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The close-enough arc routing problem has an interesting
real-life application to routing for meter reading. In this
article, we propose a new mathematical formulation for
this problem. We analyze our formulation and compare it
with two formulations in the literature. We also develop
branch-and-cut algorithms to solve the problem to opti-
mality. We present computational results for instances
based on three types of graphs: directed, undirected, and
mixed. © 2013 Wiley Periodicals, Inc. NETWORKS, Vol. 63(1),
107–118 2014
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1. INTRODUCTION

Consider a directed graph G = (V , A), with vertex set
V = {v0, v1, . . . , vn−1}, and arc set of size m, A = {(vi, vj) :
vi, vj ∈ V}. Numbering the arcs allows A to be expressed as
{a1, a2, . . . , am}. Let ca be the cost associated with each arc of
A. The well-known directed rural postman problem (DRPP)
is the problem of determining a minimum-cost closed route
traversing each arc in Ar ⊂ A (called required arcs) at least
once. Several algorithms have been proposed to solve the
DRPP (see [1–3]). The closed-enough arc routing problem

Received February, 2012; accepted November, 2012
Correspondence to: L. M. Rousseau; e-mail: louis-martin.rousseau@
polymtl.ca
DOI 10.1002/net.21525
Published online 1 October 2013 in Wiley Online Library
(wileyonlinelibrary.com).
© 2013 Wiley Periodicals, Inc.

(CEARP) is a generalization of the DRPP in which the subset
of required arcs Ar is not defined. Instead, there is a set of
customers W = {w1, w2, . . . , wl} that must be covered. These
customers can be located anywhere in the area covered by
the network, not only in the network itself. As in the original
version of this problem (see [4]), we consider the inclusion
of a depot. By definition, vertex v0 is this depot. The CEARP
consists in finding a minimum-cost tour, which begins and
ends at the depot, such that every customer of W is covered
by the tour, that is, lies within a distance r of an arc of the tour.

The main application of this problem is to construct routes
for meter reading (see [4, 5] for further information). In this
application, to measure customers’ consumption information
from a distance, a reading device is installed in a vehicle to
collect the data sent by metering devices. The reader does not
have to visit each customer to collect the data but must enter
the meter’s read range. The vehicle must traverse the service
area and pass close enough to each meter so that they can
all be read. The effective radius r, also called the read range,
is normally between 150 and 300 m but may be as high as
381 m (see [4]).

The CEARP is clearly NP-hard because it contains the
DRPP as a special case. The existing literature on the CEARP
is limited. The earliest work on the CEARP is [4]. The authors
call the problem a close-enough traveling salesman problem
(CETSP) over a street network and propose four heuristics
to solve 18 real-life instances with an average of about 900
street segments and 9000 customers each. The read range
r is tested with two values: about 100 and 150 m, respec-
tively. Basically, the heuristics of [4] are implemented in
a two-stage process. In stage one, the heuristic identifies a
subset of arcs to be traversed, either with some simple greedy
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procedures or by solving an integer program. In stage two,
the problem becomes the well-known DRPP and is solved by
a sophisticated heuristic.

To the best of our knowledge, the only exact method for the
CEARP is [5]. The authors propose an initial mixed integer
programming (MIP) formulation for the problem in which
there is a connectivity constraint, and they solve this opti-
mally using a cutting-plane approach. The algorithm first
solves the problem without the connectivity constraints. The
violated connectivity constraints are then added to the model,
and the process is repeated until the connectivity is satisfied.
Computational results show that this algorithm can solve to
optimality random instances of a realistic size, such as those
introduced in [4].

The CEARP is equivalent to the generalized DRPP
(GDRPP). In the GDRPP, there are several subsets of arcs
(also called clusters) and the objective is to find a minimum-
cost tour traversing at least one arc from each cluster. The
clusters may be connected or disjoint. In the CEARP, the arcs
covering a customer correspond to a subset in the GDRPP.
The version of the GDRPP with no depot is described in
[6], where both exact and heuristic methods are presented.
The exact method is a branch-and-cut algorithm based on a
mathematical formulation.

There is another problem that can be seen as a CETSP with
vertex-covering constraints. It is the covering tour problem
(CTP) [7] and is similar to the CEARP except that a closed
tour has to be determined so that every vertex of W lies within
a distance r of a vertex of the tour. In [7], an exact algorithm
and a heuristic are presented. A heuristic based on the scatter-
search method has been proposed in [8]. Heuristics for the
multi-vehicle version (m-CTP) are presented in [9]. Heuris-
tics have also been proposed for problems belonging to the
family of CTPs, such as the CETSP in the plane; see [10,11].

The aim of this article is to design exact algorithms for
the CEARP. Our main contributions are: (1) we introduce
a new formulation for the CEARP; (2) we compare, both
analytically and empirically, this formulation with two others,
the first introduced in [5] and the second presented in [6] for
the GDRPP; (3) we improve the branch-and-cut algorithm
of [6] and propose a new algorithm for the CEARP; and (4)
we propose a MIP-based constructive algorithm to solve the
CEARP in practice.

The remainder of the article is organized as follows.
Section 2 presents in detail our branch-and-cut algorithms
and a MIP-based constructive algorithm to solve the CEARP.
The computational results are reported and analyzed in
section 3. Finally, section 4 summarizes our conclusions.

2. BRANCH-AND-CUT ALGORITHMS FOR CEARP

2.1. Mathematical Formulations

Given a node subset, S ⊆ V , let δ+(S) denote the set
of outgoing arcs of S and δ−(S) denote the set of incoming
arcs of S. If S = {vk}, we simply write δ+(k) (or δ−(k))
instead of δ+({vk}) (or δ−({vk})). A(S) is the set of arcs with

both endpoints in S. Each arc a is associated with a cost ca

(distance or travel time). We define the binary coefficients
λlk to be equal to 1 if and only if wl ∈ W can be covered by
ak ∈ A. Given x ∈ N |A| and T ⊂ A, x(T) denotes

∑
e∈T xe.

In [5], the following formulation, denoted by F1, was
presented:

F1: Minimize
∑
a∈A

caxa (1)

subject to x
(
δ+(0)

)
≥ 1 (2)

x
(
δ+(i)

)
− x

(
δ−(i)

)
= 0 ∀i ∈ V (3)

∑
a∈A

λwaxa ≥ 1 ∀w ∈ W (4)

Mx
(
δ+(S)

)
− xa ≥ 0 ∀S ⊂ V − {v0}

and 2 ≤ |S| ≤ n − 2, a ∈ A(S)

(5)

xa ∈ Z+ ∀a ∈ A (6)

where M is a large number representing an upper bound on
the number of times an arc is used. As in [6], M is set to
|A| + 1.

The objective (1) minimizes total travel cost. Constraint
(2) ensures that the depot belongs to the tour, and constraints
(3) are the flow conservation constraints. Constraints (4)
ensure that every customer of W is covered by the tour, and
constraints (5) are the connectivity constraints. These con-
straints ensure the presence of at least one outgoing arc of
any set S, for every possible subset S of V containing an arc
belonging to the tour. Constraints (6) define the variables.

