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Abstract

The aim of this work is to prove the existence of a positive solution for a class of
generalized delay logistic equations with multifractional noise. To do this, a method
of semimartingale approximation is introduced.

Keywords: Delay logistic equations; Volterra multifractional Gaussian processes;
Malliavin calculus.
2010 MSC: 34K50, 60G22, 60H07

1. Introduction

The classical logistic equation

dN(t) = (λN(t)− c[N(t)]2)dt, (1.1)

was proposed by Verhulst (1838) to describe population growth in a limited environ-
ment and since then it has remained very popular in population dynamics. A general-
ization of the logistic equations has been recently introduced by Yukalov et al. (2009)
that reads

dN(t) =

(
λN(t)− c[N(t)]2

a+ bN(t− r)

)
dt, (1.2)
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where λ, a, b, c are positive constants. In the context of population dynamics, r char-
acterizes the reaction time of the population to environmental constraints, a is the
original carrying capacity and b is interpreted as the factor that controls the current
carrying capacity as a proportion of the historical development. The term λ can be
interpreted as the net birth rate with respect to the death and the term c represents
the net competition versus the cooperation.

It is clear that the models (1.1) and (1.2) will be more realistic if noise is added.
In fact, many stochastic versions of (1.1) with Brownian noise have been investigated.
For example, the model

dN(t) = (λN(t)− c[N(t)]2)dt+ σN(t)dW (t),

is well-known as the stochastic logistic model or the so-called Verhulst model in pop-
ulation study.

In this paper, we use the multifractional Gaussian process as a noise and choose to
make the net birth rate, λ, as a stochastic parameter then we could model γ(ω) by

γ(ω) = γ + σ ”multifractional noise”, (1.3)

where γ = E[γ(ω)], σ are deterministic. Replacing the delay term c
a+bN(t−r)

by a general

function g(t, N(t− r)) and inserting (1.3) into Eq. (1.2), we get a stochastic version of
the generalized delay logistic equations which has the form

dN(t) =
(
λN(t)− g(t, N(t− r))[N(t)]2

)
dt+ σN(t)dBh(t) , t ∈ [0, T ],

N(t) = ϕ(t) , t ∈ [−r, 0], where ϕ ∈ C[−r, 0];
(1.4)

where λ, σ are real constants and Bh(t) is a Volterra-type multifractional Gaussian
process.

Let h : [0,+∞) → [a, b] ⊂ (1/2, 1) be a Hölder function of exponent β > 0, i.e. for
any t1, t2 ∈ [0,+∞) such that |t1 − t2| < 1, there exists a constant c0 > 0 such that

|h(t1)− h(t2)| ≤ c0|t1 − t2|β.

According to the definition given by Boufoussi et al. (2010), a Volterra-type multifrac-
tional Gaussian process, {Bh(t), t ≥ 0}, with the Hurst functional parameter h(t) is a
centered Gaussian process defined by

Bh(t) := Bh(t)(t) =

t∫
0

Kh(t, s)dW (s), (1.5)
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where W is a standard Brownian motion and the Volterra kernel is given by

Kh(t, s) := Kh(t)(t, s) = s
1
2
−h(t)

t∫
s

(y − s)h(t)−
3
2yh(t)−

1
2dy.

A multifractional Gaussian process reduces to a fractional Brownian motion (fBm)
when the functional parameter h(t) is a constant. In fact, the stochastic calculus
with respect to fBm is now well established (we refer the reader to Coutin (2007)
for a survey). But the stochastic calculus for multifractional Gaussian processes has
not yet been developed explicitly. Also, the theory of stochastic delay differential
equations with fractional noise has attracted a lot attentions of works from different
approaches (see e.g. Ferrante and Rovira (2006), Neuenkirch et al. (2008), Ferrante and
Rovira (2010), Caraballo et al. (2011), León and Tindel (2012), Boufoussi and Hajji
(2012)) and the generalized delay logistic equation (1.4) with fractional Brownian noise
can be considered as a special form of equations studied by Neuenkirch et al. (2008).
But, to the best of our knowledge, studies of the delay differential equations with
multifractional noise are scarce.

