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Abstract

In this paper we consider a stochastic Ginzburg-Landau equation with impulsive effects.
We first prove the existence and uniqueness of the global solution which can be explicitly
represented via the solution of a stochastic equation without impulses. Then, based on our
obtained result, we study the qualitative properties of the solution, including the boundedness
of moments, almost surely exponential convergence and pathwise estimations. Finally, we
give a first attempt to study a fractional version of impulsive stochastic Ginzburg-Landau
equations.
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1. Introduction

The deterministic Ginzburg-Landau equation was introduced by Ginzburg and Landau
(1950) in [1] to describe a phase transition in the theory of superconductivity. Since then, it
has appeared in many different contexts such as nonlinear optics with dissipation, the theory
of bistable systems, etc. In addition, it plays an important role as modulation equation and it
serves as a simple mathematical model for studying the transition from regular to turbulent
behavior [2].

In the last decades, a lot of stochastic versions of Ginzburg-Landau equations have been
introduced and studied by many authors. For example, Kloeden and Platen (1992) [3] pro-
vided an explicit solution to stochastic Ginzburg-Landau equation with multiplicative noise:

dXt =
(
(a+

σ2

2

)
Xt − bX3

t )dt+ σXtdWt , (1.1)
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where Wt is a standard Brownian motion, a, σ and b > 0 are constants.

Neiman and Geier (1994) in [4] studied stochastic resonance in an overdamped bistable
system driven by white and harmonic noises in the form

dx(t)

dt
= x− x3 +

√
2Dξ(t) + y(t),

where ξ(t) is Gaussian white noise and y(t) is harmonic noise which is independent from ξ(t).

Tsimring and Pikovsky (2001) in [5] and Goulding et al. (2007) in [6] considered the
equations with time delay:

dx(t)

dt
= x(t)− x(t)3 + εx(t− τ) +

√
2Dξ(t),

where τ > 0 is the time delay and ε is the strength of the feedback. The solution x(t) describes
the stochastic evolution of the position of a particle trapped in a double well potential U(x) =
x4

4 − x2

2 in the presence of a time delayed force εx(t− τ) and of Gaussian white noise ξ(t).

Brassesco et al. (1995) in [7] and Fatkullin & Vanden-Eijnden (2002) in [8] investigated
the stochastic Ginzburg-Landau equation of the following form

∂m

∂t
(t, x) =

1

2

∂2m

∂x2
(t, x) + [m(t, x)−m(t, x)3] +

√
εξ(x, t),

where ξ(x, t) is a white noise in space and time. This equation appears in the literature as
a model for phase separation and interface dynamics in systems with non conserved order
parameter. Its solution also describes the spatio-temporal evolution of a bistable system.

On the other hand, it is known that the impulsive effects exist widely in the different areas
of real world such as mechanics, electronics, telecommunications, neural networks, finance and
economics, etc. This is due to the fact that the states of many evolutionary processes are often
subject to instantaneous perturbations and experience abrupt changes at certain moments
of time. The duration of these changes is very short and negligible in comparison with the
duration of the process considered, and can be thought as impulses. Naturally, systems with
short-term perturbations should be described by impulsive differential equations and in fact,
the theory of impulsive differential equations has been studied extensively. For more details,
we refer the reader to [9, 10, 11] for deterministic theory and to [12, 13, 14] for the case of
stochastic one.

From the above discussions, it is of great significance to take into account the effect of
impulses in the investigation of stochastic Ginzburg-Landau equations. However, to the best
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of our knowledge, the results about stochastic Ginzburg-Landau equations with impulsive
effects are scarce.

In this paper, inspired by model (1.1), we study the following stochastic Ginzburg-Landau
equation with impulsive effects{

dXt =
(
a(t)Xt − b(t)X3

t )dt+ σ(t)XtdWt, t ̸= tk, k ∈ N,
Xt+k

−Xtk = λkXtk , k ∈ N, (1.2)

with the initial condition X0 > 0, where N denotes the set of positive integers, 0 < t1 < t2 <
....., lim

k→∞
tk = ∞, a(t), b(t) and σ(t) are bounded continuous functions on R+ = [0,∞). In

addition, we assume that
b
¯
:= inf

t∈R+

b(t) > 0.