As, the CEARP is equivalent to the GDRPP, the formu-
lation in [6] proposed for the GDRPP can be used for the
CEARP. Because the formulation in [6] addresses the no-
depot version of the problem, we modify it slightly. In this
formulation, yi is a binary variable that indicates the use of
vertex i in the solution, and the integer variable xa denotes
the number of times that arc a is traversed. Let hea be the
head of arc a. The formulation for the CEARP is as follows:

F2: Minimize
∑
a∈A

caxa (7)

subject to y0 = 1 (8)

x
(
δ+(i)

)
− x

(
δ−(i)

)
= 0 ∀i ∈ V (9)

∑
a∈A

λwaxa ≥ 1 ∀w ∈ W (10)

x
(
δ+(S)

)
− yi ≥ 0 ∀S ⊂ V − {v0},

and 2 ≤ |S| ≤ n − 2, i ∈ S (11)

xa − Myi ≤ 0 ∀i ∈ V , a ∈ A with hea = i (12)

xa positive integer and yi ∈ {0, 1} ∀a ∈ A and ∀i ∈ V
(13)
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where M is a large number representing an upper bound on the
number of times an arc is used. In this formulation, constraints
(8)–(11) have the same meaning as in formulation F1, and
constraints (12) are used to express the relation between the
two types of variables. As in [6], M is set to |A| + 1.

We now describe a new formulation for the CEARP, which
we call F3. Let ya be a binary variable that represents the use
of arc a with service. The integer variable xa denotes the
number of times that arc a is used without service. Then the
CEARP can be stated as:

F3: Minimize
∑
a∈A

ca(xa + ya) (14)

subject to x
(
δ+(0)

)
+ y

(
δ+(0)

)
≥ 1 (15)

x
(
δ+(i)

)
+ y

(
δ+(i)

)
− x

(
δ−(i)

)

− y
(
δ−(i)

)
= 0 ∀i ∈ V (16)

∑
a∈A

λwaya ≥ 1 ∀w ∈ W (17)

x
(
δ+(S)

)
+ y

(
δ+(S)

)
− ya ≥ 0 ∀S ⊂ V − {v0},

and 2 ≤ |S| ≤ n − 2, a ∈ A(S) (18)

xa positive integer and ya ∈ {0, 1} ∀a ∈ A. (19)

The meaning of each constraint in F3 is as in F1. Constraints
(15)–(18) imply constraints (2)–(5), respectively.

It is easy to see that the three formulations F1, F2, and
F3 are equivalent. Table 1 gives a comparison of the three
formulations. F1 has the smallest number of variables and
constraints (we do not consider the connectivity constraints
here because of their exponential number). The most impor-
tant disadvantage of F1 is that it uses a large number M in the
connectivity constraint. Because we can not find an efficient
way to closely estimate M, an exact procedure to separate this
constraint is useless. Experiments show that the performance
of the branch-and-cut algorithm based on this formulation is
poor compared to that of the other two formulations. F3 has
the largest number of variables, but it also has some strong
advantages. First, it does not contain the Big-M constraints
that are known to weaken the linear relaxation and to decrease
the performance of MILP models. Second, the set covering
polytope with binary variables has received more attention
than that with integer variables. Hence, the identification of
violated constraints of type (17) in F3 seems to be more favor-
able than that for (4) in F1 or (10) in F2. Formulation F2 has
fewer variables but more constraints than F3. Moreover, it
contains Big-M constraints.

2.2. Valid Equalities and Inequalities

In this subsection, we introduce several valid equalities
and inequalities for F3. Let A′ ⊂ A be a set of arcs that can
not cover any customer. The following dominance relation is
valid for the CEARP:

TABLE 1. Comparison of the three formulations.

F1 F2 F3

No. variables |A| |A| + |V | 2.|A|
No. constraints |V | + |W | + 1 |V | + |A| + |W | + 1 |V | + |W | + 1
Big-M Yes Yes No

ya = 0 ∀a ∈ A′. (20)

Lemma 1. Without loss of generality, we can assume that
in an optimal solution xa > 0 implies ya = 1 ∀ a /∈ A′.

Proof. Suppose that (x∗, y∗) is an optimal solution such
that x∗

a′ > 0 and y∗
a′ = 0 for some arc a′ /∈ A′. Define

(xa, ya) = (x∗
a , y∗

a), ∀a 
= a′ and (x′
a, y′

a) = (x∗
a′ − 1, 1). It

is easy to prove that this new solution is also optimal because
it satisfies the constraints (15), (16), (17), (18) and has the
same objective value (14). ■

We can derive from Lemma 1 the following dominance
property:

Mya ≥ xa ∀a ∈ A\A′ (21)

where M is a large number representing an upper bound on
the number of times an arc a is used. Its value can be taken
as |A|.

Dominance constraints can also be derived, based on cov-
ering considerations. Let ai, aj ∈ A\A′. Arc ai is said to
dominate arc aj if for all wl ∈ W , λil ≥ λjl. The following
constraints proposed in [7] are valid for the CEARP:

yi + yj ≤ 1 ∀ai, aj ∈ A\A′

and if ai dominates aj, or conversely. (22)

We also note that the constraints (21) and (22) can not be
used at the same time because of contrary properties. The
reason is that the former implies that if an arc that can cover
a customer is traversed, then it is always used with service
while the latter limits the use of arcs with service only when
necessary.

All the valid inequalities of the set covering polytope
conv{y :

∑
ba.ya ≥ 1, ya ∈ {0, 1}} are valid for the CEARP.

Balas and Ng [12] proposed the facets with coefficients in
{0,1,2} and Sánchez-García et al. [13] introduced the more
complex facets with coefficients in {0,1,2,3}. Here, we recall
the first inequality that was used in [7]. Let S be a nonempty
subset of W and define for each a ∈ A the coefficient

αS
a =

⎧⎪⎨
⎪⎩

0 if λal = 0 for all wl ∈ S,

2 if λal = 1 for all wl ∈ S,

1 otherwise.

Then the following inequality is valid for the CEARP:
∑
a∈A

αS
a ya ≥ 2 ∀a ∈ A\A′ and ∀S ⊂ W : |S| > 0. (23)
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The connectivity constraints (18) can be strengthened
by adding information about the covering constraint. The
following constraint is a stronger form of connectivity:

x
(
δ+(S)

)
+ y

(
δ+(S)

)
≥ 1 (24)

where S ⊂ V and at least one customer of W is not covered
by any arc in A(V\S).

2.3. Separation of Cuts

We now present separation procedures for each class of
valid inequalities described in the previous subsection. To
simplify the presentation, we give the details only for F3.
The separation of cuts for F2 is similar. Let (x∗, y∗) be a
fractional solution to be separated. Let G∗ be the weighted
graph induced by (x∗, y∗) such that the capacity of each arc
Ca = x∗

a + y∗
a .

The detection of constraints of type (20), (21), and (22) is
straightforward. Although these constraints help to reduce the
number of vertices in the branch-and-bound tree, constraints
(21) contain the Big-M that decreases the performance of
the branch-and-cut algorithm. Since M is determined by the
number of arcs, the larger the instance, the more important
the negative impact of M. Our tests show that when M can
not be closely estimated, a branch-and-cut algorithm without
Big-M constraints is normally more efficient than one with
Big-M. This is why we use the constraints (20) and (22) in
the general case where M can not be estimated effectively.
The constraints (21) are only used if we can find the way to
bound M strictly. Whenever these dominance constraints are
used, they are directly included in the initial model because
they are almost certainly violated.