Recently, Boufoussi et al. (2010) have used the stochastic calculus developed by Alòs
et al. (2001) to get a definition for stochastic integral with respect to Bh(t). Our work
follows the work of Boufoussi et al. and is organized as follows: In Section 2, we give a
modification of the stochastic integral with respect to Bh(t) defined in Boufoussi et al.
(2010). Section 3 contains the main result of this paper: we introduce an approximate
method for proving the existence of a positive solution of (1.4).

2. Preliminaries

The aim of this section is to introduce a stochastic integral with respect to Volterra-
type multifractional Gaussian processes, Bh, with the Hurst parameter h(t) ∈ [a, b] ⊂
(1/2, 1). For this purpose, we additionally assume that h(t) is a continuously differen-
tiable function on [0,+∞).

Throughout this paper, let (Ω,F , P ) be a complete probability space with a filtra-
tion F = {Ft, t ≥ 0} generated by Brownian motion W. For any p ≥ 1, we denote by
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D1,p
W the space of Malliavin differentiable random variables with the norm

∥F∥p1,p := E|F |p +
T∫

0

E|DW
r F |pdr,

where DW
r F is the Malliavin derivative of F.

As shown by Boufoussi et al. (2010), the Gaussian property of Bh(t) allows us to
apply the stochastic calculus developed by Alòs et al. (2001) to get a stochastic integral
with respect to Bh(t).

Denote by D1,2
W (HKr) the space of stochastic processes satisfying the following two

conditions:

E

T∫
0

( T∫
s

|u(t)∂1Kh(t, s)|dt
)2

ds < ∞, (C1)

and

E

T∫
0

T∫
0

( T∫
s

|DW
r u(t)∂1Kh(t, s)|dt

)2

dsdr < ∞. (C2)

where

∂1Kh(t, s) = (t−s)h(t)−
3
2

(
t

s

)h(t)− 1
2

+h′(t)

t∫
s

[ln(y−s)+ ln
y

s
](y−s)h(t)−

3
2

(
y

s

)h(t)− 1
2

dy.

For u = {u(t), t ∈ [0, T ]} is a stochastic process in D1,2
W (HKr), one can define the

divergence integral of u with respect to Bh by (see formula (21) in Alòs et al. (2001))

t∫
0

u(s)δBh(s) =

t∫
0

( t∫
r

u(s)∂1Kh(s, r)ds

)
δW (r),

where δWr is Skorohod differential. Moreover, r 7→
t∫
r

u(s)∂1Kh(s, r)ds is Stratonovich

integrable with respect to W. By taking into account the relation between the Skorohod
integral and the Stratonovich integral, we use in this paper the following definition for
the multifractional stochastic integral.
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Definition 2.1. Let u ∈ D1,2
W (HKr). The stochastic integral of u with respect to Bh is

defined by

t∫
0

u(s)dBh(s) =

t∫
0

u(s)δBh(s) +

t∫
0

t∫
s

DW
s u(r) ∂1Kh(r, s)drds,

Proposition 2.1. Let u = {u(t), 0 ≤ t ≤ T} be a stochastic process bounded in the
norm ∥.∥1,2 of the space D1,2

W , i.e.

sup
0≤t≤T

(
E|u(t)|2 +

T∫
0

E|DW
r u(t)|2dr

)
< ∞.

Then u ∈ D1,2
W (HKr).

Proof. By using the Hölder inequality it is easy to check the conditions (C1) and
(C2).

