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Stochastic Volterra integro-differential equations driven by fractional
Brownian motion in a Hilbert space

Nguyen Tien Dung*

Department of Mathematics, FPT University, 8 Ton That Thuyet, Cau Giay, Hanoi, Vietnam

(Received 28 February 2013; accepted 13 May 2014)

In this article,we consider a class of stochasticVolterra integro-differential equationswith
infinite delay and impulsive effects, driven by fractional Brownian motion with the Hurst
index H . 1=2 in a Hilbert space. The cases of Lipschitz and bounded impulses are
studied separately. The existence and uniqueness of mild solutions are proved by using
different fixed-point theorems. An example is given to illustrate the theory.

Keywords: fractional Brownian motion; Volterra equations; mild solutions; impulses;
infinite delays
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1. Introduction

The fractional Brownian motion (fBm) and its basic properties have been studied by

Mandelbrot and Van Ness [18]. In the last decades, a lot of works have been carried out to

develop stochastic calculus with respect to fBm. The rigorous definitions of stochastic

integrals with respect to fBm and the theory of stochastic differential equations driven by

fBm as well as its applications have been studied intensively. We refer the reader to

two monographs [3,19] and the references therein for a more complete presentation of

this subject.

It is known that the impulsive effects exist widely in many evolution processes in

which states are changed abruptly at certain moments of time, involving such fields as

telecommunications, neural networks, mechanics, electronics, and finance and economics

(see e.g. [16]). Hence, it is quite natural to take into account the effect of impulses in the

investigation of stochastic differential equations driven by fBm. However, to the best of

our knowledge, no work has been reported in the present literature regarding the theory of

stochastic differential equations driven by fBm with impulsive effects. The aim of this

article is to study one such equation. Our work is inspired by the work of Caraballo et al.

[6] where the following stochastic differential equation driven by fBm with finite delays

has been studied:

dxðtÞ ¼ AxðtÞ þ f ðt; xtÞ
� �

dt þ gðtÞ dWHðtÞ; t [ ½0; T�;
xðtÞ ¼ fðtÞ; t [ ½2t; 0�ð0 # t , 1Þ:

(

In this article, we investigate the existence and uniqueness of mild solutions to semi-linear

stochastic Volterra equations with infinite delays and impulses of the following form in a

q 2014 Taylor & Francis

*Email: dung_nguyentien10@yahoo.com; dungnt@fpt.edu.vn

Stochastics: An International Journal of Probability and Stochastic Processes, 2015

Vol. 87, No. 1, 142–159, http://dx.doi.org/10.1080/17442508.2014.924938

mailto:dung&lowbar;nguyentien10@yahoo.com
mailto:dungnt@fpt.edu.vn
mailto:dungnt@fpt.edu.vn
http://dx.doi.org/10.1080/17442508.2014.924938


Hilbert space

dxðtÞ ¼ AxðtÞþF t;xt;
Ð t
0
kðt;sÞxðsÞds� �� �

dtþGðtÞdWHðtÞ; t[ ½0;T�; t– tk;

DxðtkÞ :¼ x tþk
� �

2 x t2k
� �¼ Ik x t2k

� �� �
; k¼ 1;2; . . . ;m;

xðtÞ ¼fðtÞ; t[ ð21;0�;

8>><
>>: ð1:1Þ

where A is the infinitesimal generator of an analytic semi-group of bounded linear

operators, ðSðtÞÞt$0, in a Hilbert space X with norm k·k, WH is a fBm with H . 1=2 on a

real and separable Hilbert space Y. The history xt : ð21; 0�! X; xtðuÞ ¼ xðt þ uÞ; u # 0

belongs to an abstract phase space Bh. The Volterra kernel kðt; sÞ is non-negative

continuous function on t [ ½0; t1�, The functions F : ½0; T� £ Bh £ X ! X,

G : ½0; T�! L0
2ðY;XÞ, and Ik : X ! X are defined later. Furthermore, the impulsive

moments satisfy 0 ¼ t0 , t1 , t2 , · · · , tm , tmþ1 ¼ T , xðtþk Þ; xðt2k Þ denote the right

and left limits of xðtÞ at t ¼ tk. The spaces Bh and L0
2ðY ;XÞ are defined in Section 2.

It is known that fBm is a generalization of Brownian motion, it reduces to Brownian

motion when H ¼ 1=2. In fact, the existence and uniqueness of mild solutions to

stochastic Volterra equations with delay and impulsive effects, driven by a Brownian

process in Hilbert spaces are now well established (see e.g. [2,14,15,24,25] and the

references therein), but the equations driven by fBm have not yet been fully developed.

The Equation (1.1) belongs to the class of stochastic delay differential equations driven by

fBm. This class is so new that only few works have appeared till date. The finite

dimensional equations was first investigated by Ferrante and Rovira [10] and then by

Neuenkirch et al. [20], Boufoussi and Hajji [4], Dung [8], León and Tindel [17], and some

other authors. The case of the equations in a Hilbert space has been considered by

Caraballo et al. [6] and by Boufoussi and Hajji [5]. The finite dimensional stochastic

Volterra equations with delay have been recently studied by Dung [9]. We would like to

emphasize that in most of these works, the delays are finite. Thus, the appearance of

infinite delay and Volterra term in (1.1) as well as the study of the problem in a Hilbert

space make our article more interesting even in the case without impulses.

This article is organized as follows. In Section 2, we recall the definition of the

fractional Wiener integral with respect to an infinite dimensional fBm and the definition of

mild solutions. Section 3 is devoted to study the existence and uniqueness of mild

solutions when the impulses are Lipschitz. The case of bounded impulses is studied in

Section 4. Conclusion and an example are provided in Section 5.