For constraints (23), we tested |S| = 3, as in [7], to
reduce the computational effort. The process was still time-
consuming because of the large number of customers in the
CEARP instances. However, we observe that the zero-half
cut of CPLEX can generate this type of constraint. Our tests
show that using the CPLEX cut is more effective and faster
than directly applying (23).

We will present an example to show how a zero-half cut
can generate the constraints (23). Suppose there is a graph
with three arcs a1, a2, and a3 serving three customers w1, w2,
and w3. These customers can be served by the arcs (a2, a3),
(a1, a3), and (a1, a2), respectively. The covering constraints
(17) for three customers are as follows: y2 + y3 ≥ 1, y1 +
y3 ≥ 1, and y1 + y2 ≥ 1. By considering the sum of these
three constraints, dividing the resulting constraint by 2, and
rounding its right-hand side, we get the zero-half cut: y1 +
y2+y3 ≥ 2. This constraint has the same form as (23). Hence,
the CPLEX zero-half cut can generate the constraints (23).

The connectivity constraints (18) can be separated by both
heuristic and exact methods. In the heuristic method, we first
compute the connected components S1, S2, . . . , Sq of the sub-
graph G∗. If the number of connected components is at least
two (i.e., q ≥ 2) then x(δ+(Si)) + y(δ+(Si)) ≥ ya, for each
component i and each a ∈ A(Si), is a violated inequality. We

can also separate these constraints exactly in polynomial time
by applying the following algorithm:

• For each node i ∈ V\{v0}: Compute the maximum flow
from i to depot v0. Let δ+(Si), Si ⊆ V\{v0} be the min-cut
and let fi be the value of this flow.

• For each arc a = (vi, vj) ∈ A and xa 
= 0: If fi < xa, then
a violated connectivity constraint has been found.

Let fa be the maximum flow passing through arc a =
(vi, vj). To ensure connectivity from the depot to arc a, there
must be at least a flow of xa passing through a. Note that
fi ≥ fa. Then, if fi < xa, we have fa < xa. Hence, fi < xa is a
violated constraint. Conversely, if fi ≥ xa, we can always send
a flow of at least xa through a and connectivity is ensured. If
the Edmonds-Karp algorithm, which runs in O(|V ||A|2) time,
is used to solve the maximum flow problems, the running time
of this procedure is O(|V |2|A|2).

Finally, constraints (24) can be generated by a heuristic
similar to that proposed for (18). Compute the connected
components S1, S2, . . . , Sq of the subgraph G(x∗, y∗) induced
by the arcs a ∈ A with x∗+y∗ ≥ ε, where 0 ≤ ε < 1 is a given
parameter. If the number of connected components is at least
two (i.e., q ≥ 2), and the arcs with two endpoints in V\S can
not cover all the customers and x∗(δ+(Si))+ y∗(δ+(Si)) < 1
then x(δ+(Si)) + y(δ+(Si)) ≥ 1 for each component i =
1, . . . , q is a violated inequality.

2.4. Upper Bound for CEARP

In this subsection, we introduce a fast heuristic called UB1
that gives feasible solutions for the CEARP. This heuristic is
used in the exact algorithm to provide an initial upper bound.
It is based on the algorithm proposed for the DRPP [2] and
is as follows:

Step 1. Solve an integer program including the constraints
(1), (3), (4), and (6) using CPLEX. The solution of this MIP
is rapid even for the large instances in our tests.

Step 2. Construct a directed graph GR = (VR, AR) induced
by the solution from Step 1, adding the depot if it is not already
present. If GR is connected then stop; the solution found in
Step 1 is also a feasible solution for the CEARP. Otherwise,
go to Step 3.

Step 3. Compute the connected components C1, C2, . . . , Ck

of the graph GR. Let Ki be the set of vertices corresponding
to the connected component i. Build the undirected graph
Ḡ = (N , E) with set of vertices N = 1, . . . , k and set of
edges E = {(i, j), i, j ∈ N , i 
= j. The corresponding edge
costs are cij = min{c(p, q)+c(q, p), p ∈ Ki, q ∈ Kj} for each
edge (i, j) ∈ E, where c(p, q) is the length of the shortest
path from vertex p in component i to vertex q in component
j. Determine a minimum-cost spanning tree in Ḡ. Let AT be
the set of arcs in the original graph corresponding to the edges
in the tree. Add to Ḡ all the arcs of AT .
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TABLE 2. Comparison of lower bounds of the four algorithms.

Instance lb1 lb2 lb3 lb4

ce500-1500-150-0.5-1 97, 308.9 100, 406.7 102,417.6 97, 320.2
ce500-1500-150-0.5-2 91, 374.4 94,306.2 93, 393.5 90, 309.9
ce500-1500-150-0.5-3 105, 410.5 109, 439.3 109,441.2 102, 412.4
ce500-1500-150-0.5-4 89, 307.1 92,352.3 92, 323.0 86, 379.5
ce500-1500-150-0.5-5 97, 380.9 99, 376.9 100,412.6 93, 386.0
ce500-1500-150-1-1 124, 465.7 126, 487.0 127,417.0 122, 482.1
ce500-1500-150-1-2 119, 485.3 121, 420.3 122,407.2 116, 432.0
ce500-1500-150-1-3 129, 484.2 131,444.9 131, 422.7 126, 413.8
ce500-1500-150-1-4 109, 407.3 112, 458.5 113,458.1 108, 449.6
ce500-1500-150-1-5 112, 412.1 114,481.8 113, 400.8 106, 413.5
ce500-1500-150-5-1 158, 493.7 160, 443.6 160,472.9 157, 472.1
ce500-1500-150-5-2 158, 452.9 159, 478.5 159,497.7 157, 400.3
ce500-1500-150-5-3 174, 484.4 176,492.5 176, 466.2 171, 483.5
ce500-1500-150-5-4 149, 410.1 150, 454.0 150,465.4 147, 412.2
ce500-1500-150-5-5 159, 417.1 161, 405.9 161,436.8 156, 457.5
ce500-1500-150-10-1 172, 404.7 173, 457.7 174,419.1 170, 485.1
ce500-1500-150-10-2 171, 401.5 172, 417.5 172,491.4 169, 447.9
ce500-1500-150-10-3 183, 425.9 184, 483.5 184,408.3 180, 471.4
ce500-1500-150-10-4 160, 415.3 161, 400.2 161,479.4 157, 474.1
ce500-1500-150-10-5 166, 463.3 166, 489.9 167,419.9 163, 420.5
ce500-1000-200-0.5-1 68, 366.5 70, 397.9 73,387.9 65, 320.4
ce500-1000-200-0.5-2 75, 373.2 79, 338.8 82,308.3 74, 342.7
ce500-1000-200-0.5-3 75, 331.4 79, 391.9 86,363.8 70, 341.0
ce500-1000-200-0.5-4 64, 385.7 72, 382.7 73,316.8 68, 379.2
ce500-1000-200-0.5-5 78, 365.6 83,302.2 83, 382.8 79, 326.7
ce500-1000-200-1-1 75, 301.9 79, 380.2 80,334.8 71, 399.5
ce500-1000-200-1-2 83, 330.2 85, 311.7 88,301.9 75, 334.9
ce500-1000-200-1-3 90, 327.1 94, 397.9 95,375.6 90, 369.7
ce500-1000-200-1-4 73, 371.1 77, 359.5 79,349.0 75, 344.6
ce500-1000-200-1-5 87, 319.4 91,369.9 90, 390.5 88, 367.4
ce500-1000-200-5-1 94, 393.6 98, 307.2 98,347.0 93, 316.3
ce500-1000-200-5-2 105, 408.9 108, 494.2 108,484.0 104, 436.4
ce500-1000-200-5-3 110, 431.7 113,453.4 112, 452.4 112, 429.9
ce500-1000-200-5-4 98, 342.1 99, 383.7 103,466.7 97, 315.6
ce500-1000-200-5-5 108, 461.5 111, 496.9 111,432.5 110, 469.1
ce500-1000-200-10-1 108, 402.9 110,422.7 109, 462.8 107, 473.1
ce500-1000-200-10-2 108, 427.2 112,465.9 112, 429.0 110, 469.1
ce500-1000-200-10-3 123, 441.6 125, 444.3 125,447.7 124, 449.3
ce500-1000-200-10-4 111, 434.0 112, 484.6 115,422.7 111, 402.0
ce500-1000-200-10-5 124, 483.3 126, 452.4 127,471.7 124, 476.1