It is known that the traditional tools to study stochastic differential equation (such as Itô
formula) cannot be effectively used for impulsive stochastic differential equations, since it
is difficult to deal with when integrating intervals contain impulses. In order to avoid this
difficulty we will point out the relation between the solution of impulsive equation (1.2) and
the solution of a corresponding equation without impulses. Thus the traditional methods can
be applied.

This paper is organized as follows. In Section 2, we give an explicit expression for the
solution and show the boundedness of moments. Section 3 is devoted to studying some
qualitative properties of the solution, including almost surely exponentially convergent and
long term asymptotic behaviors. Section 4 contains some comments on a fractional stochastic
version with impulses. The conclusion is given in Section 5.

2. The unique global solution and its representation

Throughout this paper, we use the following notations. Denote R+ = [0,∞). Let (Ω,F , P )
be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions,
that is, it is right continuous and increasing while F0 contains all P -null sets. Let Wt be
a standard Brownian motion defined on this probability space and consider the impulsive
stochastic Ginzburg-Landau equation (1.2).

For g, a bounded continuous function on R+, we denote

g
¯
= inf

t∈R+

g(t), ḡ = sup
t∈R+

g(t).
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Definition 2.1. The solution of the Ginzburg-Landau equation (1.2) is a stochastic process
{Xt, t ∈ R+} such that

(i) Xt is Ft-adapted and is continuous on (0, t1] and each interval (tk, tk+1], k ∈ N,

(ii) for each tk, Xt+k
= lim

t→t+k

Xt exists and Xt+k
−Xtk = λkXtk with probability one,

(iii) Xt satisfies the following integral equations a.s.

Xt = X0 +

t∫
0

(
a(s)Xs − b(s)X3

s )ds+

t∫
0

σ(s)XsdWs, t ∈ [0, t1],

Xt = Xt+k
+

t∫
tk

(
a(s)Xs − b(s)X3

s )ds+

t∫
tk

σ(s)XsdWs, t ∈ (tk, tk+1], k ∈ N,

provided that the integrals exist.

In the Theorems below we always assume that a product equals unity if the number of
factors is zero.

Theorem 2.1. The Ginzburg-Landau equation (1.2) admits a unique solution which is defined
globally and given by

Xt =

∏
0<tk<t

(1 + λk)e

t∫
0

[a(s)− 1
2
σ2(s)]ds+

t∫
0

σ(s)dWs

(
X−2

0 + 2
t∫
0

b(s)
∏

0<tk<s
(1 + λk)2e

2
s∫
0

[a(u)− 1
2
σ2(u)]du+2

s∫
0

σ(u)dWu

ds

) 1
2

. (2.1)

Proof. We first define the stochastic process

Ut = e
−2

t∫
0

[a(s)− 1
2
σ2(s)]ds−2

t∫
0

σ(s)dWs

×
(
X−2

0 + 2

t∫
0

∏
0<tk<s

(1 + λk)
2b(s)e

2
s∫
0

[a(u)− 1
2
σ2(u)]du+2

s∫
0

σ(u)dWu

ds

)
:= eVt × f(t). (2.2)

By the Itô formula, Ut solves

dUt = f ′(t)eVtdt+ f(t)eVtdVt +
1

2
f(t)eVt(dVt)

2,
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or equivalently

dUt = 2
∏

0<tk<t
(1 + λk)

2b(t)dt− 2Ut[a(t)− 1
2σ

2(t)]dt− 2Utσ(t)dWt + 2Utσ
2(t)dt

= [3σ2(t)− 2a(t)]Utdt− 2σ(t)UtdWt + 2
∏

0<tk<t
(1 + λk)

2b(t)dt.
(2.3)

Now let Yt =
1√
Ut
, then

dYt = −1
2Ut

√
Ut
dUt +

3
8U2

t

√
Ut
(dUt)

2

= −1
2 [3σ2(t)− 2a(t)]Ytdt+ σ(t)YtdWt −

∏
0<tk<t

(1 + λk)
2b(t)Y 3

t dt+
3
2σ

2(t)Ytdt.