2. Preliminaries

In this section, we first recall the definition of Wiener integrals with respect to an infinite

dimensional fBm with Hurst index H . 1=2. We also refer the reader to [7] for a detailed

presentation of this integral and for a short review of the development of stochastic

differential equations driven by fBm without impulses in a Hilbert space.

Let ðV;F ;PÞ be a complete probability space and T . 0 be an arbitrary fixed horizon.

A one-dimensional fBm with Hurst parameter H [ ð0; 1Þ is a centred Gaussian process

bH ¼ fbHðtÞ; 0 # t # T} with the covariance function RHðt; sÞ ¼ E½bHðtÞbHðsÞ�

RHðt; sÞ ¼ 1

2
jtj2H þ jsj2H 2 jt2 sj2H
� �

:
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It is known that bHðtÞ with H . 1=2 admits the following Volterra representation:

bHðtÞ ¼
ðt
o

Kðt; sÞ dbðsÞ; ð2:1Þ

where b is a standard Brownian motion and the Volterra kernel Kðt; sÞ is given by

Kðt; sÞ ¼ cH

ðt
s

ðu2 sÞH2ð3=2Þ u

s

� �H2ð1=2Þ
du; t $ s:

For the deterministic function w [ L2ð½0; T�Þ, it is known from [3,21] that the fractional

Wiener integral of w with respect to bH can be defined by

ðT
0

wðsÞ dbHðsÞ ¼
ðT
0

K*
HwðsÞ dbðsÞ;

where K*
HwðsÞ ¼

Ð T
s
wðrÞð›K=›rÞðr; sÞ dr.

Let X and Y be two real, separable Hilbert spaces and let LðY ;XÞ be the space of

bounded linear operators from Y to X. For the sake of convenience, we shall use the same

notation to denote the norms in X, Y, and LðY ;XÞ. Let fen; n ¼ 1; 2; . . . }, be a complete

orthonormal basis in Y and Q [ LðY ;XÞ be an operator defined by Qen ¼ lnen with finite

trace trQ ¼P1
n¼1ln , 1, where ln; n ¼ 1; 2; . . . are non-negative real numbers.

We define the infinite dimensional fBm on Y with covariance Q as

WHðtÞ ¼
X1
n¼1

ffiffiffiffiffi
ln

p
enb

H
n ðtÞ;

where bH
n ðtÞ are real, independent fBms. This process is a Y-valued Gaussian; it starts from

0 and has zero mean and covariance:

EkWHðtÞ; xlkWHðsÞ; yl ¼ Rðt; sÞkQðxÞ; yl for all x; y [ Y and t; s [ ½0; T�:

In order to define Wiener integrals with respect to the Q-fBm, we introduce the space

L0
2 :¼ L0

2ðY ;XÞ of all Q-Hilbert–Schmidt operators c : Y ! X. We recall that c [
LðY;XÞ is called a Q-Hilbert–Schmidt operator if

kckL0
2
:¼
X1
n¼1

k
ffiffiffiffiffi
ln

p
cenk2 , 1

and that the space L0
2 equipped with the inner product kw;clL0

2
:¼P1

n¼1kwen;cenl is a
separable Hilbert space.

The fractional Wiener integral of the function c : ½0; T�! L0
2ðY;XÞ with respect to

Q-fBm is defined by

ðt
0

cðsÞ dWHðsÞ ¼
X1
n¼1

ðt
0

ffiffiffiffiffi
ln

p
cðsÞendbH

n ðsÞ ¼
X1
n¼1

ðt
0

ffiffiffiffiffi
ln

p
K*

HðcenÞðsÞ dbnðsÞ; ð2:2Þ

where bn is the standard Brownian motion used to present bH
n as in (2.1).
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Noting that unlike the classical Wiener integral, the Itô isometry formula is not

available for the fractional Wiener integral. However, we have the following fundamental

inequality which was proved in [6].

Lemma 2.1. If c : ½0; T�! L0
2ðY ;XÞ satisfies

Ð T
0
kcðsÞjj2L0

2
ds , 1 then the sum in (2.2) is

well defined as a X-valued random variable and we have

E

ðt
0

cðsÞ dWHðsÞ
				

				
2

# 2Ht 2H21

ðt
0

kcðsÞk2L0
2
ds:

It is known that the study of the theory of differential equation with infinite delays

depends on a choice of the abstract phase space (see [12]). Let us present an abstract space

phase. Assume that h : ð21; 0�! ð0;1Þ be a continuous function with
Ð 0
21hðtÞ dt , 1.

We define the abstract phase space Bh by

Bh ¼ f : ð21; 0�! X : for any a . 0; ðEkfk2Þ1=2 is bounded andmeasurable
n
function on ½2a; 0� with fð0Þ ¼ 0 and

ð0
21

hðtÞ sup
t#u#0

ðEkfk2Þ1=2 dt , 1
o
:

If we equip the space Bh with the norm

kfkBh
:¼
ð0
21

hðtÞ sup
t#u#0

ðEkfðuÞk2Þ1=2dt;

then ðBh; k·kBh
Þ is a Banach space [13].

We now consider the space BDI (D and I stand for delay and impulse, respectively)

defined by

BDI ¼ x : ð21; T�! X : xjIk [ CðIk;XÞf and x tþk
� �

; x t2k
� �

exist with

x t2k
� � ¼ xðtkÞ; x0 ¼ f [ Bh; k ¼ 1; 2; . . . ;m};

ð2:3Þ

where xjIk is the restriction of x to the interval Ik ¼ ðtk; tkþ1�; k ¼ 0; 1; . . . ;m. The function
k·kBDI

is a semi-norm in BDI , it is defined by

kxkBDI
¼ kx0kBh

þ sup
0#t#T

ðEkxðtÞk2Þ1=2:

The following lemma is a common property of phase spaces. It can be easily found by a

simple computation.