2.5. Branch-and-Cut Algorithms

We first introduce a procedure that can reduce the number
of customers. Given wl ∈ W , let Z(wl) be the set of arcs that
can cover wl. For each pair of customers wi and wj, if Z(wi) ⊆
Z(wj) then customer wj can be ignored. This is because when
wi is served, wj is covered at the same time. Note that the
number of customers remaining is also the maximum number
of arcs that must be activated for covering purposes. This
procedure eliminates at least 50% of the customers in our
tests.

We solve the CEARP exactly using a classic branch-and-
cut algorithm. To simplify the description we describe the
algorithm only for F3; the implementation is similar for
F1 and F2. We solve a linear program containing the con-
straints (15), (16), (17), (20), (21) [or (22)], and constraints
0 ≤ ya ≤ 1. We then search for violated constraints of
type (18) and (24), and the constraints detected are added

to the current LP, which is then reoptimized. This process is
repeated until all the constraints are satisfied. If there are
fractional variables, we branch to generate two new sub-
problems. If all the variables are integer, we explore another
subproblem.

Because the exact separation for (18) is quite time-
consuming, after numerous tests, we decided to apply it only
at the root node. More precisely, at every node, we first find
the strongly connected components of the graph created by
the current variables. For each component, we check which
customers are covered. If these customers can not be covered
by the arcs outside the component, a constraint of type (24)
is found. Otherwise, a constraint of type (18) is detected and
added to the current program. At the root node, if this proce-
dure fails to find violated constraints, we carry out the exact
separation method. In other words, the exact separation of
constraint (18) is used at the root node only if the heuristic
fails. At the other nodes, only heuristic separation is applied.
For F1, as we can not find any way to closely estimate M in
constraints (5), the exact separation is useless for these con-
straints. Therefore, only the heuristic method is used even at
the root node.

Our branch-and-cut algorithm is built around CPLEX
11.2 with the Callable Library. All CPLEX cuts except the
zero-half cut are turned off. The parameter CPX–PARAM-
–ZEROHALFCUTS is set to 2 to generate zero-half cuts
aggressively. All the other CPLEX parameters are set to their
default values.

We tested several branching techniques, such as branch-
ing on the variables y before x as in [7] and branching
on the variables x before y, but these do not outperform
the CPLEX branching. Hence, we let CPLEX make the
branching decisions.

In [6], a branch-and-cut algorithm based on F2 is devel-
oped to solve the GDRPP. The differences with our algorithm
are that all the cuts of CPLEX 9.1 are turned on by default,
the constraints (24) are not used, and the exact method to
separate the connectivity constraints (11) is used at all nodes
in the search tree. We also note that zero-half cuts were not
implemented in CPLEX 9.1.

2.6. A MIP-Based Constructive Algorithm

In this subsection, we propose an algorithm called UB2
that gives good solutions for the CEARP. In practice, arcs are

TABLE 3. Number of successful instances.

Data F0 F1 F2 F3 F4

ce500-1500-0.5 0 0 0 0 0
ce500-1500-1 1 0 2 2 0
ce500-1500-5 4 3 5 5 2
ce500-1500-10 5 5 5 5 4
ce500-1000-0.5 2 0 1 3 1
ce500-1000-1 3 2 4 4 2
ce500-1000-5 5 3 5 5 4
ce500-1000-10 5 5 5 5 5
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usually traversed just a few times, and the number of traver-
sals is much lower than the lowest provable value of M. This
suggests that we can bound the large number M in the branch-
and-cut algorithm by a small value to improve performance.
To ensure that a solution exists, a Chinese postman problem
(CPP) is first solved, and M is determined by the maximum
number of times an arc is traversed in the CPP solution. We
use only F2 and F3 to construct this algorithm. For F3, the
dominance constraint (21) is used and added directly to the
initial model.

3. COMPUTATIONAL EXPERIMENTS

In this section, we describe the CEARP instances and the
computational evaluation of the proposed algorithms. Our
algorithm is coded in C/C++ and is run on a 2.4-GHz CPU
with 6 GB of RAM. The running time of the branch-and-cut
algorithms is limited to 2 h for each instance.

3.1. Data Instances

We first use the CEARP instances of [5], which are random
instances based on directed graphs. We now recall how to
build these instances. Graphs that imitate real street networks
are first generated randomly; this procedure is as follows:

• The coordinates of n vertices are randomly generated in
a unit square. Then a heuristic is used to find the shortest
tour passing through all the nodes exactly once. This tour
is a Hamiltonian circuit, and it is used as a framework to
construct the full graph. The resulting graph is therefore
strongly connected.

• To imitate real networks, random arcs are added to the
current tour to give a total of m = nd arcs, where n is
the number of vertices and d the ratio between the number
of arcs and the number of nodes, in such a way that: (i)
the arcs are not too long and (ii) there is no intersection
between any two arcs.

In the tests in [5], graphs with n ∈ {300, 400, 500} vertices
and a ratio d ∈ {1.5, 2, 2.5, 3} are used. For each combination
of n and d, five different graphs are generated. The cost of
an arc (vi, vj) is the Euclidean distance between vi and vj

multiplied by five to obtain an average arc length close to
that seen in practice (from about 0.2 to 0.4 km).

Once the graphs have been built, the CEARP instances are
generated by randomly positioning q = mt customer nodes
in the square containing the graph, where m is the number
of arcs and t the ratio between the number of customers and
the number of arcs, t ∈ {0.5, 1, 5, 10}. Thus, for each graph,
four CEARP instances are created. The effective radius r is
set to 150 m. The distance between the arcs and the customer
vertices are computed by the distance from the closest point
of the arc to the customer. To ensure that a solution exists, we
delete all the customers that can not be covered by any arc. We
also examine the impact of increasing the radius parameter
from 150 to 200 m. To do this, we use the graph created with
r = 150 m but change the read range to 200 m.