Thus Yt is the solution of the following equation without impulses

dYt =

(
a(t)Yt − b(t)

∏
0<tk<t

(1 + λk)
2Y 3

t

)
dt+ σ(t)YtdWt, Y0 = X0. (2.4)

Consider the stochastic process

Xt =
∏

0<tk<t

(1 + λk)Yt

=

∏
0<tk<t

(1 + λk)e

t∫
0

[a(s)− 1
2
σ2(s)]ds+

t∫
0

σ(s)dWs

(
X−2

0 + 2
t∫
0

∏
0<tk<s

(1 + λk)2b(s)e
2

s∫
0

[a(u)− 1
2
σ2(u)]du+2

s∫
0

σ(u)dWu

ds

) 1
2

. (2.5)

Obviously, Xt is Ft-adapted and is continuous on each interval (0, t1] and (tk, tk+1], k ∈ N.
On the other hand, for each tk

Xt+k
= lim

t→t+k

Xt = lim
t→t+k

∏
0<th<t

(1 + λh)Yt

=
∏

0<th≤tk

(1 + λh)Yt+k
= (1 + λk)

∏
0<th<tk

(1 + λh)Ytk = (1 + λk)Xtk ,

which means that Xt+k
exists and Xt satisfies the impulsive conditions at each tk, k ∈ N.

Moreover, for any t ̸= tk we have

dXt =
∏

0<tk<t

(1 + λk)dYt

=

(
a(t)

∏
0<tk<t

(1 + λk)Yt − b(t)
∏

0<tk<t

(1 + λk)
3Y 3

t

)
dt+ σ(t)

∏
0<tk<t

(1 + λk)YtdWt

=
(
a(t)Xt − b(t)X3

t

)
dt+ σ(t)XtdWt.
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This equation says that Xt satisfies the integral equations appearing in the condition (iii) of
Definition 2.1. The remainder of the proof is to show that Xt is the unique solution. Noting
that on each interval [0, t1] and (tk, tk+1], k ∈ N, the system (1.2) a standard Itô stochastic
differential equation. Since its coefficients are local Lipschitz continuous, the uniqueness of
the solution is clear (see, for instance, [15]).

The Theorem is proved.

Remark 2.1. We observe from (2.1) that the solution of impulsive Ginzburg-Landau equation
(1.2) can be negative, depending on the sign of (1 + λk)

′s. In particular, denote by tk the
first moment of time such that λk = −1. Our system will vanish right after this moment, i.e.,
Xt = 0 for all t > tk.

On the other hand, the solution of the original Ginzburg-Landau equation, that is system
(1.2) without impulses, is given by

Xt =
e

t∫
0

[a(s)− 1
2
σ2(s)]ds+

t∫
0

σ(s)dWs

(
X−2

0 + 2
t∫
0

b(s)e
2

s∫
0

[a(u)− 1
2
σ2(u)]du+2

s∫
0

σ(u)dWu

ds

) 1
2

. (2.6)

This solution is globally positive for any initial value X0 > 0. This means that the dynamic
of impulsive model is very different from the one of its original model.

In the remainder of the paper, it is more interesting to consider the case where λk ̸=
−1, i.e. (1 + λk)

2 > 0 for all k ∈ N.

Theorem 2.2. Suppose that there exist two positive constants m,M such that

m ≤
∏

0<tk<t

(1 + λk)
2 ≤ M ∀ t ∈ R+. (2.7)

Then for each p > 0, there exists a finite positive constant Cp(m,X0) such that

sup
t∈R+

E|Xt|p ≤ Cp(m,X0)M
p
2 .