Lemma 2.2. Suppose that x [ BDI , then xt [ Bh for all t [ ½0; T� and

kxtkBh
# kx0kBh

þ a sup
0#s#t

ðEkxðsÞk2Þ1=2;

where a ¼ Ð 021hðtÞ dt.

We end this section by giving the definition of mild solutions for the Equation (1.1)

which is similar to the deterministic situation. For simplicity, we can assume that

xð0Þ ¼ fð0Þ ¼ 0.
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Definition 2.1. A X-valued stochastic process fxðtÞ; t [ ð21; T�} is called a mild

solution of the Equation (1.1) if x0 ¼ f [ Bh on ð21; 0� with fð0Þ ¼ 0 and the following

conditions hold

(i) for each t [ ½0; T�, xt is a Bh-valued function and the restriction of xð·Þ to the

interval ðtk; tkþ1�; k ¼ 1; 2; . . . ;m is continuous,

(ii) for each t [ ½0; T�, we have a:s.

xðtÞ¼

fðtÞ; t[ ð21;0�;Ð t
0
Sðt2sÞFðs;xs;

Ð s
0
kðs;uÞxðuÞduÞdsþ Ð t

0
Sðt2sÞGðsÞdWHðsÞ; t[ ½0;t1�;

Sðt2 tkÞ x t2k
� �� �þ Ik x t2k

� �� �þ Ð t
tk
Sðt2sÞFðs;xs;

Ð s
0
kðs;uÞxðuÞduÞds

þÐ t
tk
Sðt2sÞGðsÞdWHðsÞ; t[ ðtk; tkþ1�; k¼1;2; . . . ;m;

8>>>>>><
>>>>>>:

ð2:4Þ
(iii) for each k, the limits xðtþk Þ; xðt2k Þ exist with xðt2k Þ ¼ xðtkÞ and DxðtkÞ ¼ Ikðxðt2k ÞÞ.

3. Equations with Lipschitz impulses

In this section, we investigate the existence and uniqueness of mild solutions when the

impulsive functions are Lipschitz continuous. In order to prove the required results, we

assume the following conditions:

(H1) A is the infinitesimal generator of an analytic semi-group, ðSðtÞÞt$0, of bounded

linear operators on X. Moreover, SðtÞ satisfies the condition that there exists a positive

constant M such that for t [ ½0; T�
kSðtÞk # M:

(H2) There exist L1; L2 . 0 such that

EkFðt;c; xÞ2 Fðt;w; yÞk2 # L1kc2 wjj2Bh
þ L2Ekx2 yk2

for all t [ ½0; T�, c;w [ Bh and x; y [ L2ðV;XÞ.
(H3) For each k ¼ 1; 2; . . . ;m, there exist a constant rk . 0 such that

kIkðxÞ2 IkðyÞk2 # rkkx2 yk2

for all x; y [ X.

(H4) The function G : ½0; T�! L0
2ðY ;XÞ satisfiesðT
0

kGðsÞjj2L0
2
ds , 1:

Theorem 3.1. Assume that the conditions ðH1Þ2 ðH4Þ hold. Then, the Equation (1.1) has

a unique mild solution, provided that

max
k¼1;2; ... ;m

3M 2 1þ rk þ T 2ðL1a2 þ L2K
*Þ� �� �

, 1; ð3:1Þ
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where

K * ¼ sup
0#t#T

ðt
0

kðt; sÞ ds

 �2

Proof. Our proof is based on the Banach contraction principle. To do this, we define the

operator F on BDI by

ðFxÞðtÞ ¼

fðtÞ; t [ ð21; 0�;Ð t
0
Sðt2 sÞFðs; xs;

Ð s
0
kðs; uÞxðuÞ duÞ dsþ Ð t

0
Sðt2 sÞGðsÞ dWHðsÞ; t [ ½0; t1�;

Sðt2 tkÞ x t2k
� �þ Ik x t2k

� �� �� �þ Ð t
tk
Sðt2 sÞFðs; xs;

Ð s
0
kðs; uÞxðuÞ duÞ ds

þÐ t
tk
Sðt2 sÞGðsÞ dWHðsÞ; t [ ðtk; tkþ1�; k ¼ 1; 2; . . . ;m:

8>>>>>>><
>>>>>>>:

ð3:2Þ

From the conditions ðH1Þ2 ðH4Þ, it can be seen that F maps BDI into itself. Let y :

ð21; T�! X be the function defined by

yðtÞ ¼
fðtÞ; t [ ð21; 0�;
0; t [ ½0; T�;

(

then y0 ¼ f. For each z : ½0; T�! X with zð0Þ ¼ 0, we define the function �z by

�zðtÞ ¼
0; t [ ð21; 0�;
zðtÞ; t [ ½0; T�:

(

If xð·Þ satisfies (2.4) then we can decompose xðtÞ into xðtÞ ¼ yðtÞ þ �zðtÞ; t [ ð21; T�. This
implies that xt ¼ yt þ �zt and the function zð·Þ satisfies

zðtÞ ¼

Ð t
0
Sðt2 sÞFðs; ys þ �zs;

Ð s
0
kðs; uÞðyðuÞ þ �zðuÞÞ duÞ ds

þÐ t
0
Sðt2 sÞGðsÞ dWHðsÞ; t [ ½0; t1�;

Sðt2 tkÞ z t2k
� �þ Ik z t2k

� �� �� �
þÐ t

tk
Sðt2 sÞFðs; ys þ �zs;

Ð s
0
kðs; uÞðyðuÞ þ �zðuÞÞ duÞ ds

þÐ t
tk
Sðt2 sÞGðsÞ dWHðsÞ; t [ ðtk; tkþ1�; k ¼ 1; 2; . . . ;m:

8>>>>>>>>><
>>>>>>>>>:

ð3:3Þ

Set B0
DI ¼ fz [ BDI : z0 ¼ 0} and let k·kB0

DI
be the norm defined by

kzkB0
DI
¼ kz0kBh

þ sup
0#t#T

ðEkzðtÞk2Þ1=2 ¼ sup
0#t#T

ðEkzðtÞk2Þ1=2:
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Thus, ðB0
DI ; k·kB0

DI
Þ is a Banach space. Define C : B0

DI ! B0
DI by

ðCzÞðtÞ ¼

Ð t
0
Sðt2 sÞFðs; ys þ �zs;

Ð s
0
kðs; uÞðyðuÞ þ �zðuÞÞ duÞ ds

þÐ t
0
Sðt2 sÞGðsÞ dWHðsÞ; t [ ½0; t1�;

Sðt2 tkÞ z t2k
� �þ Ik z t2k

� �� �� �
þÐ t

tk
Sðt2 sÞFðs; ys þ �zs;

Ð s
0
kðs; uÞðyðuÞ þ �zðuÞÞ duÞ ds

þÐ t
tk
Sðt2 sÞGðsÞ dWHðsÞ; t [ ðtk; tkþ1�; k ¼ 1; 2; . . . ;m:

8>>>>>>>>><
>>>>>>>>>:

ð3:4Þ

It is clear that the operator F has a unique fixed-point if and only if C has a unique fixed

point. Thus, it is sufficient to show thatC is a contraction map. Let z; z* [ B0
DI , then for all

t [ ½0; t1� we have

EkðCzÞðtÞ2 ðCz*ÞðtÞk2 #E

ðt
0

Sðt2 sÞ Fðs; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �				

2F s; ys þ �z
*

s ;

ðs
0

kðs; uÞðyðuÞ þ �z
*ðuÞÞ duÞ


 �
ds

				
2

# M 2T

ðt
0

L1k�zs 2 �z
*

sjj2Bh

�

þL2Ek
ðs
0

kðs; uÞ½yðuÞ þ zðuÞ2 yðuÞ2 �z
* ðuÞ�duk2

�
ds:

By using Lemma 2.2, we get

EkðCzÞðtÞ2 ðCz*ÞðtÞk2 # M 2T

ðt
0

L1a
2 sup
0#u#s

EkzðuÞ2 z*ðuÞk2



þL2K
* sup
0#u#s

EkzðuÞ2 z*ðuÞk2
�
ds

# M 2T 2ðL1a2 þ L2K
*Þkz2 z*jj2B0

DI
; ;t [ ½0; t1�:

ð3:5Þ

For t [ ðt1; t2�, in the similar way to the above estimate, we have

E

ðt
t1

Sðt2 sÞ Fðs; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �				

2F s; ys þ �z
*

s;

ðs
0

kðs; uÞðyðuÞ þ �z
* ðuÞÞ duÞ


 �				
2

ds # M 2T 2 L1a
2 þ L2K

*
� �kz2 z*jj2B0

DI
:
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Hence,

EkðCzÞðtÞ2 ðCz*ÞðtÞk2 # 3E Sðt2 t1Þ z t21
� �

2 z* t21
� �� �		 		2

þ 3E Sðt2 t1Þ I1 z t21
� �� �

2 I1 z* t21
� �� �� �		 		2

þ 3E

ðt
t1

Sðt2 sÞ F s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �
				

2F s; ys þ �z
*

s ;

ðs
0

kðs; uÞðyðuÞ þ �z
* ðuÞ


 �
duÞ
�				

2

ds

# 3M 2ð1þ r1ÞEkzðt21 Þ2 z*ðt21 Þk2
þ 3M 2T 2ðL1aþ L2K

*Þkz2 z*jj2B0
DI
:

As a consequence,

EkðCzÞðtÞ2 ðCz*ÞðtÞk2 # 3M 2 1þ r1 þ T 2ðL1a2 þ L2K
*Þ� �kz2 z*jj2B0

DI
; ;t[ ðt1; t2�:

Similarly, when t [ ðtk; tkþ1�, k ¼ 2; 3; . . . ;m, we also have

EkðCzÞðtÞ2 ðCz*ÞðtÞk2 # 3M 2 1þrkþT 2ðL1a2þL2K
*Þ� �kz2 z*jj2B0

DI
; ;t[ ðtk; tkþ1�:

Thus, for all t [ ½0; T�

EkðCzÞðtÞ2 ðCz*ÞðtÞk2 # max
k¼1;2; ... ;m

3M 2 1þ rk þ T 2 L1a
2 þ L2K

*
� �� �� �kz2 z*jj2B0

DI
:

This, together with the condition (3.1), implies thatC is a contraction map and, therefore,

it has a unique fixed point z [ B0
DI .

The proof is complete. A

We end this section by showing the existence and uniqueness of a mild solution for a

stochastic evolution equation without impulses which has been discussed by Caraballo

et al. [6] when the delay is finite.

Corollary 3.1. Assume that the conditions ðH1Þ and ðH4Þ hold and that there exists

L1 . 0 such that

EkFðt;cÞ2 Fðt;wÞk2 # L1kc2 wjj2Bh

for all t [ ½0; T�, c;w [ Bh. Then, the stochastic evolution equation with infinite delay

dxðtÞ ¼ AxðtÞ þ Fðt; xtÞ
� �

dt þ GðtÞ dWHðtÞ; t [ ½0; T�;
xðtÞ ¼ fðtÞ; t [ ð21; 0�;

(
ð3:6Þ

admits a unique mild solution for any initial data f [ Bh.

Stochastics: An International Journal of Probability and Stochastic Processes 149



4. Equations with bounded impulses

The aim of this section is to prove the existence and uniqueness of mild solutions when the

impulsive functions are bounded. Let us introduce two new assumptions.