From the instances of [5], we choose the largest ones
with 500 nodes and 1500 arcs (r=150 m), and 500 nodes and
1000 arcs (r=200 m) to test our algorithms. The instances are
labeled ce-n-k-r-t-i, where n is the number of nodes, k is the
number of arcs, r is the read range, t is the ratio between the
number of customers and the number of arcs, and i (=1,…,5)
is the instance number. For example, ce-500-1500-150-10-5
indicates the fifth instance with 500 nodes, 1500 arcs, 150 m
of read range, and t =10.

We also use mixed graphs from the literature to gener-
ate instances for the CEARP. We choose the mixed graphs
introduced in [14] for which the coordinates of the vertices
are published. These are large graphs with a structure sim-
ilar to that of real street networks. To transform the mixed
graphs to directed graphs, we model each undirected edge by
two arcs with the same cost. From these graphs, we select
two, MB537 and MB547, which, after being transformed to
directed graphs, have fewer than 1500 arcs. MB357 has 500
nodes, 364 edges, and 476 arcs and MB547 has 500 nodes,
351 edges, and 681 arcs.

For the mixed graphs, the procedure to generate the cus-
tomers is the same, except that the read range r is determined
by the average length of all the arcs in the graph. For each
graph and each value of t, we generate five CEARP instances.

We also test our algorithms on 30 instances defined on
undirected graphs. We use two sets of graphs taken from [15]
with 15 general routing problem instances each, generated
from the Albaida and Madrigueras graphs proposed in [16]
by defining each edge as being required with probability p =
{0.3, 0.5, 0.7}. The Albaida graph includes 116 nodes and 174
edges, and the Madrigueras graph has 196 nodes and 316
edges. From these graphs, we generate CEARP instances as
follows:

• The number of clients is defined by the number of required
edges in the graph; each client is covered by a required
edge.

• Each client is covered by e additional required edges where
e is a random number taking values from 1 to 5, so that
each client is covered by at least 2 and at most 6 edges.

To solve the undirected instances as directed instances, we
transform each edge into two arcs with the same cost. As
in other arc routing problems defined on undirected graphs
(see [17], e.g.), it is easy to prove that, for a given CEARP
instance defined on an undirected graph, an optimal solution
exists in which no edge is traversed more than twice. This
allows us to fix the large number M to 2 in F2 and to 1 in F3.
Therefore, we use the dominance constraints of type (21) for
the undirected instances. Note that, in this case, all variables
in F3 are now binary. For the directed and mixed instances
where M cannot be estimated effectively, the constraints (22)
are used.

3.2. Comparisons of Lower Bounds

The first set of results compares the lower bounds obtained
at the root node of our branch-and-cut algorithms. These are
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TABLE 4. Comparison of performance of F2 and F3.

F2 F3

Data Time Gap Result Time Gap Result

ce500-1500-150-0.5-1 7202.29 4.21 106, 474.2 7202.77 1.76 105, 431.4
ce500-1500-150-0.5-2 7202.72 3.34 97, 300.6 7203.01 2.13 97, 335.3
ce500-1500-150-0.5-3 7202.46 0.82 112, 463.3 7202.91 0.39 112, 429.6
ce500-1500-150-0.5-4 7202.45 2.23 95, 357.7 7202.98 2.53 95, 378.1
ce500-1500-150-0.5-5 7202.51 2.35 102, 403.2 7202.91 0.98 102, 423.9
ce500-1500-150-1-1 7206.93 1.25 129, 490.7 7207.52 0.40 129, 459.7
ce500-1500-150-1-2 505.35 0 123, 423.0 278.86 0 123, 423.0
ce500-1500-150-1-3 121.73 0 133, 418.3 598.91 0 133, 418.3
ce500-1500-150-1-4 7206.53 2.11 116, 431.6 7207.07 1.04 116, 458.8
ce500-1500-150-1-5 7206.48 2.21 117, 467.2 7206.98 1.55 117, 403.4
ce500-1500-150-5-1 452.86 0 162, 497.8 278.01 0 162, 497.8
ce500-1500-150-5-2 128.71 0 160, 492.7 101.33 0 160, 492.7
ce500-1500-150-5-3 166.73 0 177, 442.4 122.72 0 177, 442.4
ce500-1500-150-5-4 64.19 0 151, 452.9 78.69 0 151, 452.9
ce500-1500-150-5-5 147.09 0 161, 433.4 191.63 0 161, 433.4
ce500-1500-150-10-1 152.53 0 174, 404.1 174.82 0 174, 404.1
ce500-1500-150-10-2 212.81 0 173, 404.5 190.57 0 173, 404.5
ce500-1500-150-10-3 197.64 0 185, 430.8 201.41 0 185, 430.8
ce500-1500-150-10-4 201.64 0 162, 471.7 222.80 0 162, 471.7
ce500-1500-150-10-5 945.25 0 168, 434.3 240.02 0 168, 434.3
ce500-1000-200-0.5-1 7200.69 1.59 76, 333.0 4275.83 0 76, 333.0
ce500-1000-200-0.5-2 7200.78 1.22 84, 311.6 385.83 0 84, 337.2
ce500-1000-200-0.5-3 7200.74 12.82 95, 390.2 7200.95 0.80 89, 353.5
ce500-1000-200-0.5-4 7200.71 2.51 76, 326.2 7201.04 1.52 76, 384.4
ce500-1000-200-0.5-5 137.05 0 85, 397.0 1714.54 0 85, 397.0
ce500-1000-200-1-1 461.58 0 82, 387.1 4440.20 0 82, 387.1
ce500-1000-200-1-2 140.30 0 89, 396.5 257.57 0 89, 396.5
ce500-1000-200-1-3 6209.50 0 98, 351.8 279.85 0 98, 351.8
ce500-1000-200-1-4 7202.02 1.95 82, 382.3 7202.20 0.41 82, 344.2
ce500-1000-200-1-5 38.03 0 91, 315.6 59.10 0 91, 315.6
ce500-1000-200-5-1 130.37 0 100, 495.3 1233.24 0 100, 495.3
ce500-1000-200-5-2 36.33 0 109, 418.5 92.57 0 109, 418.5
ce500-1000-200-5-3 121.71 0 114, 462.3 121.69 0 114, 462.3
ce500-1000-200-5-4 57.89 0 103, 490.9 75.01 0 103, 470.9
ce500-1000-200-5-5 19.58 0 112, 425.0 52.97 0 112, 425.0
ce500-1000-200-10-1 67.97 0 110, 427.9 119.54 0 110, 427.9
ce500-1000-200-10-2 57.21 0 113, 494.1 83.24 0 113, 494.1
ce500-1000-200-10-3 82.84 0 126, 459.9 95.27 0 123, 433.9
ce500-1000-200-10-4 69.35 0 115, 481.4 54.81 0 115, 481.4
ce500-1000-200-10-5 44.56 0 128, 463.2 58.86 0 128, 463.2

based on the formulations F1–F3 and the formulation sim-
ilar to that in [6] in which all the CPLEX cuts except the
zero-half cuts are turned on. The formulations are tested on
the directed-graph instances of [5]. The results are given
in Table 2. This table presents, for each formulation F1,
F2, and F3, the lower bound obtained at the root node
(lbi). The value lb4 is the lower bound obtained by the
branch-and-cut algorithm of [6]. The best results are in
bold.