Proof. By Itô formula

dY p
t =

(
pa(t)Y p

t +
1

2
p(p− 1)σ2(t)Y p

t − p
∏

0<tk<t

(1 + λk)
2b(t)Y p+2

t

)
dt+ pσ(t)Y p

t dWt.
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Hence, by Lyapunov’s inequality (E[Y p
t ])

1+ 1
p ≤ (E[Y p+2

t ])
1+ 2

p we have

E[Y p
t ] = Y p

0 + p
t∫
0

(
[a(s) + 1

2(p− 1)σ2(s)]E[Y p
s ]−

∏
0<tk<s

(1 + λk)
2b(s)E[Y p+2

s ]
)
ds

≤ Y p
0 + p

t∫
0

(
[ā+ 1

2(p− 1)σ̄2]E[Y p
t ]−mb

¯
(E[Y p

t ])
1+ 2

p
)
dt.

(2.8)

It follows from the differential inequalities (see, [16]) that E[Y p
t ] is dominated by the solution

of the following ordinary Bernoulli equation

dy

dt
= P (t)yn +Q(t)y, y(0) = Y p

0 , (2.9)

where P (t) = −pmb
¯
, Q(t) = p[ā+ 1

2(p− 1)σ̄2]. Solving (2.9) gives us

E[Y p
t ] ≤ y(t) = ep[ā+

1
2
(p−1)σ̄2]t

(
Y −2
0 + 2mb

¯

t∫
0

e2[ā+
1
2
(p−1)σ̄2]sds

)−p
2

.

Now we choose p0 > 0 such that ā + 1
2(p0 − 1)σ̄2 > 0. An easy computation leads us the

estimate for any p ≥ p0

(E[Y p
t ])

2
p ≤ e2[ā+

1
2
(p−1)σ̄2]t

Y −2
0 + 2mb

¯

t∫
0

e2[ā+
1
2
(p−1)σ̄2]sds

=
1(

1
X2

0
− mb

¯ā+ 1
2
(p−1)σ̄2

)
e−2[ā+ 1

2
(p−1)σ̄2]t +

mb
¯ā+ 1

2
(p−1)σ̄2

≤ max{ mb
¯

ā+ 1
2(p− 1)σ̄2

, X2
0}.

We therefore have for any p ≥ p0

E[Y p
t ] ≤ max{ mb

¯
ā+ 1

2(p− 1)σ̄2
, X2

0}
p
2 < ∞ ∀ t ∈ R+.

For p < p < p0, by Lyapunov’s inequality we also have E[Y p
t ] ≤ (E[Y p0

t ])
p
p 0 < ∞. Thus for

each p > 0, there exists a finite positive constant Cp(m,X0) such that E[Y p
t ] ≤ Cp(m,X0)

and
E|Xt|p =

∏
0<tk<t

|1 + λk|pE[Y p
t ] ≤ Cp(m,X0)M

p
2 ∀ t ∈ R+.

The Theorem is proved.
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Remark 2.2. In the general case, we always have the following estimate

E|Xt|p ≤

∏
0<tk<t

|1 + λk|pe
p

t∫
0

[a(s)+ 1
2
(p−1)σ2(s)]ds

(
X−2

0 + 2
t∫
0

∏
0<tk<s

(1 + λk)2b(s)e
2

s∫
0

[a(u)+ 1
2
(p−1)σ2(u)]du

ds

) p
2

.

3. Asymptotic behavior of solutions

In this section we shall investigate the some qualitative properties of the solution of (1.2)
which allow us to gain a deeper understanding about its dynamics.

Theorem 3.1. Assume that

lim sup
t→∞

1

t

( ∑
0<tk<t

ln |1 + λk|+
t∫

0

[a(s)− 1

2
σ2(s)]ds

)
< 0 a.s.

Then the solution of impulsive Ginzburg-Landau equation (1.2) is almost surely exponentially
convergent, i.e. there exists β > 0 such that

lim sup
t→∞

ln |Xt|
t

≤ −β a.s. (3.1)

Proof. Using Itô formula, it is easy to get that

d lnYt =

(
a(t)− 1

2
σ2(t)−

∏
0<tk<t

(1 + λk)
2b(t)Y 2

t

)
dt+ σ(t)dWt.