ðH5Þ F : ½0; T� £ Bh £ X ! X is continuous, and there exist two continuous functions

m1;m2;m3 : ½0; T�! ð0;1Þ such that

EkFðt;w; xÞk2 # m1ðtÞkwjj2Bh
þ m2ðtÞEkxk2 þ m3ðtÞ

for all t [ ½0; T�;w [ Bh and x [ L2ðV;XÞ.
ðH6Þ Ik : X ! X; k ¼ 1; 2; . . . ;m are continuous and there exist finite positive constants

dk such that kIkðxÞk # dk for all x [ X.

Because of the lack of the Lipschitz property of the impulsive functions, it seems to be

impossible to use the contraction mapping principle in proving the existence and

uniqueness of the solution. The main result of this section is based on the following fixed-

point theorem (see, for instance, [23]).

Lemma 4.1 (Schaefers fixed point theorem). Let ðD; k·kÞbe a normed space, and let the

operator A : D! D be a continuous map which is compact on each bounded subset of D.

Define

SðAÞ ¼ fx [ D : x ¼ lAx;l [ ð0; 1Þ}:

Then, either

(i) the set SðAÞ is unbounded, or
(ii) the operator A has a fixed point in D.

Theorem 4.1. Suppose that ðH1Þ and ðH4Þ2 ðH6Þ hold. Then, the Equation (1.1) has at

least a mild solution. Furthermore, if ðH2Þ holds, then the solution is unique.

Proof. Before giving a proof of the results, let us show a useful estimate which is based on

the condition ðH5Þ

E Fðs; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ duÞ
				

				
2

# m1ðsÞkys þ �zsjj2Bh
þ m2ðsÞE

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du
				

				
2

þm3ðsÞ

# 2m1ðsÞ kfjj2Bh
þ a2 sup

0#u#s

EkzðuÞk2

 �

þ m2ðsÞK * sup
0#u#s

EkzðuÞk2 þ m3ðsÞ

# 2m*
1 kfjj2Bh

þ a2 sup
0#u#s

EkzðuÞk2

 �

þ m*
2K

* sup
0#u#s

EkzðuÞk2 þ m*
3;

ð4:1Þ

where m*
i ¼ sup

0#s#T

miðsÞ; i ¼ 1; 2; 3.
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Existence. We define the operator C : B0
DI ! B0

DI as in Theorem 4.2. In order to be

able to use Lemma 4.1, we separate the proof into four steps:

Step 1. We first show that the subset

SðCÞ :¼ z [ B0
DI : z ¼ lCðzÞ; l [ ð0; 1Þ� 


is bounded. Let z [ SðCÞ, then z ¼ lCðzÞ for some l [ ð0; 1Þ. Then, for each t [ ½0; t1�,
we have

zðtÞ ¼ l

ðt
0

Sðt2 sÞF s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �

dsþ l

ðt
0

Sðt2 sÞGðsÞ dWHðsÞ:

This, together with the condition ðH1Þ and Lemma 2.1, implies that

EkzðtÞk2 , E

ðt
0

Sðt2 sÞF s;ys þ �zs;

ðs
0

kðs;uÞðyðuÞ þ �zðuÞÞdu

 �

ds

				
þ
ðt
0

Sðt2 sÞGðsÞdWHðsÞ
				
2

# 2M 2 t

ðt
0

E F s;ys þ �zs;

ðs
0

kðs;uÞðyðuÞ þ �zðuÞÞdu

 �				

				
2

ds

"

þ2Ht 2H21

ðt
0

kGðsÞjj2L0
2
ds

�
:

For t [ ðt1; t2�, we have

zðtÞ ¼ lSðt2 t1Þ z t21
� �þ I1 z t21

� �� �� �
þl

ðt
t1

Sðt2 sÞF s;ysþ �zs;

ðs
0

kðs;uÞðyðuÞþ �zðuÞÞdu

 �

dsþl

ðt
t1

Sðt2 sÞGðsÞdWHðsÞ

¼ lSðt2 t1ÞI1 z t21
� �� �þl

ðt
0

Sðt2 sÞF s;ysþ �zs;

ðs
0

kðs;uÞðyðuÞþ �zðuÞÞdu

 �

ds

þl

ðt
0

Sðt2 sÞGðsÞdWHðsÞ:

Hence,

EkzðtÞk2 # 3M 2 d21 þ t

ðt
0

E F s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �				

				
2

ds

"

þ2Ht 2H21

ðt
0

kGðsÞjj2L0
2
ds

�
:
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Similarly for t [ ðtk; tkþ1�, k ¼ 2; 3; :::;m, we can obtain that

EkzðtÞk2 # 3M 2
Xm
k¼1

dk

 !2

þt

ðt
0

E F s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �				

				
2

ds

2
4

þ2Ht 2H21

ðt
0

kGðsÞjj2L0
2
ds

�
; ;t [ ½0; T�:

We now use the estimate (4.1) to get

sup
0#u#t

EkzðuÞk2 # 3M 2 T

ðt
0

2m*
1 kfjj2Bh

þa2 sup
0#u#s

EkzðuÞk2

 �

þm*
2K

* sup
0#u#s

EkzðuÞk2

 �

ds

�

þm*
3T

2þ2HT 2H21

ðT
0

kGðsÞjj2L0
2
dsþ

Xm
k¼1

dk

 !2
3
5; ;t[ ½0;T�:

An application of Gronwall’s lemma to the above inequality yields

sup
0#u#t

EkzðuÞk2 # 3M 2 2T 2m*
1kfjj2Bh

þ m*
3T

2 þ 2HT 2H21

ðT
0

kGðsÞjj2L0
2
ds

�

þ
Xm
k¼1

dk

 !2#
e3M

2T 2m*
1
a 2þm*

2
K *ð Þt; ;t [ ½0; T�:

So, the set SðCÞ is bounded.
Step 2. Let Bq ¼ fz [ B0

DI : kzkB0
DI
# q}. We will show C maps bounded sets Bq into

equicontinuous sets. Let u; v [ ½0; t1�, without loss of generality, we can assume that

u # v. Then,

ðCzÞðvÞ2 ðCzÞðuÞ ¼
ðu
0

ðSðv2 sÞ2 Sðu2 sÞÞF s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �

ds

þ
ðv
u

Sðv2 sÞFðs; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ duÞ ds

þ
ðu
0

ðSðv2 sÞ2 Sðu2 sÞÞGðsÞ dWHðsÞ þ
ðv
u

Sðv2 sÞGðsÞ dWHðsÞ :
¼ Q1 þ Q2 þ Q3 þ Q4:

We, therefore, have

EkðCzÞðvÞ2 ðCzÞðuÞk2 # 4ðEkQ1k2 þ EkQ2k2 þ EkQ3k2 þ EkQ4k2Þ; ð4:2Þ
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where

EkQ1k2 ¼ E

ðu
0

ðSðv2 sÞ2 Sðu2 sÞÞF s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �

ds

				
				
2

#

ðu
0

kSðv2 sÞ2 Sðu2 sÞk2 ds
ðu
0

E F s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �				

				
2

ds

#

ðu
0

kSðv2 sÞ2 Sðu2 sÞk2 ds
ðu
0

2m*
1 kfjj2Bh

þ a2q2
� �

þ m*
2K

*q2 þ m*
3

� �
ds

# 2m*
1 kfjj2Bh

þ a2q2
� �

þ m*
2K

*q2 þ m*
3

� �
T

ðu
0

kSðv2 sÞ2 Sðu2 sÞk2 ds;

EkQ2k2 ¼ E

ðv
u

Sðv2 sÞF s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �

ds

				
				
2

# 2m*
1 kfjj2Bh

þ a2q2
� �

þ m*
2K

*q2 þ m*
3

� �
ðv2 uÞ

ðv
u

kSðv2 sÞk2 ds;

EkQ3k2 ¼ E

ðu
0

ðSðv2 sÞ2 Sðu2 sÞÞGðsÞ dWHðsÞ
				

				
2

# 2Hu2H21

ðu
0

kðSðv2 sÞ2 Sðu2 sÞÞGðsÞjj2L0
2
ds;

EkQ4k2 ¼ Ek
ðv
u

Sðv2 sÞGðsÞ dWHðsÞk2

# 2Hðv2 uÞ2H21

ðv
u

kSðv2 sÞGðsÞjj2L0
2
ds

# 2M 2Hðv2 uÞ2H21

ðv
u

kGðsÞjj2L0
2
ds:

Obviously, EkQ2k2 ! 0 and EkQ4k2 ! 0 as u! v. Since SðtÞ is strongly continuous, this

implies that EkQ1k2 ! 0 as u! v. Moreover, kðSðv2 sÞ2 Sðu2 sÞÞGðsÞjj2L0
2
#

4M 2kGðsÞjj2L0
2
[ L1ð½0; T�Þ, we also have EkQ3k2 ! 0 by the dominated convergence

theorem.

Similarly for u; v [ ðtk; tkþ1�; k ¼ 1; 2; . . . ;m, we have

EkðCzÞðvÞ2 ðCzÞðuÞk2 # 6E ½Sðv2 tkÞ2 Sðu2 tkÞ�z t2k
� �		 		2

þ 6E ½Sðv2 tkÞ2 Sðu2 tkÞ�Ik z t2k
� �� �		 		2

þ 6 EkQ1k2 þ EkQ2k2 þ EkQ3k2 þ EkQ4k2
� �

# 6q2EkSðv2 tkÞ2 Sðu2 tkÞk2
þ 6d2kEkSðv2 tkÞ2 Sðu2 tkÞk2

þ 6 EkQ1k2 þ EkQ2k2 þ EkQ3k2 þ EkQ4k2
� �

:

ð4:3Þ

The right hand sides of (4.2) and (4.3) do not depend on x [ Bq and converge to 0 when

u! v. This proves that C maps bounded sets into equicontinuous family of functions.
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Step 3. We now prove that C is an compact operator. Using the same arguments as in

Step 1, we can get

EkðCzÞðtÞk2 # 3M 2 T

ðt
0

2m*
1 kfjj2Bh

þ a2 sup
0#u#s

EkzðuÞk2

 �

þ m*
2K

* sup
0#u#s

EkzðuÞk2

 �

ds

�

þm*
3T

2 þ 2HT 2H21

ðT
0

kGðsÞjj2L0
2
dsþ

Xm
k¼1

dk

 !2
3
5; ;t [ ½0; T�;

which points out that if z [ Bq, then Cz [ Bq0 for some q0. Thus, C maps bounded sets

into bounded sets in B0
DI . This fact, combined with Step 2, means that the set fCðzÞ �

ðtÞ : z [ Bq} is relatively compact in B0
DI . Hence,C is a compact operator by the Arzelà–

Ascoli theorem.

Step 4.We finally show thatC is continuous. Let z [ B0
DI and fzn}n$1 be a sequence in

B0
DI such that kzn 2 zk! 0 as n!1. Obviously, there exists an integer number q such

that zn; z [ Bq for all n $ 1. Denote

FnðsÞ ¼ F s; ys þ �zns ;

ðs
0

kðs; uÞðyðuÞ þ �znðuÞÞ du

 �

2 F s; ys þ �zs;

ðs
0

kðs; uÞðyðuÞ þ �zðuÞÞ du

 �

:

Since F is continuous on ½0; T� £ Bh £ X ! X, this implies that FnðsÞ! 0 as n!1.