The results shown in Table 2 indicate that the lb4 bounds
are always worse than the lb2 bounds. This proves the effi-
ciency of the addition of zero-half cuts in CPLEX. The results
also imply that the formulations F2 and F3 are more efficient
than F1. It seems that F3 is slightly better than F2, since lb3

is larger than lb2 in 30 of the 40 instances.

3.3. Overall Comparisons

Table 3 compares the five exact algorithms for the CEARP
in terms of the number of instances successfully solved to
optimality. Column F0 gives the results for the cutting-plane
method introduced in [5], and columns F1, F2, and F3 give the
results for our three branch-and-cut algorithms based on the
corresponding formulations. Column F4 presents the number
of successful instances for the algorithm proposed in [6] using
CPLEX 11.2 instead of 9.1 which contains, among other
improvements, the zero-half cuts. Again, the formulations
are tested on the directed-graph instances of [5].

From Table 3, an interesting observation is that the branch-
and-cut algorithms based on F1 and proposed in [6] are
worse than the cutting-plane method introduced in [5]. The
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TABLE 5. Details of branch-and-cut algorithms for F2 and F3.

F2 F3

Data zero user bb domi zero user bb

ce500-1500-150-0.5-1 259 19, 313 5817 3293 1910 9334 61, 303
ce500-1500-150-0.5-2 263 20, 336 6236 3575 2374 3701 113, 437
ce500-1500-150-0.5-3 390 9797 16, 380 2998 2785 1818 169, 409
ce500-1500-150-0.5-4 592 7189 30, 383 3469 2658 4539 71, 336
ce500-1500-150-0.5-5 349 17, 351 12, 356 3333 2426 4453 66, 382
ce500-1500-150-1-1 269 16, 305 11, 390 2797 2567 1540 264, 417
ce500-1500-150-1-2 686 2015 16, 371 2644 1569 361 20, 352
ce500-1500-150-1-3 427 1229 3969 2900 2053 1300 40, 377
ce500-1500-150-1-4 418 7696 22, 392 2791 2101 2778 125, 414
ce500-1500-150-1-5 262 15, 310 12, 392 3044 2029 6288 48, 332
ce500-1500-150-5-1 355 3663 3119 2243 1140 264 33, 310
ce500-1500-150-5-2 340 535 1270 2293 664 177 1561
ce500-1500-150-5-3 246 2040 343 2444 467 328 716
ce500-1500-150-5-4 231 158 136 2159 529 124 1047
ce500-1500-150-5-5 366 224 582 2226 984 149 4817
ce500-1500-150-10-1 242 164 174 2152 400 46 144
ce500-1500-150-10-2 289 1013 1286 2425 667 135 1158
ce500-1500-150-10-3 244 512 141 2259 376 448 487
ce500-1500-150-10-4 301 211 292 2396 806 92 2667
ce500-1500-150-10-5 639 6493 5309 2152 948 129 2741
ce500-1000-200-0.5-1 200 17, 337 11, 374 2110 3179 2845 180, 430
ce500-1000-200-0.5-2 160 27, 332 8960 1972 1618 1064 26, 306
ce500-1000-200-0.5-3 116 37, 316 1143 1942 4397 2381 194, 481
ce500-1000-200-0.5-4 196 18, 365 21, 352 1989 1572 8734 64, 379
ce500-1000-200-0.5-5 218 3417 1146 1994 3372 2458 51, 354
ce500-1000-200-1-1 272 6291 4822 1666 2106 6997 104, 488
ce500-1000-200-1-2 338 2709 3206 1590 1668 1232 10, 394
ce500-1000-200-1-3 148 29, 335 2314 1520 1613 738 18, 344
ce500-1000-200-1-4 230 19, 386 17, 346 1444 681 8147 79, 327
ce500-1000-200-1-5 160 945 70 1456 636 495 3987
ce500-1000-200-5-1 214 2670 785 1146 2354 2546 64, 371
ce500-1000-200-5-2 182 221 125 1245 527 162 1329
ce500-1000-200-5-3 164 2870 285 1024 652 1656 3312
ce500-1000-200-5-4 161 1376 176 1070 385 137 266
ce500-1000-200-5-5 142 156 27 1208 339 264 194
ce500-1000-200-10-1 162 298 46 1020 568 257 2052
ce500-1000-200-10-2 273 810 194 1306 812 116 5612
ce500-1000-200-10-3 146 979 305 1067 421 733 1549
ce500-1000-200-10-4 133 961 79 1104 224 21 18
ce500-1000-200-10-5 134 192 27 1191 449 107 468

branch-and-cut algorithms based on F2 and F3 outperform
the others. For r = 150 m, it seems that F2 and F3 are equiv-
alent. For r = 200 m, F3 is better because it can solve 2
instances with t = 0.5 that F2 can not. Therefore, in the next
subsection, we compare only F2 and F3 on other criteria and
other instances.

3.4. Detailed Comparisons of Directed-Graph Instances

This subsection provides the results for the branch-and-cut
algorithms using F2 and F3. For each formulation, Table 4
shows the time required (time), the gap (gap), and the solution
value (result), and Table 5 presents the number of dominance
constraints of type (22) (domi), the number of zero-half cuts
(zero), the number of connectivity cuts (user), and the number
of vertices (bb) in the branch-and-bound tree. The gap for F3
is better than that for F2. F3 also finds better solutions than F2.

We believe this is because F2 contains Big-M constraints that
lead to numerical difficulties because of the many generated
connectivity constraints (the user column in Table 5). These
increase the size of the model, and so CPLEX needs more
time to process each node. Therefore, there are less chances
to find good solutions. In contrast, the branch-and-bound tree
of F3 is much larger. This is because we use the constraints
(22) instead of the constraints (21) to reduce the size of the
search tree and it seems that the constraints (21) are more
efficient than the constraints (22).

3.5. Comparisons of Undirected- and Mixed-Graph
Instances

Table 6 gives the results for the two formulations
on undirected-graph instances. F3 can solve the instance
MADR-7-3 that F2 can not. It is also faster on 22 of 30
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TABLE 6. Comparison of performance of F2 and F3 on undirected instances.