Consequently,

lnYt − lnY0 ≤
t∫

0

[a(s)− 1

2
σ2(s)]ds+

t∫
0

σ(s)dWs,

and hence, it follows from the relation (2.5) that

ln |Xt| − lnX0 ≤
∑

0<tk<t

ln |1 + λk|+
t∫

0

[a(s)− 1

2
σ2(s)]ds+

t∫
0

σ(s)dWs. (3.2)
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Put Mt =
t∫
0

σ(s)dWs. Then Mt is a martingale of finite quadratic variation:

⟨M,M⟩t =
t∫

0

σ2(s)ds ≤ σ̄2t.

Using the strong law of large numbers for martingales [17, Theorem 3.4] we have

lim
t→∞

Mt

t
= 0 a.s. (3.3)

Combining (3.2) and (3.3) we get (3.1) with

β = − lim sup
t→∞

1

t

( ∑
0<tk<t

ln |1 + λk|+
t∫

0

[a(s)− 1

2
σ2(s)]ds

)
. (3.4)

The Theorem is proved.

Theorem 3.2. Under the assumption of Theorem 2.2. We have

lim sup
t→∞

ln |Xt|
ln t

≤ 1 a.s. (3.5)

Proof. Applying the Itô formula to Zt = lnYt and then to entZt we get, respectively

dZt =

(
a(t)− 1

2
σ2(t)−

∏
0<tk<t

(1 + λk)
2b(t)e2Zt

)
dt+ σ(t)dWt,

d(entZt) = nentZtdt+ ent
(
a(t)− 1

2
σ2(t)−

∏
0<tk<t

(1 + λk)
2b(t)e2Zt

)
dt+ entσ(t)dWt.

Therefore

entZt = Z0 +

t∫
0

ens
(
a(s)− 1

2
σ2(s) + nZs −

∏
0<tk<s

(1 + λk)
2b(s)e2Zs

)
ds+

t∫
0

ensσ(s)dWs.

Since
∏

0<tk<s
(1+λk)

2b(s) ≥ mb̄ > 0 for all s and a(s), σ(s) are bounded functions, there exists

a finite positive K such that for any s ∈ R+, Z ∈ R

a(s)− 1

2
σ2(s) + nZs −

∏
0<tk<s

(1 + λk)
2b(s)e2Zs ≤ K.
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Consequently,

entZt ≤ Z0 +K

t∫
0

ensds+

t∫
0

ensσ(s)dWs. (3.6)

Put

Mt =

t∫
0

σ1e
nsdWs,

then Mt is continuous martingale that has finite quadratic variation:

⟨M,M⟩t =
t∫

0

σ2(s)e2nsds.

Fix ε ∈ (0, 1) and θ > 1, by applying the exponential martingale inequality (see, [17, Theorem
7.4]) we have for any k ≥ 1

P

(
sup

0≤t≤k

(
Mt −

ε

2
e−nk⟨M,M⟩t

)
≥ enk ln kθ

ε

)
≤ 1

kθ
.

Since
∞∑
k=1

1
kθ

< ∞, an application of the Borel-Cantelli lemma yields that there exist Ω1 ⊂ Ω

with P (Ω1) = 1 such that for any ω ∈ Ω1 there exists an integer k(ω), when k ≥ k(ω) and
k − 1 ≤ t ≤ k,

Mt ≤ ε
2e

−nk⟨M,M⟩t + enk ln kθ

ε

= ε
2e

−nk
t∫
0

σ2(s)e2nsds+ θ enk ln k
ε .

Substituting this inequality into (3.6) results in

entZt ≤ Z0 +
K

n
ent +

ε

2
e−nk

t∫
0

σ2(s)e2nsds+ θ
enk ln k

ε
, k − 1 ≤ t ≤ k,

Zt ≤ Z0 +
K
n + εσ̄2

2 e−n(k−t) + θ en(k−t) ln k
ε

≤ Z0 +
K
n + εσ̄2

2 + θ en ln k
ε , k − 1 ≤ t ≤ k.

