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1. Introduction

The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a centered Gaussian process defined by

WH,(1)
t =

∫ t

0
K1(t, s)dWs, (1.1)

whereW is a standard Brownian motion and the kernel K1(t, s), t ≥ s, is given by

K1(t, s) = CH

[
tH−

1
2

sH−
1
2
(t − s)H−

1
2 −


H −

1
2

 ∫ t

s

uH−
3
2

sH−
1
2

(u − s)H−
1
2 du

]
,

where CH is a coefficient depending only on H .
Another form of fractional Brownian motion is Liouville fractional Brownian motion (LfBm) [1,2], where the kernel

K1(t, s) is replaced by K2(t, s) = (t − s)H−
1
2 , that is a stochastic process defined by

WH,(2)
t :=

∫ t

0
(t − s)αdWs, α = H −

1
2
.

In [3] Mandelbrot has given a relation betweenWH,(1)
t andWH,(2)

t

WH,(1)
t =

1
Γ (1 + α)


Ut + WH,(2)

t

, (1.2)

where Ut =
 0
−∞


(t − s)α − (−s)α


dWs is a process of absolutely continuous trajectories.
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It is well known that in the case where the Hurst index H =
1
2 , the process WH (WH

= WH,(1)
t or WH,(2)

t ) is a standard
Brownian motion and where H ≠

1
2 ,W

H is neither a semimartingale nor a Markov process. Hence, the stochastic calculus
developedby Itô cannot be applied. In this paperweuse the pathwise stochastic integration,which is introduced by Zähle [4],
to consider the following fractional version of the Black–Scholes (FB–S) model:

Bond price:

dBt = rBtdt; B0 = 1 (1.3)

Stock price:

dSt = µStdt + σ StdWH
t , (1.4)

where S0 is a positive real number and WH
t is either a fBm or a LfBm. The coefficients r, µ, σ are assumed to be constants

symbolizing the riskless interest rate, the drift of the stock and its volatility, respectively.
The arbitrage in the (FB–S) model based on pathwise integration was studied by Shiryayev [5] for the case of H > 1

2 .
Cheridito [6] proved a surprising result that, for Hurst parameters H ∈

 3
4 , 1


the mixed process MH,ε

t = WH,(1)
t + εW 1

t is
equivalent to a martingale εW 1

t , as long as the standard Brownian motionW 1
t is independent ofWH,(1)

t . He observes that

Cov(MH,ε
t ,MH,ε

s ) = ε2 min(t, s) + Cov(WH,(1)
t ,WH,(1)

s ).

Hence, MH,ε
t is an a.s. continuous centered Gaussian process that has up to ε2 the same covariance structure as (WH,(1)

t ).
Cheridito [6] verbally explains how this fact shows that if the stock price process in (FB–S) model fits empirical data, then
so does

dSt = µStdt + σ StdW
H,(1)
t + εσ StdW 1

t ; S0 > 0 (1.5)

for ε > 0 small enough.
It is obvious that mixed model (1.5) is arbitrage-free and complete. For a fixed value ε, one can price asset with respect

to the unique martingale measure Qε and get at time t = 0

C0(ε) = EQε


S0 exp(µT + σ(WH,(1)

T + εW 1
T )) − e−rTK

+
= BS(0, S0, σε),

where BS(0, S0, σε) denotes the Black–Scholes price of a call option on a stock with initial price S0 and volatility σε. As
ε → 0, the mixed model (1.5) approaches the model (1.4), and the option price tends to

C0 = lim
ε→0

BS(0, S0, σε) = (S0 − e−rTK)+, (1.6)

that is, all randomness is eliminated. Cheridito [6] explains this peculiarity by the possibility that traders can act arbitrarily
fast and hence immediately exploit the predictability of the model (1.5). Thereby, they remove the random character by
means of a suitable trading strategy.

However, we can see that the mixed model (1.5) contains one random source more than the original model (1.4). This
means that the dynamism of (1.5) is different from that of (1.4) even for arbitrarily small ε.

