K(x,y)

) ∼= 0 :Ht
a(M) an0 ,

by applying the functor Exti
R(R/an0 ,•) to the above diagram we obtain the following commutative

diagram

0 :Ht
a(M) an0

δ1

�

Ext1
R(R/an0 , Ht−1

a (M)2)

id

(0 :Ht
a(M) an0)2 δ2

Ext1
R(R/an0 , Ht−1

a (M)2),

where δ1, δ2 are connected homomorphisms. Because F t−1
n0,x, F t−1

n0,y are determined, δ2 = 0, so δ1 = 0.
Hence we obtain the following commutative diagram with exact rows

0 0 :Ht−1
a (M)2 an0

id

0 :Ht−1
a (N)

an0 0 :Ht
a(M) an0

�

0

0 0 :Ht−1
a (M)2 an0 0 :Ht−1

a (M/xM)⊕Ht−1
a (M/yM)

an0 0 :Ht
a(M)2 an0 0.

The sequence in the bottom row is just F t−1
n0,x ⊕ F t−1

n0,y . We denote the sequence in the top row by F t−1
n0

,
so

F t−1
n0

= (
F t−1

n0,x ⊕ F t−1
n0,y

)
�0:Ht

t
(M)

an0 . (2)

On the other hand, we consider the following commutative diagram

0 M M ⊕ M N 0

0 M M M/(x + y)M 0,

� �ϕ

�
id

�

�
∇M

�

�
� �x+y � �
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where ∇M : M ⊕ M → M , ∇(m,m′) = m + m′ is the codiagonal homomorphism. Since derived homo-
morphisms of ∇M are also codiagonal homomorphisms, so is the homomorphism ∇Hi

a(M) : Hi
a(M) ⊕

Hi
a(M) → Hi

a(M) for all i � 0. Hence by applying the functor Hi
a(•) to the above diagram we get the

following commutative diagram

Ei : 0 Hi
a(M) ⊕ Hi

a(M) Hi
a(N) Hi+1

a (M) 0

Ei
x+y : 0 Hi

a(M) Hi
a(M/(x + y)M) Hi+1

m (M) 0,

� �

�

∇
Hi

a(M)

�

� �
id

�

� � � �

for all i < t − 1. It follows for all i < t − 1 that

Ei
x+y = ∇Hi

m(M)Ei . (3)

Moreover, if Ht
a(M) ∼= Ht

a(M), we have

0 Ht−1
a (M)2

∇
Ht−1

a (M)

Ht−1
a (N) K(x,y)

μ

0

0 Ht−1
a (M) Ht−1

a (M/(x + y)M) Kx+y 0,

where μ is injective. By applying the functor HomR(R/an0 ,•) to the above diagram we get

0 (0 :Ht−1
a (M)

an0)2

∇0:
Ht−1

a (M)
a

n0

0 :Ht−1
a (N)

an0 0 :Ht
a(M) an0

id

0

0 0 :Ht−1
a (M)

an0 0 :Ht−1
m (M/(x+y)M)

an0 0 :Ht
a(M) an0 .

It follows from the existence of F t−1
n0

that the bottom row is exact, and hence F t−1
n0,x+y is determined.

Therefore

F t−1
n0,x+y = ∇0:

Ht−1
a (M)

an0 F t−1
n0

. (4)

Combining (1) and (3), we have

Ei
x+y = ∇Hi

a(M)

(
Ei

x ⊕ Ei
y

)
�Hi+1

a (M)
,

for all i < t − 1. So Ei
x+y = Ei

x + Ei
y for all i < t − 1.

Combining (2) and (4), we have

F t−1
n0,x+y = ∇0:

Ht−1
a (M)

an0

(
F t−1

n0,x ⊕ F t−1
n0,y

)
�0:Ht

a(M)
an0 .

So F t−1
n ,x+y = F t−1

n ,x + F t−1
n ,y .
0 0 0
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(ii) The first and second claims of (ii) can be shown by the same method as used in the proof of
Proposition 2.1, and the last one follows immediately from the structure of R-module of the extension
group Ext1. �
3. The proof of the main result

First of all, we need some auxiliary lemmas.

Lemma 3.1. Let (R,m) be a Noetherian local ring, a, b ideals and p1, . . . ,pn prime ideals such that ab � p j

for all j � n. Let x be an element contained in ab but x /∈ p j for all j � n. Then there are elements a1, . . . ,ar ∈
a,b1, . . . ,br ∈ b that we can write x = a1b1 + · · · + arbr such that aibi /∈ p j and a1b1 + · · · + aibi /∈ p j for all
i � r, j � n.

Proof. It is sufficient to prove the assertion in the case pi � p j for all i, j � n, i 
= j. By the Prime
Avoidance Theorem, we can choose a system of generators a1b1, . . . ,arbr of ab such that ai ∈ a, bi ∈ b

for all i � r, and aibi /∈ p j for all i � r, j � n. Hence there exist si ∈ R , i = 1, . . . , r, such that x =
s1a1b1 + · · · + srarbr . Rewrite x = a1(s1b1) + · · · + ar(srbr), therefore we may assume without loss of
generality that x can be written in form x = a1b1 + a2b2 + · · · + arbr with ai ∈ a, bi ∈ b for all i � r,
and ai /∈ p j for all i � r, j � n.