3. The main results

In this section, we prove the existence of a semi-analytical solution to the equation
(1.4). To obtain the solution, like in the classical case, we shall use the method of
step by step, i.e. first prove the result for the interval [0, r], then we use this solution
process as the initial condition to solve the equation within the interval [r, 2r], and so
on. Thus the key problem is studying

dN(t) =

(
λN(t)− C(t)[N(t)]2

)
dt+ σN(t)dBh(t) , t ∈ [0, T ], (3.1)

where the initial condition N(0) = N0 and C(t) is an adapted stochastic process.

In the Brownian case, where Bh(t) is replaced by a standard Brownian motionW (t),
the existence and uniqueness of the solution are well-known and the explicit solution
can be found by using the Itô differential formula (for instance, see Kloeden and Platen
(1992), page 125). In our context, Bh(t) with h(t) > 1

2
is not a semimartingale and (3.1)

is an anticipated stochastic differential equation (it contains a Skorohod differential).
Hence, the traditional methods cannot be applied. Naturally, we need to find a new
method to studying (3.1). Let us state the following auxiliary result.
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Theorem 3.1. I. {Bh(t), 0 ≤ t ≤ T} can be approximated in Lp(Ω), p > 1 by semi-
martingale Bh,ε(t) which is defined as follows for every ε > 0

Bh,ε(t) := E[Bh(t+ ε)|Ft] =

t∫
0

Kh(t+ ε, s)dW (s), (3.2)

where F = {Ft, t ∈ [0, T ]} is the natural filtration associated to W.

II. Let u = {ut, 0 ≤ t ≤ T} be an F-adapted process bounded in the norm ∥.∥1,2 of
the space D1,2

W . Then

t∫
0

u(s)dBh(s) = lim
ε→0+

t∫
0

u(s)dBh,ε(s) in L2(Ω),

uniformly in t ∈ [0, T ].

Proof. I. We first show that Bh,ε(t) is a semimartingale. Indeed, by using the semi-
martingale decomposition for Volterra stochastic integrals we have

t∫
0

g(t, s)dWs =

t∫
0

g(s, s)dWs +

t∫
0

( s∫
0

∂

∂s
g(s, u)dWu

)
ds,

provided that integrals in the right hand side exist. And then by choosing g(t, s) =
Kh(t+ ε, s) we get

Bh,ε(t) =

t∫
0

Kh(s+ ε, s)dWs +

t∫
0

φε(s)ds , t ∈ [0, T ], (3.3)

where φε(s) =
s∫
0

∂1Kh(s+ ε, u)dWu and

∂1Kh(s+ ε, u) = (s+ ε− u)h(s+ε)− 3
2

(
s+ ε

u

)h(s+ε)− 1
2

+ h′(s+ ε)

s+ε∫
u

[ln(y − u) + ln
y

u
](y − u)h(s+ε)− 3

2

(
y

u

)h(s+ε)− 1
2

dy.
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(We note that Bh(t) is not a semimartingale because φ0(s) does not exist.)

By the Itô isometry formula we have

E|Bh,ε(t)−Bh(t)|2 =
t∫

0

[Kh(t+ε, s)]2ds−2

t∫
0

Kh(t+ε, s)Kh(t, s)ds+

t∫
0

[Kh(t, s)]
2ds

≤
t+ε∫
0

[Kh(t+ε, s)]2ds−2

t∧t+ε∫
0

Kh(t+ε, s)Kh(t, s)ds+

t∫
0

[Kh(t, s)]
2ds = E|Bh(t+ε)−Bh(t)|2.

(3.4)

We recall from Corollary 4 in Boufoussi et al. (2010) that

E|Bh(t1)−Bh(t2)|2 ≤ CT |t1 − t2|2min(β,a) ∀ t1, t2 ∈ [0, T ], (3.5)

where a = min
t∈[0,T ]

ht and β is Hölder exponent of h.

By the Gaussian properties of Bh,ε(t) and Bh(t) combined with (3.4) and (3.5), we
obtain that for each p > 1, there exists CT,p such that

E|Bh,ε(t)−Bh(t)|p ≤ CT,pε
pmin(β,a),

which implies that Bh,ε(t) converges to Bh(t) in Lp(Ω), p > 1 when ε → 0, uniformly
in t ∈ [0, T ].