In [7–9], T. H. Thao has proved that a LfBm can be approximated in L2(Ω) by semimartingales. We developed this result
by showing thatWH

t can be approximated in Lp(Ω) by semimartingales

WH,ε
t =

∫ t

0
K(t + ε, s)dWs, ε > 0,

where K(t, s) equals to either K1(t, s) or K2(t, s). This fact leads us to the following approximation model for stock price
process

dSε
t = µSε

t dt + σ Sε
t dW

H,ε
t ; S0 > 0. (1.7)

This model driven by semimartingales has the same random source as original (FB–S) model. We want also to emphasize
that our approximation results is true for all H > 1

2 .
This paper is organized as follows: In Section 2, we state some basic facts about a semimartingale approximation of

fractional processes and the generalized Stieltjes integral. In Section 3, our key result is stated in Theorem 3.1 that the
fractional stochastic integral can be approximated by the stochastic integrationwith respect to semimartingales. In Section 4,
the absence of arbitrage and semimartingale approximation of the Black–Scholes model are proved, the Black–Scholes
equation is found as well.
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2. Preliminaries

Let us at first define the following stochastic process for every ε > 0

WH,ε
t =

∫ t

0
K(t + ε, s)dWs,

where K(t, s) equals to either K1(t, s) or K2(t, s). We have the following proposition:

Proposition 2.1. I. For every ε > 0,WH,ε
t is Ft-semimartingale with following decomposition

WH,ε
t =

∫ t

0
K(s + ε, s)dWs +

∫ t

0
ϕε
s ds, (2.1)

where (Ft , 0 ≤ t ≤ T ) is the natural filtration associated to W.

ϕε
s =

∫ s

0
∂1K(s + ε, u)dWu,

∂1K(t, s) =
∂K(t, s)

∂t
.

II. The process WH,ε
t converges to WH

t in Lp(Ω), p > 0when ε tends to 0. This convergence is uniform with respect to t ∈ [0, T ].

Proof. The proof of part I is as follows: applying stochastic Fubini’s theorem we have∫ t

0
ϕε
s ds =

∫ t

0

∫ s

0
∂1K(s + ε, u)dWuds =

∫ t

0

∫ t

u
∂1K(s + ε, u)dsdWu

=

∫ t

0


K(t + ε, u) − K(u + ε, u)


dWu = WH,ε

t −

∫ t

0
K(s + ε, s)dWs. (2.2)

Hence, (2.1) follows from (2.2).
We are now in a position to prove part II of the proposition. For any p > 0, applying Burkholder–Davis–Gundy inequality

(see, [10]) we get

E|WH,ε
t − WH

t |
p

≤ E
∫ t

0


K(t + ε, s) − K(t, s)


dWs

p

≤ cp

∫ t

0


K(t + ε, s) − K(t, s)

2ds p
2

, (2.3)

where cp is a finite positive constant and∫ t

0


K(t + ε, s) − K(t, s)

2ds =

∫ t

0
K 2(t + ε, s)ds − 2

∫ t

0
K(t + ε, s)K(t, s)ds +

∫ t

0
K 2(t, s)ds

≤

∫ t+ε

0
K 2(t + ε, s)ds − 2

∫ t∧(t+ε)

0
K(t + ε, s)K(t, s)ds +

∫ t

0
K 2(t, s)ds

= E|WH
t+ε − WH

t |
2

≤ ε2H . (2.4)

Hence,

E|WH,ε
t − WH

t |
p

≤ cpεpH .

The proof of the proposition is complete. �

Corollary 2.1. Let Sε
t , St be the solution to Eqs. (1.4), (1.7), respectively. Then Sε

t converges to St in Lp(Ω), p > 0 when ε → 0,
provided that H > 1

2 . This convergence is uniform with respect to t ∈ [0, T ].