We prove the assertion by induction on r. The case r = 1 is trivial. Assume that r > 1 and the
lemma is true for r − 1. Set J = { j: br ∈ p j}. By the Prime Avoidance Theorem we can choose u ∈ b

such that u /∈ p j for all j ∈ J , and u ∈ p j for all j /∈ J . Since a1 /∈ p j for all j � n, ua1 also has this
property. Therefore br + ua1 /∈ p j for all j � n. We write x = a1(b1 − uar) + a2b2 + · · · + ar(br + ua1),
so without loss of generality we can assume more that x = a1b1 + a2b2 + · · · + arbr and arbr /∈ p j for
all j � n. Let x′ = a1b1 + · · · + ar−1br−1, and set J ′ = { j: x′ ∈ p j}. Using the Prime Avoidance Theorem
again we can choose v ∈ m such that v /∈ p j for all j ∈ J ′ , and v ∈ p j for all j /∈ J ′ . Because a1,ar,br /∈
p j for all j � n, va1arbr has the same property as v . Set xr−1 = x′ + va1arbr = a1(b1 + varbr)+ a2b2 +
· · · + ar−1br−1 Then xr−1 /∈ p j for all j � n and x = xr−1 + arbr(1 − va1). Since arbr(1 − va1) /∈ p j for
all j � n, the conclusion follows from the inductive hypothesis for the element xr−1. �
Corollary 3.2. Let (R,m) be a Noetherian local ring and a an ideal of R. Let M be a finitely generated R-
module and x ∈ a2 an a-filter regular element of M. Then we can find a-filter regular elements a1, . . . ,ar,

b1, . . . ,br ∈ a of M such that x = a1b1 + · · · + arbr and a1b1 + · · · + aibi are also a-filter regular elements
of M for all i � r.

Proof. It follows from Lemma 3.1 with a = b and Ass(M) \ V (a) for the set of prime ideals
{p1, . . . ,pn}. �

The following result is somehow known. The proof of this lemma follows easily from the commu-
tativity of localizations and the functor Hom of finitely generated modules, therefore we omit it.

Lemma 3.3. Let A, B, C are finitely generated R-modules. Then the sequence

0 −→ A −→ B −→ C −→ 0

is a split exact sequence if and only if the sequence

0 −→ Am −→ Bm −→ Cm −→ 0

is exact and split for all maximal ideal m of R.
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Proof of Theorem 1.1. Keep all notations as in Section 3 with U = H0
a(M). Then every a-filter regular

element x ∈ an0 satisfies the condition (�). Since Hi
a(M) ∼= Hi

a(M) for all i > 0, Hi
a(M) is finitely

generated, so is 0 :Ht
a(M) an0 by Theorem 1.2, [1]. Using localizations at maximal ideals we may assume

by Lemma 3.3 that (R,m) is a Noetherian local ring. Let x ∈ a2n0 . There are by Corollary 3.2 a-filter
regular elements ai,bi ∈ an0 , i � r such that x = a1b1 + · · · + arbr and a1b1 + · · · + a jb j are a-filter
regular elements for all 1 � j � r. Then, by virtue of Theorem 2.2(i) we have

Ei
x = Ei

a1b1+···+arbr
= Ei

a1b1
+ Ei

a2b2
+ · · · + Ei

arbr
.

Therefore

Ei
x = a1 Ei

b1
+ a2 Ei

b2
+ · · · + ar Ei

br
= 0

by Theorem 2.2(ii) for all 0 � i < t − 1. Thus we have

Hi
a(M/xM) ∼= Hi

a(M) ⊕ Hi+1
a (M) ∼= Hi

a(M) ⊕ Hi+1
a (M)

for all 0 � i < t − 1. On the other hand, by Proposition 2.1 F t−1
n0,a jb j

are determined for all j � r. It

follows by Theorem 2.2(i) that F t−1
n0,x = F t−1

n0,a1b1+···+arbr
is determined and

F t−1
n0,x = F t−1

n0,a1b1
+ · · · + F t−1

n0,arbr
.

Therefore F t−1
n0,x = 0 by Theorem 2.2(ii), so

0 :Ht−1
a (M/xM)

an0 ∼= Ht−1
a (M) ⊕ 0 :Ht

a(M) an0 ,

since 0 :Ht−1
a (M)

an0 = Ht−1
a (M). �

4. Some applications

The first immediate consequence of Theorem 1.1 is an affirmative complete answer for the question
posed in the introduction.

Corollary 4.1. Let M be a generalized Cohen–Macaulay module over a local ring (R,m) of dimension d > 0,
and n0 the least positive integer such that mn0 Hi

m(M) = 0 for all i < d. Then for any parameter element
x ∈ m2n0 , we have

Hi
m(M/xM) ∼= Hi

m(M) ⊕ Hi+1
m (M),

for all i < d − 1, and

0 :Hd−1
m (M/xM)

mn0 ∼= Hd−1
m (M) ⊕ 0 :Hd

m(M)
mn0 .
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The next application of Theorem 1.1 is somehow strange to the authors and it can be used to
derive many consequences.