II. Note that
t∫
0

u(s) dBh,ε(s) is well defined because u is a square integrable and

F-adapted process. From the decomposition (3.3) and by the integration by parts
formula for the Skorohod integral we have

t∫
0

u(s) dBh,ε(s) =

t∫
0

u(s)Kh(s+ ε, s)dWs +

t∫
0

u(s)

s∫
0

∂1Kh(s+ ε, r)dWrds

=

t∫
0

u(s)Kh(s+ε, s)dWs+

t∫
0

s∫
0

u(s)∂1Kh(s+ε, r)δWrds+

t∫
0

t∫
r

Dru(s)∂1Kh(s+ε, r)dsdr

=

t∫
0

u(s)Kh(s+ε, s)dWs+

t∫
0

t∫
r

u(s)∂1Kh(s+ε, r)dsδWr+

t∫
0

t∫
r

Dru(s)∂1Kh(s+ε, r)dsdr.
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As a consequence,

E

∣∣∣∣
t∫

0

u(s) dBh,ε(s)−
t∫

0

u(s) dBh(s)

∣∣∣∣2 ≤ 3E

∣∣∣∣
t∫

0

u(s)Kh(s+ ε, s)dWs

∣∣∣∣2

+ 3E

∣∣∣∣
t∫

0

t∫
r

u(s)(∂1Kh(s+ ε, r)− ∂1Kh(s, r))dsδWr

∣∣∣∣2

+ 3E

∣∣∣∣
t∫

0

t∫
r

DW
r u(s)(∂1Kh(s+ ε, r)− ∂1Kh(s, r))dsdr

∣∣∣∣2 := 3(A1 + A2 + A3).

It is obvious that A1 → 0 as ε → 0, uniformly in t ∈ [0, T ]. By Meyer’s inequality (see,
Nualart (2006)) we have

A2 ≤
t∫

0

∥∥∥∥
t∫

r

u(s)(∂1Kh(s+ ε, r)− ∂1Kh(s, r))ds

∥∥∥∥2

1,2

dr,

which implies that A2 → 0 uniformly in t ∈ [0, T ] as ε → 0 because the process u(s) is
bounded in the norm ∥.∥1,2 and h(t) is a differentiable function with bounded derivative
on the interval [0, T ]. Similarly, we also have A3 → 0 because

A3 ≤
∥∥∥∥

t∫
r

u(s)(∂1Kh(s+ ε, r)− ∂1Kh(s, r))ds

∥∥∥∥2

1,2

.

The Theorem is proved.

In order to be able to apply Theorem 3.1 and to use the method of induction in
Theorem 3.3, let us introduce a new space: For fixed p ≥ 2, denote by D1,p the space
of stochastic processes such that u ∈ D1,p

W and

sup
t∈[0,T ]

E|u(t)|p + sup
r,t∈[0,T ]

E|DW
r u(t)|p ≤ Lp,

where Lp is a finite positive constant. By Proposition 2.1 we have D1,p ⊂ D1,2
W (HK).
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Theorem 3.2. Suppose that C(t) is an F-adapted stochastic process such that C(t) ≥
0 a.s. for any t ∈ [0, T ] and C ∈ D1,2+δ for some δ > 0. Then the equation (3.1) has a
positive solution which is given by

N∗(t) =
N0 exp(λt+ σBh(t))

1 +N0

t∫
0

C(s) exp(λs+ σBh(s))ds

. (3.6)

This solution is adapted to the filtration F and belongs to D1,2+ δ
4 .

Proof. The proof is broken up into three steps.