Moreover, by the estimate (4.1), we have

EkFnðsÞk2 # 8m*
1 kfjj2Bh

þ a2q2
� �

þ 4m*
2K

*q2 þ 4m*
3:

Now, for every t [ ½0; t1�, we have

EkðCznÞðtÞ2 ðCzÞðtÞk2 # Ek
ðt
0

Sðt2 sÞFnðsÞ dsk2 # M 2T

ðt
0

EkFnðsÞk2 ds;

which means that EkðCznÞðtÞ2 ðCzÞðtÞk2 ! 0 by the dominated convergence theorem.

Since Ik; k ¼ 1; 2; . . . ;m are continuous functions, we also have the following

convergence for t [ ðtk; tkþ1�; k ¼ 1; 2; . . . ;m

EkðCznÞðtÞ2 ðCzÞðtÞk2 # 3M 2 E znðt2k Þ2 z t2k
� �		 		2þE Ik zn t2k

� �� �
2 Ik z t2k

� �� �		 		2�
þM 2T

ðt
tk

EkFnðsÞk2 ds
�
! 0; n!1:

Thus,C is continuous and by Lemma 4.1 the operatorC has a fixed point. Hence, we can

conclude that the Equation (1.1) has at least a mild solution.

Uniqueness. From the above proofs, we see that the conditions ðH1Þ; ðH4Þ; ðH5Þ and
ðH6Þ ensure the existence of the mild solution of (1.1). We will use the condition ðH2Þ to
show that the solution is unique.
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Let z; z* be two mild solutions of (3.3) with the same initial condition. On the interval

½0; t1�, we have from (3.5) that

EkzðtÞ2 z*ðtÞk2 ¼ EkðCzÞðtÞ2 ðCz*ÞðtÞk2

# M 2T L1a
2 þ L2K

*
� �ðt

0

sup
0#u#s

EkzðuÞ2 z*ðuÞk2 ds;

which implies that

sup
0#u#t

EkzðuÞ2 z*ðuÞk2 # M 2TðL1a2 þ L2K
*Þ
ðt
0

sup
0#u#s

EkzðuÞ2 z*ðuÞk2 ds: ð4:4Þ

An application of Gronwall’s lemma to (4.4) yields Ekx1ðtÞ2 x2ðtÞk2 # 0. This proves

that zðtÞ ¼ z*ðtÞa:s: for all t [ ½0; t1�.
On the interval ðt1; t2�, we have

zðtÞ ¼ Sðt2 t1Þ y t21
� �þ �z t21

� �þ Ik y t21
� �þ �z t21

� �� �� �
þ
ðt
t1

Sðt2 sÞFðs;ysþ �zs;

ðs
0

kðs;uÞðyðuÞþ �zðuÞÞduÞdsþ
ðt
t1

Sðt2 sÞGðsÞdWH ðsÞ;

and

z*ðtÞ ¼ Sðt2 t1Þ y t21
� �þ �z

*

t21
� �þ Ik y t21

� �þ �z
*

t21
� �� �� �

þ
ðt
t1

Sðt2 sÞF s; ys þ �z
*

s ;

ðs
0

kðs; uÞðyðuÞ þ �z
* ðuÞÞ du


 �
dsþ

ðt
t1

Sðt2 sÞGðsÞ dWHðsÞ:

From the fact zðt21 Þ ¼ z*ðt21 Þ, we see that z; z* are also two mild solutions with the same

initial condition on the interval ðt1; t2�. Thus, by Gronwall’s lemma, we also have zðtÞ ¼
z*ðtÞa:s: for all t [ ðt1; t2�. Similarly, we can conclude that zðtÞ ¼ z*ðtÞa:s: for all

t [ ½0; T�.
Since xðtÞ ¼ yðtÞ þ �zðtÞ; t [ ð21; T�, the proof of Theorem 4.1 is complete. A

Corollary 4.1. Assume that the conditions ðH1Þ and ðH4Þ hold and that the function

F : ½0; T� £ Bh ! X is continuous, and there exists continuous functions m1;m2 :

½0; T�! ð0;1Þ such that

EkFðt;wÞk2 # m1ðtÞkwjj2Bh
þ m2ðtÞ

for all t [ ½0; T�;w [ Bh. Then, the stochastic evolution equation with infinite delay (3.6)

has at least a mild solution for any initial data f [ Bh.

5. Conclusion and examples

In this article, we proved the existence and uniqueness of the mild solution to a class of

stochastic Volterra equations with infinite delay and impulsive effects, driven by an fBm

with H . 1=2. Theorem 3.1 showed that the mild solution uniquely exists if the drift

function F and impulsive functions are Lipschitz continuous. In addition, when the
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impulsive functions are bounded we only need one more condition on linear growth of the

drift function to ensure the unique existence of the mild solution (Theorem 4.1). Thus,

under some suitable assumptions, if the drift function F is Lipschitz and has linear growth

then the appearance of impulses does not affect the existence and uniqueness of the

mild solution.

Our obtained results extend the results of Caraballo et al. [6] to the case of infinite

delay. In this sense, we partly enrich the knowledge of the theory of stochastic evolution

equations driven by fBm. We would also like to remark that the results of this article are

still true if we replace Q-fBm by a more general Q-Gaussian process as long as the

stochastic integral of GðtÞ with respect to this Gaussian process is well defined and has the
finite second moments. For example, one of such Q-Gaussian processes can be constructed

as follows: we consider one-dimensional Gaussian processes of the form

unðtÞ :¼
ðt
0

Kðt; sÞ dbnðsÞ;

where Kðt; sÞ is a Volterra kernel satisfying the condition (K4) required by Alòs et al. [1].

Then, we can define aQ-Gaussian process byQðtÞ :¼P1
n¼1

ffiffiffiffiffi
ln

p
enunðtÞ, and the integral of

GðtÞ with respect to QðtÞ by
ðt
0

GðsÞ dQðtÞ ¼
X1
n¼1

ðt
0

ffiffiffiffiffi
ln

p
GðsÞen dunðsÞ;

where the stochastic integrals on the right hand side are given the formula (21) in [1].