Corollary 4.2. Let M be a finitely generated module over a Noetherian ring R and a an ideal of R. Let t and n0
be positive integers such that an0 Hi

a(M) = 0 for all i < t. Let x1, . . . , xt be an a-filter regular sequence of M
contained in a2n0 . Then for all positive integer k � n0 and all j = 1, . . . , t, HomR(R/ak, M/(x1, . . . , x j)M) are
independent of the choice of the sequence x1, . . . , x j . Moreover, we have

HomR
(

R/ak, M/(x1, . . . , x j)M
) ∼=

j⊕
i=0

HomR
(

R/ak, Hi
a(M)

)( j
i).

Proof. We proceed by induction on j. From Theorem 1.1 we have

HomR
(

R/ak, Hi
a(M/x1M)

) ∼= HomR
(

R/ak, Hi
a(M)

) ⊕ HomR
(

R/ak, Hi+1
a (M)

)

for all i � t − 1. Therefore

HomR
(

R/ak, M/(x1)M
) ∼= HomR

(
R/ak, H0

a(M/x1M)
)

∼= HomR
(

R/ak, H0
a(M)

) ⊕ HomR
(

R/ak, H1
a(M)

)
,

and the corollary is proved for j = 1. Suppose that j > 1. By Theorem 1.1 we have an0 Hi
a(M/x1M) = 0

for all i < t − 1. It follows from the inductive hypothesis for the sequence x2, . . . , x j and M/x1M that

HomR
(

R/ak, M/(x1, . . . , x j)M
) ∼=

j−1⊕
i=0

HomR
(

R/ak, Hi
a(M/x1M)

)( j−1
i )

∼=
j⊕

i=0

HomR
(

R/ak, Hi
a(M)

)( j
i)

as required. �
Let M be a finitely generated module over a Noetherian local ring (R,m) and q a parameter ideal

of M . The index of irreducibility of q on M is defined by NR(q, M) = dimR/m Soc(M/qM), where
Soc(N) ∼= 0 :N m ∼= Hom(R/m, N) for an arbitrary R-module N . It is well known that if M is a Cohen–
Macaulay module then NR(q, M) is a constant independent of the choice of q. In the case M is
a Buchsbaum module, S. Goto and H. Sakurai proved in [5] that for large enough n the index of
irreducibility NR(q, M) is a constant for all parameter ideals q contained in mn . And they conjectured
that this result is also true for generalized Cohen–Macaulay modules. H.L. Truong and the first author
have given an affirmative answer for this conjecture in [4]. Now, in virtue of Corollary 4.2 we can
prove a statement which is a slight generalization of the main result of [4] as follows.

Corollary 4.3. Let M be a generalized Cohen–Macaulay module of dimension d and n0 a positive integer such
that mn0 Hi

m(M) = 0 for all i < d. Then, for every parameter ideal q of M contained in m2n0 and k � n0 , the
length �R((qM :M mk)/qM) is independent of the choice of q and given by

�R
((

qM :M mk)/qM
) =

d∑(
d

i

)
�R

(
0 :Hi

m(M) mk).

i=0
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In particular, the index of irreducibility NR(q, M) is a constant independent of the choice of q and

NR(q, M) =
d∑

i=0

(
d

i

)
dimR/m Soc

(
Hi

m(M)
)
.

Proof. It follows immediately from Corollary 4.2 and the fact that HomR(R/mk, M/qM) ∼=
(qM :M mk)/qM and HomR(R/mk, Hi

m(M)) ∼= 0 :Hi
m(M) mk for all i. �

In [6] C. Huneke conjectured that the set Ass Hi
a(M) is a finite set for any ideal a and all i. The

conjecture was settled by G. Lyubeznik [9] and C. Huneke, R.Y. Sharp [7] for regular local rings con-
taining a field. Although M. Katzman [8] has given an example of a Noetherian ring and an ideal a

such that H2
a(R) has infinitely many associated primes, the conjecture is still true in many interesting

cases. The following result is an immediate consequence of Corollary 4.2, which is an extension of the
main result of M. Brodmann and A.L. Faghani in [2].

Corollary 4.4. Let M be a finitely generated R-module and a an ideal of R. Let t and n0 be positive integers
such that an0 Hi

a(M) = 0 for all i < t. Then for every a-filter regular sequence x1, . . . , xt of M contained in a2n0 ,
we have

j⋃
i=0

Ass Hi
a(M) = Ass

(
M/(x1, . . . , x j M)

)⋂
V (a)

for all j = 1, . . . , t. In particular, Ht
a(M) has only finitely many associated primes.

Proof. Since Hi
a(M) is a-torsion, Ass Hi

a(M) = Ass HomR(R/a, Hi
a(M)). It follows from Corollary 4.2

that for all j = 1, . . . , t ,

j⋃
i=0

Ass Hi
a(M) = Ass H0

a

(
M/(x1, . . . , x j)M

) = Ass
(
M/(x1, . . . , x j)M

) ∩ V (a). �
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