(3.7)

which implies that

lim sup
t→∞

Zt

ln t
≤ θ

en

ε
.
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Taking the limits θ → 1+, ε → 1− and n → 0+ we get

lim sup
t→∞

lnYt
ln t

= lim sup
t→∞

Zt

ln t
≤ 1 a.s. (3.8)

It follows from (2.7) that

lim
t→∞

∑
0<tk<t

ln |1 + λk|

ln t
= 0.

As a consequence,

lim sup
t→∞

ln |Xt|
ln t

= lim sup
t→∞

∑
0<tk<t

ln |1 + λk|+ lnYt

ln t
≤ 1 a.s.

We finish the proof of Theorem.

Theorem 3.3. Under the assumption of Theorem 2.2, we additionally assume that c :=
inf
t∈R+

[a(t)− 1
2σ

2(t)] > 0, then

lim inf
t→∞

ln |Xt|
ln t

≥ − σ̄2

2c
a.s. (3.9)

Proof. Since c > 0, we can choose a positive constant θ such that c > θσ̄2. Consider the
Lyapunov functional V (y) = (1 + 1

y2
)θ and applying the Itô formula to V (Yt)

dV (Yt) = d(1 + Ut)
θ = θ(1 + Ut)

θ−1dUt +
1

2
θ(θ − 1)(1 + Ut)

θ−2(dUt)
2,

where Ut is defined by the equation (2.3). Hence,

dV (Yt) = θ(1 + Ut)
θ−2

(
[3σ2(t)− 2a(t)]Ut(1 + Ut)dt− 2σ(t)Ut(1 + Ut)dWt

+ 2
∏

0<tk<t

(1 + λk)
2b(t)(1 + Ut)dt+ 2(θ − 1)σ2(t)U2

t dt

)
,

and then

dV (Yt) = θ(1 + Ut)
θ−2

(
− 2U2

t [a(t)−
1

2
σ2(t)− θσ2(t)] + Ut[3σ

2(t)− 2a(t)

+ 2
∏

0<tk<t

(1 + λk)
2b(t)] + 2

∏
0<tk<t

(1 + λk)
2b(t)

)
dt− 2θσ(t)Ut(1 + Ut)

θ−1dWt

≤ θ(1 + Ut)
θ−2

(
− 2[c− θσ̄2]U2

t + [3σ̄2 + 2Mb̄]Ut + 2Mb̄
)
dt

− 2θσ(t)Ut(1 + Ut)
θ−1dWt. (3.10)
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Once again, we apply the Itô formula to entV (Yt) to get

d(entV (Yt)) = nentV (Yt)dt+ entdV (Yt)

≤ θ(1 + Ut)
θ−2

(n
θ
(1 + Ut)

2 − 2[c− θσ̄2]U2
t + [3σ̄2 + 2Mb̄]Ut + 2Mb̄

)
entdt

− 2θσ(t)entUt(1 + Ut)
θ−1dWt

= θ(1 + Ut)
θ−2

(
− 2[c− θσ̄2 − n

2θ
]U2

t + [3σ̄2 + 2Mb̄+
2n

θ
]Ut + 2Mb̄+

n

θ

)
dt

− 2θσ(t)entUt(1 + Ut)
θ−1dWt. (3.11)

Now we choose n > 0 such that c− θσ̄2 − n
2θ > 0, it is very easy to check that the function

g(u) := θ(1 + u)θ−2
(
− 2[c− θσ̄2 − n

2θ
]u2 + [3σ̄2 + 2Mb̄+

2n

θ
]u+ 2Mb̄+

n

θ

)
, u > 0

is bounded by a finite positive constant, namely K. Consequently,

d(entV (Yt)) ≤ Kentdt− 2θσ(t)entUt(1 + Ut)
θ−1dWt,

which implies that

E[entV (Yt)] ≤ V (Y0) +
K

n
ent ∀ t ∈ R+,

and so

E[V (Yt)] ≤ V (Y0) +
K

n
:= K1 ∀ t ∈ R+. (3.12)

From (3.10) we obtain

dV (Yt) ≤ K2θ(1 + Ut)
θ − 2θσ(t)Ut(1 + Ut)