We end this article with an example. It is known that the study of stochastic equations

in a Hilbert space is important because of its close connection to the theory of finite-

dimensional stochastic partial differential equations (see e.g. [11]). To illustrate the

obtained theory, let us consider a stochastic partial differential equation with impulsive

effects of the following form:

›u
›t ðt; xÞ ¼ ›2u

›x 2 ðt; xÞ þ
Ð t
21Hðt; x; s2 tÞQðuðs; xÞÞ dsþ Ð t

0
kðt; sÞuðs; xÞ ds

þGðtÞ dW H

dt
ðtÞ; 0 # t # T ; t – tk; 0 # x # p;

Duðtk; xÞ ¼
Ð tk
21 qkðtk 2 sÞgðuðs; xÞÞ ds; k ¼ 1; 2; . . . ;m;

uðt; 0Þ ¼ uðt;pÞ ¼ 0; 0 # t # T;

uðt; xÞ ¼ fðt; xÞ; 21 , t # 0; 0 # x # p;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5:1Þ

where WHðtÞ is a cylindrical fBm and the function G satisfies the condition ðH4Þ.
Let X ¼ L2ð½0;p�Þ with the norm k·k and inner product k:; :l. Define A : X ! X by

Az ¼ z00 with domain

DðAÞ :¼ fz [ X : z; z0are absolutely continuous z00 [ X; zð0Þ ¼ zðpÞ ¼ 0}:

Then,

Az ¼
X1
n¼1

n2kz; znl; z [ DðAÞ;
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where znðtÞ ¼
ffiffiffiffiffiffiffiffiffi
2=p

p
sinðntÞ; n ¼ 1; 2; . . . is the orthogonal set of eigenvectors in A. It is

well known that A is the infinitesimal generator of an analytic semi-group ðSðtÞÞt$0 in X.

Furthermore, we have (see [22])

SðtÞz ¼
X1
n¼1

e2n 2tkz; znlzn; for all z [ X and every t . 0:

Since the analytic semi-group SðtÞ is compact, there exists a constant M such that

kSðtÞk # M. In other words, the condition ðH1Þ holds.
We choose the phase function hðsÞ ¼ es; s # 0, then a ¼ Ð 021hðsÞ ds ¼ 1 , 1, and

the abstract phase space Bh is Banach with the norm

kfkBh
:¼
ð0
21

hðsÞ sup
s#u#0

ðEkfðuÞk2Þ1=2 ds:

For ðt;fÞ [ ½0; T� £ Bh, where fðuÞðxÞ ¼ fðu; xÞ; ðu; xÞ [ ð21; 0� £ ½0;p�, we put uðtÞ �
ðxÞ ¼ uðt; xÞ and define the function F : ½0; T� £ Bh £ X ! X for the infinite delay as

follows:

F t;f;

ðt
0

kðt; sÞuðsÞ ds

 �

ðxÞ ¼
ð0
21

Hðt; x; uÞQðfðuÞðxÞÞ duþ
ðt
0

kðt; sÞuðs; xÞ ds:

Then, with these settings, Equation (5.1) can be written in the form of Equation (1.1)

We now assume that the functions qk : R! R; k ¼ 1; 2; . . . ;m are continuous and

dk :¼
Ð 0
21 hðsÞq2kðsÞ ds , 1. Then, the condition ðH6Þ is satisfied if gð·Þ is continuous and

bounded and the condition ðH3Þ holds if gð·Þ is Lipschitz continuous. To verify the

conditions ðH3Þ and ðH5Þ, we suppose further that

(i) the function Hðt; x; uÞ is continuous in ½0; T� £ ½0;p� £ ð21; 0� and satisfies

ðp
0

ð0
21

jHðt; x; uÞjdu

 �2

dx :¼ pðtÞ , 1:

(ii) the function Qð·Þ is continuous and EQ 2ðfðuÞðxÞÞ # kfjj2Bh
for all

ðu; xÞ [ ð21; 0� £ ½0;p�.
(iii) the function Qð·Þ is continuous and EjQðfðuÞðxÞÞ2 QðwðuÞðxÞÞj2 # kf2 wjj2Bh

for all ðu; xÞ [ ð21; 0� £ ½0;p�.
We can see from (i) and (ii) that

F t;f;

ðt
0

kðt;sÞuðsÞds

 �				

				
2

¼
ðp
0

ð0
21

Hðt;x;uÞQðfðuÞðxÞÞduþ
ðt
0

kðt;sÞuðs;xÞds

 �2

dx

#2

ðp
0

ð0
21

jHðt;x;uÞjdu

 � ð0

21
jHðt;x;uÞjQ2ðfðuÞðxÞÞdu


 �
dx

þ2

ðp
0

ðt
0

kðt;sÞuðs;xÞds

 �2

dx:

Stochastics: An International Journal of Probability and Stochastic Processes 157



Hence,

E F t;f;

ðt
0

kðt; sÞuðsÞ ds

 �				

				
2

# 2

ðp
0

ð0
21

jHðt; x; uÞjdu

 �2

dxkfjj2Bh

þ 2E

ðt
0

kðt; sÞuðsÞ ds
				

				
2

;

which implies that ðH5Þ is satisfied with m1ðtÞ ¼ 2pðtÞ;m2ðtÞ ¼ 2;m3ðtÞ ¼ 0. Similarly, by

(i) and (iii) the condition ðH2Þ is fulfilled with L1 ¼ 2p*, where p* ¼ sup0#t#T pðtÞ and
L2 ¼ 2.

Since the conditions of either Theorem 3.1 or Theorem 4.1 are fulfilled, we can

conclude that Equation (5.1) has a unique mild solution on ð21; T� £ ½0;p�.
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