F2 F3

Data lb1 Gap bb Time Result lb1 Gap bb Time Result

ALBA-3-1 2391.8 0 236 5.34 2511 2319.2 0 209 2.08 2511
ALBA-3-2 2124.7 0 119 4.14 2324 2011.2 0 74 2.15 2324
ALBA-3-3 2012.8 0 74 1.88 2155 2070.7 0 30 1.32 2155
ALBA-3-4 2363.7 0 959 53.42 3074 2621.0 0 334 13.39 3074
ALBA-3-5 2244.0 0 71 3.63 2440 2355.1 0 21 2.04 2440
ALBA-5-1 2845.0 0 703 28.15 3125 2712.3 0 1105 24.26 3125
ALBA-5-2 2468.3 0 637 24.70 2926 2480.5 0 1655 35.78 2926
ALBA-5-3 3013.8 0 279 9.93 3170 2961.5 0 446 13.12 3170
ALBA-5-4 2447.8 0 298 8.78 2584 2405.8 0 433 7.77 2584
ALBA-5-5 2472.4 0 477 24.66 2642 2535.6 0 112 3.22 2642
ALBA-7-1 2989.7 0 495 21.33 3397 2879.4 0 528 13.64 3397
ALBA-7-2 3200.1 0 793 29.71 3558 3192.1 0 740 21.77 3558
ALBA-7-3 3234.6 0 1939 68.88 3647 3125.3 0 1913 64.31 3647
ALBA-7-4 3255.8 0 365 15.20 3461 3264.4 0 789 24.63 3461
ALBA-7-5 2540.8 0 401 23.27 2821 2642.5 0 249 8.81 2821
MADR-3-1 2511.2 0 11, 315 2027.39 2925 2658.0 0 4757 137.62 2925
MADR-3-2 3103.3 0 10, 353 1972.94 3665 3197.5 0 28, 355 2731.95 3665
MADR-3-3 2580.7 0 2556 366.50 3045 2714.9 0 2516 112.25 3045
MADR-3-4 2829.3 0 8838 2463.51 3295 2936.4 0 11, 386 794.31 3295
MADR-3-5 2704.7 0 3603 552.06 3165 2760.4 0 7960 1303.2 3165
MADR-5-1 3479.6 0 7116 1398.53 3945 3568.7 0 4261 593.94 3945
MADR-5-2 4234.9 0 3124 280.35 4570 4239.4 0 6871 213.86 4570
MADR-5-3 3850.6 0 17, 362 4067.07 4505 3810.2 0 4395 480.13 4505
MADR-5-4 3780.9 0 1526 184.09 4020 3840.0 0 2605 180.52 4120
MADR-5-5 3583.5 0 7894 1156.25 4010 3695.5 0 6199 738.96 4010
MADR-7-1 4287.3 0 5041 850.95 4645 4329.4 0 14, 385 2512.30 4645
MADR-7-2 4363.8 0 7424 1499.57 4650 4350.3 0 4825 477.29 4650
MADR-7-3 4120.9 1.05 33, 374 7200.08 4620 4234.8 0 16, 384 2128.87 4620
MADR-7-4 4190.7 2.27 27, 365 7200.07 4655 4186.7 2.48 39, 364 7200.06 4645
MADR-7-5 4370.1 0 12, 306 2958.65 4735 4338.2 0 23, 333 4535.04 4735

instances. Therefore, on undirected instances F3 outperforms
F2. Note that in this case, all the variables of F3 are binary
and this is probably why F3 is better than F2.

Table 7 gives the results for mixed-graph instances. All the
results are averages over five instances. F2 can solve more
instances than F3 but once again its gap is, in some cases,
poor.

3.6. Results for Upper Bounds

Tables 8 and 9 give the results for algorithms UB1 and
UB2. In these tables, MCPP is the value of M calculated

by solving the CPP problems. The names of instances in
bold indicate that these instances were proved optimal by
the branch-and-cut algorithms. The BnC Time column gives
the running time in seconds of the branch-and-cut algorithm
based on F2. The Gap column displays the gap in percent of
upper bounds to the best solutions found by the two branch-
and-cut algorithms in the previous subsection. The negative
results imply that the upper-bound algorithms found bet-
ter solutions than the branch-and-cut algorithms. From the
results of the exact algorithms, we observe that an arc is rarely
crossed more than five times in the solution. Therefore, we

TABLE 7. Comparison of performance of F2 and F3 on mixed-graph instances.

F2 F3

Data succ Gap bb Time Result succ Gap bb Time Result

MB0537-0.5 4 1.75 10, 330.2 3379.42 17, 392.0 0 1.07 38, 379.6 7200.72 17, 360.4
MB0537-1 3 0.59 10, 325.2 4707.06 18, 346.8 0 1.33 63, 397.2 7201.54 18, 371.4
MB0537-5 5 0 3242.0 185.89 21, 312.2 3 0.19 138, 495.6 3937.83 21, 312.2
MB0537-10 5 0 1040.2 74.01 22, 366.2 5 0 163, 433.6 2418.27 22, 366.2
MB0547-0.5 0 9.28 5450.2 7200.63 15, 359.8 0 6.95 19, 357.4 7201.09 15, 389.2
MB0547-1 0 3.38 14, 369 7201.74 17, 355.0 0 3.48 42, 325.4 7202.20 17, 316.2
MB0547-5 5 0 4428.6 470.27 21, 343.2 4 0.13 27, 333.8 1639.97 21, 343.2
MB0547-10 5 0 1461.6 79.97 22, 304.0 5 0 31, 392.4 756.16 22, 304.0
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TABLE 8. Upper bounds based on F2 for directed-graph instances.

UB1 UB2-F2, M = 5 UB2-F2, M = MCPP Bnc

Data Time Gap Time Gap MCPP Time Gap Time

ce500-1500-150-0.5-1 6.93 14.71 3819.53 −0.32 11 1128.79 −0.32 7202.29
ce500-1500-150-0.5-2 7.49 16.97 473.07 −0.69 12 1084.34 −0.69 7202.72
ce500-1500-150-0.5-3 7.80 15.81 141.14 −0.02 15 171.44 −0.02 7202.46
ce500-1500-150-0.5-4 8.28 13.30 1337.99 −0.80 12 7202.44 −0.79 7202.45
ce500-1500-150-0.5-5 7.30 13.97 1699.12 −0.33 10 7202.37 −0.33 7202.51
ce500-1500-150-1-1 10.97 10.02 143.32 −0.07 11 129.40 −0.07 7206.93
ce500-1500-150-1-2 11.25 6.24 83.17 0 12 90.92 0 505.35
ce500-1500-150-1-3 11.50 6.39 153.90 0 15 121.17 0 121.73
ce500-1500-150-1-4 11.60 12.62 480.28 −0.10 12 746.87 −0.10 7206.53
ce500-1500-150-1-5 11.19 11.38 7206.52 −0.12 10 7206.26 0.03 7206.48
ce500-1500-150-5-1 57.61 2.94 140.66 0 11 117.08 0 452.86
ce500-1500-150-5-2 54.70 2.41 133.76 0 12 132.17 0 128.71
ce500-1500-150-5-3 54.15 3.58 15 147.08 0 166.73
ce500-1500-150-5-4 51.24 3.62 93.06 0 12 79.82 0 64.19
ce500-1500-150-5-5 53.93 3.04 147.37 0 10 166.00 0 147.09
ce500-1500-150-10-1 119.36 1.75 143.05 0 11 152.90 0 152.53
ce500-1500-150-10-2 107.62 2.26 164.46 0 12 175.16 0 212.81
ce500-1500-150-10-3 118.05 2.57 15 178.73 0 197.64
ce500-1500-150-10-4 101.88 2.78 175.58 0 12 178.49 0 201.64
ce500-1500-150-10-5 115.54 2.91 250.78 0 10 218.16 0 945.25
ce500-1000-200-0.5-1 4.58 30.25 88.65 0 10 54.29 0 7200.69
ce500-1000-200-0.5-2 4.69 42.00 66.63 0 14 161.62 0 7200.78
ce500-1000-200-0.5-3 4.62 33.06 96.97 0 12 354.75 0 7200.74
ce500-1000-200-0.5-4 4.57 41.92 287.06 −0.17 12 252.59 −0.17 7200.71
ce500-1000-200-0.5-5 4.68 39.59 89.17 0 11 81.70 0 137.05
ce500-1000-200-1-1 5.78 24.22 78.95 0 10 106.86 0 461.58
ce500-1000-200-1-2 5.87 35.84 73.87 0 14 182.10 0 140.30
ce500-1000-200-1-3 6.07 23.36 180.66 0 12 81.72 0 6209.50
ce500-1000-200-1-4 5.94 30.50 112.85 0 12 358.85 0 7202.02
ce500-1000-200-1-5 5.99 28.21 23.47 0 11 15.51 0 38.03
ce500-1000-200-5-1 19.57 30.18 60.29 0 10 97.54 0 130.37
ce500-1000-200-5-2 17.98 10.98 74.72 0 14 81.14 0 36.33
ce500-1000-200-5-3 21.04 10.41 58.55 0 12 71.51 0 121.71
ce500-1000-200-5-4 21.14 18.55 34.15 0 12 42.40 0 57.89
ce500-1000-200-5-5 21.19 18.32 24.90 0 11 28.32 0 19.58
ce500-1000-200-10-1 39.85 9.79 67.88 0 10 95.28 0 67.97
ce500-1000-200-10-2 35.85 6.63 49.28 0 14 55.72 0 57.21
ce500-1000-200-10-3 42.70 4.45 80.61 0 12 86.33 0 82.84
ce500-1000-200-10-4 42.54 11.91 49.51 0 12 46.20 0 69.35
ce500-1000-200-10-5 43.33 12.98 62.41 0 11 57.18 0 444.56