θ−1dWt,

where K2 = max{2[c−θσ̄2], 3σ̄2+2Mb̄, 2Mb̄}. Let k = 1, 2, .... and v > 0, the latest inequality
leads us to the following estimate

E

(
sup

(k−1)v≤t≤kv
V (Yt)

)
≤ EV (Y(k−1)v) + E

(
sup

(k−1)v≤t≤kv

t∫
(k−1)v

K2θV (Ys)ds

)

+ E

(
sup

(k−1)v≤t≤kv

t∫
(k−1)v

2θσ(s)Us(1 + Us)
θ−1dWs

)
. (3.13)

Clearly,

E

(
sup

(k−1)v≤t≤kv

t∫
(k−1)v

K2θV (Ys)ds

)
≤ K2θvE

(
sup

(k−1)v≤t≤kv
V (Yt)

)
. (3.14)

12



By the Burkholder-Davis-Gundy inequality

E

(
sup

(k−1)v≤t≤kv

t∫
(k−1)v

2θσ(s)Us(1 + Us)
θ−1dWs

)

≤ 2E

( kv∫
(k−1)v

θ2σ2(s)U2
s (1 + Us)

2θ−2ds

) 1
2

≤ 2θσ̄E

( kv∫
(k−1)v

(1 + Us)
2θds

) 1
2

≤ 2θσ̄v
1
2E

(
sup

(k−1)v≤t≤kv
V (Yt)

)
. (3.15)

Inserting (3.14) and (3.15) into (3.13) and using (3.12) we obtain

E

(
sup

(k−1)v≤t≤kv
V (Yt)

)
≤ K1 + (K2θv + 2θσ̄v

1
2 )E

(
sup

(k−1)v≤t≤kv
V (Yt)

)
. (3.16)

Now we choose v > 0 such that K2θv + 2θσ̄v
1
2 ≤ 1

2 , then

E

(
sup

(k−1)v≤t≤kv
V (Yt)

)
≤ 2K1. (3.17)

Fix ε > 1, by the Chebyshev inequality

P

(
sup

(k−1)v≤t≤kv
V (Yt) > (kv)ε

)
≤

E

(
sup

(k−1)v≤t≤kv
V (Yt)

)
(kv)ε

≤ 2K1

(kv)ε
, k = 1, 2, ....

Making use of the Borel-Cantelli lemma yields that there exists an integer k(ω), when k ≥
k(ω) and (k − 1)v ≤ t ≤ kv,

V (Yt) ≤ (kv)ε a.s.

Similarly to (3.8) we also have

lim sup
t→∞

lnV (Yt)

ln t
≤ 1 a.s.

Since V (Yt) =
(
1 + 1

Y 2
t

)θ
, this implies that

lim sup
t→∞

ln(Yt)
−2θ

ln t
≤ 1 a.s.

13



Thus

lim inf
t→∞

lnYt
ln t

≥ − 1

2θ
a.s.

The latest inequality holds for any θ such that c > θσ̄2. We conclude that

lim inf
t→∞

lnYt
ln t

≥ − σ̄2

2c
a.s.

and so (3.9) is proved.

The proof of the theorem is completed.

4. A stochastic version driven by fractional Brownian motion

In the last two decades, there has been an increased interest in stochastic models based
on other processes rather than the Brownian motion, much of the literature has pointed
out that fractional Brownian motion, also well known as colored noise, provides a natural
theoretical framework to model many phenomena arising in finance, biology, physics, etc.
We refer also the reader to [18] for a short survey on the existence of colored noise in the
real world. This naturally leads us to investigate impulsive stochastic differential equations
driven by fractional Brownian motion. However, to the best of the author’s knowledge, this
field has not yet been established even in the simplest case. The aim of this section is to
consider an impulsive stochastic Ginzburg-Landau equation driven by fractional Brownian
motion.

The fractional Brownian motion (fBm) of the Hurst parameter H ∈ (0, 1) is a centered
Gaussian process WH = {WH(t), t ≥ 0} with the covariance function RH(t, s) = E[WH

t WH
s ]

RH(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H) .