Proof. Let X1, X2 be two random variables. By Lagrange’s theorem and Hölder’s inequality we have

E|eX1 − eX2 |p ≤ E

(X1 − X2) sup
min(X1,X2)≤x≤max(X1,X2)

ex

p

≤ E|(X1 − X2)e|X1|+|X2||p ≤


E[e2p|X1| + e2p|X2|]E|X1 − X2|

2p
 1

2

. (2.5)
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We recall from [11] that

St = S0eµt+σWH
t , Sε

t = S0eµt− 1
2 σ 2K2(t+ε,t)+σWH,ε

t .

We now apply (2.5) to X1 = −
1
2σ

2K 2(t + ε, t) + σWH,ε
t , X2 = σWH

t and obtain

E|Sε
t − St |p = Sp0e

pµtE|e−
1
2 σ 2K2(t+ε,t)+σWH,ε

t − eσWH
t |

p

≤ Sp0e
pµt


E[e2p|X1| + e2p|X2|]E|X1 − X2|

2p
 1

2

. (2.6)

It is obvious that E[e2p|X1| + e2p|X2|] is finite because WH,ε
t and WH

t are centered Gaussian processes with finite variances in
[0, T ]. Moreover, by fundamental inequality (a + b)p ≤ cp(ap + bp), where cp = 1 if 0 < p ≤ 1 and cp = 2p−1 if p > 1

E|X1 − X2|
2p

≤ c2p

[
E|WH,ε

t − WH
t |

2p
+

1
4p

σ 4pK 4p(t + ε, t)
]

≤ c2p


ε2pH

+
1
4p

σ 4pε
4p


H−

1
2


. (2.7)

Thus, for 0 < ε < 1, there exists a finite constant C(p, S0, T ) depending only on p, S0 and T such that

E|Sε
t − St |p ≤ C(p, S0, T )ε

2p

H−

1
2


. � (2.8)

Next, we recall about a generalization of the Stieltjes integral introduced by Zähle [4]. Fix a parameter 0 < λ < 1
2 , denote

by W 1−λ,∞
[0, T ] the space of measurable function g : [0, T ] → R such that

‖g‖1−λ,∞ := sup
0≤s<t≤T


|g(t) − g(s)|
(t − s)1−λ

+

∫ t

s

|g(y) − g(s)|
(y − s)2−λ

dy


< +∞.

Clearly,

C1−λ+ε
[0, T ] ⊂ W 1−λ,∞

[0, T ] ⊂ C1−λ
[0, T ] ∀ε > 0,

where Cλ
[0, T ] denotes the space of Hölder continuous functions of order λ with the norm

‖g‖λ := sup
0≤t≤T

|g(t)| + sup
0≤s<t≤T

|g(t) − g(s)|
|t − s|λ

.

We also denote byW λ,1
[0, T ] the space of measurable function f : [0, T ] → R such that

‖f ‖λ,1 :=

∫ T

0

|f (s)|
sλ

ds +

∫ T

0

∫ t

0

|f (t) − f (s)|
(t − s)λ+1

dsdt < ∞.

For the functions f ∈ W λ,1
[0, T ], g ∈ W 1−λ,∞

[0, T ], Zähle introduced the generalized Stieltjes integral∫ T

0
f (t)dg(t) = (−1)λ

∫ T

0
Dλ
0+ f (t)D1−λ

T− g(t)dt

defined in terms of the fractional derivative operators

Dλ
0+ f (x) =

1
Γ (1 − λ)


f (x)
xλ

+ λ

∫ x

0

f (x) − f (y)
(x − y)λ+1

dy


,

and

D1−λ

T− g(x) =
(−1)λ

Γ (1 − λ)


g(x) − g(T )

(T − x)λ
+ λ

∫ T

x

g(x) − g(y)
(x − y)λ+1

dy


.