also test the MIP-based constructive algorithms with M = 5.
Note that this algorithm is not competitive on undirected-
graph instances, because in these cases, we can bound the
large number M efficiently. When M is bounded more strictly,
F2 is much better than F3, so we do not present the results of
the algorithm for F3.

The results for directed- and mixed-graph instances show
the good performance of the algorithm UB2. It not only finds
better solutions but is also faster in almost all the instances
that the branch-and-cut algorithms can not solve exactly. The
performance of algorithm with M = 5 is slightly better than
with M = MCPP but bounding M too strictly can make the
problem infeasible, two instances ce500-1500-5-3-150 and
ce500-1500-10-3-150 for example. The quality of UB1 is
poor, especially on the directed-graph instances where r =
200 m as well as on the mixed-graph instances. It only works

better on the easy instances with r = 150 m and t = 0.5, 1.
However, it is much faster than UB2.

4. CONCLUSIONS

We have proposed a new formulation for the CEARP. In
contrast to two formulations in the literature, this formula-
tion has an important advantage: it does not require Big-M
constraints. Branch-and-cut algorithms have been developed
for three formulations, and the three formulations have been
compared. The results show that the branch-and-cut algo-
rithms based on our new formulation and on the formulation
of [6] outperform the other algorithms considered. In com-
parison with the formulation of [6], our new formulation is
better on directed- and undirected-graph instances but worse
on mixed-graph instances. Normally, our new formulation
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TABLE 9. Upper bounds based on F2 for mixed-graph instances.

UB1 UB2-F2, M = 5 UB2-F2, M = MCPP BnC

Data Time Gap Time Gap MCPP Time Gap Time

MB0537-0.5-1 4.77 34.40 345.39 0 7 278.38 0 992.57
MB0537-0.5-2 4.77 39.41 382.67 0 7 397.07 0 4491.65
MB0537-0.5-3 5.04 36.08 2726.26 −0.51 7 981.18 −0.51 7200.69
MB0537-0.5-4 4.73 37.74 146.45 0 7 212.68 0 690.54
MB0537-0.5-5 5.09 31.65 478.33 0 7 214.05 0 3521.67
MB0537-1-1 5.79 33.56 276.76 0 7 155.04 0 1382.62
MB0537-1-2 5.79 33.60 108.31 0 7 127.44 0 3629.55
MB0537-1-3 5.78 33.08 393.87 −0.45 7 287.98 −0.45 7201.13
MB0537-1-4 5.53 38.33 723.45 0 7 3143.52 0 7201.26
MB0537-1-5 5.88 34.87 2471.76 0 7 617.78 0 4120.76
MB0537-5-1 13.40 17.44 274.46 0 7 283.69 0 593.70
MB0537-5-2 13.08 15.59 41.81 0 7 50.01 0 60.67
MB0537-5-3 13.78 18.12 92.07 0 7 96.55 0 138.32
MB0537-5-4 14.10 17.96 63.01 0 7 107.87 0 93.19
MB0537-5-5 13.66 15.07 64.30 0 7 57.08 0 43.58
MB0537-10-1 23.27 13.45 69.48 0 7 72.61 0 73.15
MB0537-10-2 25.68 14.77 67.03 0 7 74.79 0 75.52
MB0537-10-3 25.64 18.29 185.10 0 7 144.82 0 114.87
MB0537-10-4 25.22 11.42 49.43 0 7 30.24 0 30.61
MB0537-10-5 24.12 14.85 40.86 0 7 46.35 0 75.92
MB0547-0.5-1 5.60 44.89 7200.58 −4.03 14 7200.88 −1.40 7200.65
MB0547-0.5-2 5.23 41.12 1460.73 −1.20 14 2645.67 −1.20 7200.60
MB0547-0.5-3 5.22 45.92 7200.57 −1.06 14 2215.78 −1.33 7200.59
MB0547-0.5-4 5.31 39.19 7200.69 −1.34 14 7201.31 −0.65 7200.62
MB0547-0.5-5 5.21 40.64 7200.58 −1.65 14 7200.61 −1.63 7200.68
MB0547-1-1 6.25 36.72 66.54 −0.17 14 233.73 −0.17 7201.69
MB0547-1-2 6.27 33.26 383.36 −0.31 14 1211.10 −0.31 7201.86
MB0547-1-3 6.54 26.39 7201.62 −1.06 14 7201.70 −1.09 7201.60
MB0547-1-4 6.20 32.59 954.23 −0.21 14 969.81 −0.21 7201.87
MB0547-1-5 6.21 33.52 7201.62 −0.69 14 7201.59 −0.66 7201.67
MB0547-5-1 17.35 29.24 17.54 0 14 24.49 0 46.89
MB0547-5-2 17.62 40.39 18.28 0 14 43.18 0 32.89
MB0547-5-3 18.28 139.02 18.05 0 14 67.34 0 2158.19
MB0547-5-4 17.27 14.59 33.64 0 14 50.53 0 40.31
MB0547-5-5 17.46 16.91 64.69 0 14 52.02 0 73.08
MB0547-10-1 22.94 44.51 17.99 0 14 48.91 0 98.00
MB0547-10-2 35.85 14.71 60.13 0 14 67.20 0 54.33
MB0547-10-3 32.65 12.50 83.55 0 14 105.39 0 138.32
MB0547-10-4 31.59 11.56 69.47 0 14 64.96 0 47.86
MB0547-10-5 31.88 14.39 55.85 0 14 67.30 0 61.35

gives a better gap, but an enormous branch-and-bound tree
is the price to pay. We also propose a MIP-based construc-
tive heuristic for the CEARP on directed- and mixed-graph
instances based on the formulation of [6] in which the large
number M is bounded more strictly.
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