Step 1. Consider the ”approximation” equation corresponding to (3.1) with the same
initial condition Nε(0) = N0 :

dNε(t) =
(
λNε(t)− C(t)[Nε(t)]

2
)
dt+ σNε(t)dBh,ε(t). (3.7)

From the decomposition (3.3), the above equation can be rewritten as follows

dNε(t) =

(
(λ+ σφε(t))Nε(t)− C(t)[Nε(t)]

2

)
dt+ σKh(t+ ε, t)Nε(t)dWt. (3.8)

To find the solution of (3.7) we put Yε(t) := exp
(
−λt+1

2
σ2

t∫
0

[Kh(s+ε, s)]2ds−σBh,ε(t)
)
,

which solves the following Itô SDE

dYε(t) =
(
− λ+ σ2[Kh(t+ ε, t)]2 − σφε(t)

)
Yε(t)dt− σKh(t+ ε, t)Yε(t)dW (t).

Since Nε(t) and Yε(t) are semimartingales, we can apply the integration by parts for-
mula to Zε(t) := Nε(t)Yε(t) and get

dZε(t) = −C(t)

Yε(t)
[Zε(t)]

2dt , Zε
0 = N0. (3.9)

Obviously, the unique solution of (3.9) is given by Zε(t) =

(
1
N0

+
t∫
0

C(s)
Yε(s)

ds

)−1

.

Consequently, the solution Nε(t) =
Zε(t)
Yε(t)

of (3.7) is given by

Nε(t) =
N0e

λt− 1
2
σ2

t∫
0

[Kh(s+ε,s)]2ds+σBh,ε(t)

1 +N0

t∫
0

C(s)e
λs− 1

2
σ2

s∫
0

[Kh(u+ε,u)]2du+σBh,ε(s)
ds

:=
Ȳε(t)

Z̄ε(t)
.
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Step 2. Check Nε, N
∗ ∈ D1,2. We observe that N∗(t) = N0(t), and hence, it is enough

to show that Nε ∈ D1,2 ∀ ε ≥ 0. Denote by Mi(., .), i = 1, 2, ..., the finite positive
constants not depending on ε. By the chain rule of the Malliavin derivative we have
for any r ≤ t,

DW
r [Ȳε(t)] = σȲε(t)D

W
r [Bh,ε(t)] = σȲε(t)Kh(t+ ε, r),

DW
r [Z̄ε(t)] =

t∫
r

(
DW

r [C(s)]Ȳε(s) + C(s)DW
r [Ȳε(s)]

)
ds,

DW
r [Nε(t)] =

Z̄ε(t)D
W
r [Ȳε(t)]− Ȳε(t)D

W
r [Z̄ε(t)]

[Z̄ε(t)]2
.

Note that Kh(t, s) ≤ (t−s)h(t)−
1
2

h(t)− 1
2

≤ T b− 1
2

a− 1
2

∀ 0 ≤ s < t ≤ T. Then by the Gaussian

property of Bh,ε(t) we have the following two estimates for any p > 1 :

E|Ȳε(t)|p = Np
0 e

p(λt− 1
2
σ2

t∫
0

K2
h(s+ε,s)ds)+ 1

2
p2σ2E|Bh,ε(t)|2

< M1(p, T ),

E|DW
r [Ȳε(t)]|p = σp|Kh(t+ ε, r)|pE|Ȳε(t)|p < M2(p, T ).

By the Hölder inequality

E|Z̄ε(t)|2+
δ
2 ≤ 2 + 2

t∫
0

E|C(s)Ȳε(s)|2+
δ
2ds

≤ 2 + 2
t∫
0

(E|C(s)|2+δ)
2+ δ

2
2+δ (E|Ȳε(s)|

(4+δ)(2+δ)
δ )

δ
4+2δ ds < M3(δ, T ).