Moreover, we have the following estimate for all t ∈ [0, T ]∫ t

0
f dg

 ≤ C(λ)‖f ‖λ,1‖g‖1−λ,∞. (2.9)

If f ∈ Cλ
[0, T ] and g ∈ Cµ

[0, T ] with λ + µ > 1, it is proved by Zähle that the integral
 t
0 f dg coincides with the

Riemann–Stieltjes integral.
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3. Approximation results

Theorem 3.1. Suppose that ut is a stochastic process belonging to C1−H+δ
[0, T ] a.s. with some constant δ > 0, i.e.

sup
0≤t≤T

|ut | + sup
0≤s<t≤T

|ut − us|

|t − s|1−H+δ
≤ K 2(ω) a.s. (3.1)

where K(ω) is a finite random variable. Then∫ T

0
usdWH,ε

s
P
−→

∫ T

0
usdWH

s when ε → 0, (3.2)

provided that H > 1
2 . The notation

P
−→ stands for the convergence in probability.

Proof. For every ε > 0 we consider

uε
t =

n−
i=1

uti−11[ti−1,ti)(t), uε
T = uT ,

where n =
 T

ε
+ 1


, ti =

iT
n , i = 0, . . . , n and 1 is the indicator function, i.e. 1[ti−1,ti)(t) =


1 if t ∈ [ti−1, ti)
0 otherwise.

For any t ∈ [0, T ], t should belong to some interval [ti−1, ti) for some i, then the condition (3.1) leads us to the following
estimate

|uε
t − ut | = |ut − uti−1 | ≤ K 2(ω)|t − ti−1|

1−H+δ

≤ K 2(ω)|ti − ti−1|
1−H+δ

≤ K 2(ω)ε1−H+δ a.s. (3.3)

It is easy to see that∫ T

0
usdWH,ε

s −

∫ T

0
usdWH

s

 ≤

∫ T

0
(uε

s − us)dWH
s

 +

∫ T

0
(uε

s − us)dWH,ε
s

 +

∫ T

0
uε
sd(W

H,ε
s − WH

s )

 . (3.4)

Firstly, we prove that the first term in the right-hand side of (3.4) converges to 0 in probability. Fix a parameter 1 − H <
λ < min

 1
2 , 1 − H + δ


, applying the inequality (2.9) we have∫ T

0
(uε

s − us)dWH
s

 ≤ C(λ)‖uε
− u‖λ,1 ‖WH

‖1−λ,∞ a.s., (3.5)

where C(λ) is a finite positive constant and

‖uε
− u‖λ,1 =

∫ T

0

|uε
s − us|

sλ
ds +

∫ T

0

∫ t

0

|uε
t − ut − uε

s + us|

(t − s)λ+1
dsdt

≤
T 1−λ

1 − λ
sup

0≤s≤T
|uε

s − us| +

∫ T

0

∫ t

0

|uε
t − ut − uε

s + us|

(t − s)λ+1
dsdt

≤
T 1−λ

1 − λ
K 2(ω)ε1−H+δ

+

∫ T

0

∫ t

0

|uε
t − ut − uε

s + us|

(t − s)λ+1
dsdt.

Noting that for every fixed t ∈ [0, T ] there exists ε > 0 such that t ∈ [ti−1, ti) with some i. We have∫ t

0

|uε
t − ut − uε

s + us|

(t − s)λ+1
ds =

i−1−
k=1

∫ tk

tk−1

|uti−1 − ut − utk−1 + us|

(t − s)λ+1
ds +

∫ t

ti−1

|uti−1 − ut − uti−1 + us|

(t − s)λ+1
ds

≤

i−1−
k=1

∫ tk

tk−1

2K 2(ω)ε1−H+δ

(t − s)λ+1
ds +

∫ t

ti−1

K 2(ω)|t − s|1−H+δ

(t − s)λ+1
ds

=
2K 2(ω)ε1−H+δ

λ
[(t − ti−1)

−λ
− t−λ

] +
K 2(ω)

1 − H − λ + δ
(t − ti−1)

1−H−λ+δ

≤
2K 2(ω)ε1−H+δ

λ
(t − ti−1)

−λ
+

K 2(ω)ε1−H−λ+δ

1 − H − λ + δ
. (3.6)
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Hence,

‖uε
− u‖λ,1 ≤

K 2(ω)