It is known that fBm is a self-similar process and has stationary increments. In the case where
H = 1

2 , the process W
H reduces to a standard Brownian motion. The increments of the fBm

are negatively correlated for H < 1
2 and positively correlated for H > 1

2 . In particular, for
H > 1

2 , fBm is a long memory process since the covariance at distance n decreases as n2H−2 :

ρH(n) := E(WH
1 (WH

n+1 −WH
n )) ≈ H(2H − 1)n2H−2 as n → ∞.

The above properties, contrarily to Brownian motion, make fBm as a potential candidate
to model for noise. However, since a fBm with H ̸= 1

2 is neither a semimartingale nor a
Markov process, we cannot apply stochastic calculus developed by Itô. This is the main
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difficulty in studying fractional stochastic systems. The reader can consult Mishura [19] and
the references therein for a more complete presentation of this subject.

The stochastic Ginzburg-Landau equations with additive colored noise and without im-
pulses have been investigated by many authors before (see, for example, [20, 21]). We consider
a new fractional stochastic version of impulsive Ginzburg-Landau equation (1.2) that reads{

dXt =
(
a(t)Xt − b(t)X3

t )dt+ σ(t)XtdW
H
t , t ̸= tk, k ∈ N,

Xt+k
−Xtk = λkXtk , k ∈ N, (4.1)

where WH
t is a fractional Brownian motion with Hurst index H ∈ (12 , 1). The fractional

stochastic integral
t∫
0

σ(s)XsdW
H
s should be interpreted as a limit in L2(Ω) of semimartingales

(see, [22, Definition 2.1]).

Based on the recent advances in fractional stochastic differential equations without im-
pulses, the existence and uniqueness of the solution of (4.1) can be shown easily in the
Theorem below.

Theorem 4.1. The unique solution of the fractional impulsive stochastic Ginzburg-Landau
equation (4.1) is given by

Xt =

∏
0<tk<t

(1 + λk)e

t∫
0

a(s)ds+
t∫
0

σ(s)dWH
s

(
X−2

0 + 2
t∫
0

b(s)
∏

0<tk<s
(1 + λk)2e

2
s∫
0

a(u)du+2
t∫
0

σ(u)dWH
u

ds

) 1
2

.

Proof. We first consider the following fractional stochastic differential equation without im-
pulses

dYt =

(
a(t)Yt − b(t)

∏
0<tk<t

(1 + λk)
2Y 3

t

)
dt+ σ(t)YtdW

H
t , Y0 = X0. (4.2)

It is known from [22, Theorem 3.2] that the solution of (4.2) can be explicitly found. More
concretely, we have

Yt =
e

t∫
0

a(s)ds+
t∫
0

σ(s)dWH
s

(
X−2

0 + 2
t∫
0

b(s)
∏

0<tk<s
(1 + λk)2e

2
s∫
0

a(u)du+2
t∫
0

σ(u)dWH
u

ds

) 1
2

. (4.3)

Consequently, Xt =
∏

0<tk<t
(1 + λk)Yt is a unique solution of (4.1).
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Remark 4.1. Although the Theorem 4.1 is very similar to Theorem 2.1, the obtained results
in Section 3 are not easy to extend to (4.1). The main reasons are due to the complexity of
Itô formula and the lack of the exponential martingale inequalities in the context of stochastic
calculus with respect to fBm.

5. Conclusion

In this paper, a stochastic Ginzburg-Landau equation with impulsive effects has been
investigated. Our contributions in this paper include:

• An explicit expression for the solution which points out that the dynamic of impulsive
equation is very different from one of its original equation.

• A sufficient condition under which the solution is almost surely exponentially conver-
gent. Furthermore, Theorems 3.2 and 3.3 tell us that at infinity, the solution will not

grow faster than t1+ε and will not decay faster than t
−( σ̄

2

2c
+ε)

for any ε > 0.

• A first attempt to study an impulsive stochastic Ginzburg-Landau equation driven by
fractional Brownian motion.

In this sense, we partly enrich the knowledge of the theory of Ginzburg-Landau equations.
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