In a similar way we have E|DW
r [Z̄ε(t)]|2+

δ
2 < M4(δ, T ) and

E|DW
r [Nε(t)]|2+

δ
4 ≤ E|Z̄ε(t)D

W
r [Ȳε(t)]− Ȳε(t)D

W
r [Z̄ε(t)]|2+

δ
4 < M5(δ, T ). (3.10)

Since N0C(t) ≥ 0 a.s., this implies that

E|Nε(t)|2+
δ
4 ≤ E|Ȳε(t)|2+

δ
4 < M1(δ, T ). (3.11)

The inequalities (3.10) and (3.11) show that Nε ∈ D1,2+ δ
4 ⊂ D1,2.
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Step 3. Firstly, it is easy to check that Nε(t) → N∗(t) uniformly in t ∈ [0, T ] in
the norm ∥.∥1,2 since Kh(t, t) = 0 and Bh,ε(t) → Bh(t) for any t ∈ [0, T ]. On the other
hand, N∗(t) is F-adapted. It follows from Theorem 3.1 and triangular inequality that

t∫
0

Nε(s)dBh,ε(s) →
t∫

0

N∗(s)dBh(s) in L2(Ω).

As a consequence, we can take the limit of the integral form of (3.7) in L2(Ω) as ε → 0
to get

N∗(t) = N0 +

t∫
0

(
λN∗(s)− C(s)[N∗(s)]2

)
ds+

t∫
0

σN∗(s)dBh(s) , t ∈ [0, T ],

which means that N∗(t) is a solution of (3.1).

The Theorem is thus proved.

Theorem 3.3. Consider the generalized delay logistic equations with multifractional
noise (1.4). Suppose that g(t, x) is a continuously differentiable function in x such that

|g(t, x)− g(t, y)| < L|x− y| ∀ t ∈ [0, T ], ∀ x, y ∈ R, (3.12)

|g(t, x)| < L(1 + |x|) ∀ t ∈ [0, T ], ∀ x ∈ R. (3.13)

In addition, g(t, x) ≥ 0 for all t ∈ [0, T ] and x ∈ R. Then the equation (1.4) has a
positive solution on [0, T ].

Proof. Because the delay time, r, is discrete we can prove our theorem by the method
of induction. For simplicity let us assume that T = Nr, where N is a positive integer
number. Our induction hypothesis, for n < N, is the following:

(Hn) The equation

N(t) = ϕ(0) +

t∫
0

(
λN(s)− g(s,N(s− r))[N(s)]2

)
ds+

t∫
0

σN(s)dBh(s) , t ∈ [0, nr],

with Xt = 0 , t > nr, has a positive solution in D1,2+ 1

22
n .
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Check (H1). Let t ∈ [0, r]. Then N(t− r) = ϕ(t− r) and (1.4) becomes

N(t) = ϕ(0) +

t∫
0

(λN(s)− C1(s)[N(s)]2)ds+

t∫
0

σN(s)dBh(s). (3.14)

where C1(s) = g(s, ϕ(s−r)) ≥ 0. It is obvious that C1 ∈ D1,2+1 since ϕ is a deterministic
function. From Theorem 3.2 we conclude that (H1) is true.

Induction. Assume that (Hi) is true for i ≤ n, with n < N. We wish to prove that
(Hn+1) is also true. Consider the stochastic process defined as

V (t) =


ϕ(t− r) if t ≤ r,
N(t− r) if r < t ≤ (n+ 1)r,
0 if t > (n+ 1)r,

where N is the solution obtained in (Hn). We have V (t) ∈ D1,2+ 1

22
n .

Put Cn(s) = g(s, Vs) ≥ 0. Once again, we need to check Cn ∈ D1,2+ 1

22
n . Since g(t, x)

is a continuously differentiable function in x with bounded derivative, we have

DW
r [Cn(t)] =

∂

∂x
g(t, V (t))DW

r [V (t)].

From (3.12) and (3.13) we have

|DW
r [Cn(t)]| < L|DW

r [V (t)]| ; |Cn(t)| < L(1 + |V (t)|),

which mean that Cn ∈ D1,2+ 1

22
n . So (Hn+1) is true.

The proof of Theorem is complete.
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