1 − H − λ + δ
(t − ti−1)

1−H−λ+δ
+

2K 2(ω)ε1−H+δ

λ

∫ T

0
(t − ti−1)

−λdt +
K 2(ω)ε1−H−λ+δ

1 − H − λ + δ
→ 0 (3.7)

as ε → 0 because the integral in the right-hand side of (3.7) is finite.
It is well known thatWH has (H−η)-Hölder continuous paths for all η ∈ (0,H) (see, [3]), i.e. there exists a finite random

variable Kη(ω) such that

|WH
t − WH

s | ≤ Kη(ω)|t − s|H−η
∀t, s ∈ [0, T ] a.s.

For 0 < η < λ − (1 − H) we have

‖WH
‖1−λ,∞ = sup

0≤s<t≤T


|WH

t − WH
s |

(t − s)1−λ
+

∫ t

s

|WH
y − WH

s |

(y − s)2−λ
dy


≤ Kη(ω) sup

0≤s<t≤T


(t − s)H+λ−η−1

+

∫ t

s
(y − s)H+λ−η−2dy


≤ Kη(ω)TH+λ−η−1


1 +

1
H + λ − η − 1


. (3.8)

As a consequence, by combining (3.5), (3.7) and (3.8) the first term in the right-hand side of (3.4) will converge to zero
in probability as ε → 0.

Next, we prove that the second term in the right-hand side of (3.4) converges to zero in L2(Ω) by using the decomposition
(2.1).

E
∫ T

0
(uε

s − us)dWH,ε
s

2 ≤ E
∫ T

0
(uε

s − us)K(s + ε, s)dWs

2 + E
∫ T

0
(uε

s − us)ϕ
ε
s ds

2
≤

∫ T

0
E(uε

s − us)
2K 2(s + ε, s)ds + ε2−2H+2δ

∫ T

0
E

K 2(ω)ϕε
s

2 ds. (3.9)

It is obvious that the first term in the right-hand side of (3.9) converges to zero in L2(Ω) because E(uε
s − us)

2
≤

E[K 4(ω)]ε2−2H+2δ and K(s + ε, s) → K(s, s) = 0 as ε → 0.
Applying the Hölder and the Burkholder–Davis–Gundy inequalities we have

E
K 2(ω)ϕε

s

2 ≤

E|K(ω)|8

1/2E|

∫ s

0
∂1K(s + ε, u)dWu|

4
1/2

≤ C
∫ s

0
|∂1K(s + ε, u)|2du,

where C is a finite constant. We recall that

∂1K(t, s) =


CH

tH−
1
2

sH−
1
2
(t − s)H−

3
2 ifWH

t = WH,(1)
t ,

H −
1
2


(t − s)H−

3
2 ifWH

t = WH,(2)
t .

There exists C ′ not depending on ε such that

E
K 2(ω)ϕε

s

2 ≤ C ′

∫ s

0
(s + ε − u)2H−3du =

C ′

2 − 2H
[ε2H−2

− (s + ε)2H−2
],

and so the second term in the right-hand side of (3.9) converges to zero in L2(Ω).
Finally, we prove that the third term in the right-hand side of (3.4) converges to 0.∫ T

0
uε
sd(W

H,ε
s − WH

s ) =

n−
i=1

uti−1(W
H,ε
ti − WH

ti − WH,ε
ti−1

+ WH
ti−1

) + uT (W
H,ε
T − WH

T )

=

n−
i=1

(uti−1 − uti)(W
H,ε
ti − WH

ti ) + uT (W
H,ε
T − WH

T ). (3.10)
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It is obvious that uT (W
H,ε
T − WH

T )
L2(Ω)
−−−→ 0 becauseWH,ε

T
L2(Ω)
−−−→ WH

T . Moreover, we have n−
i=1

(uti−1 − uti)(W
H,ε
ti − WH

ti )

 ≤ K 2(ω)

n−
i=1

|ti−1 − ti|1−H+δ
|WH,ε

ti − WH
ti |, (3.11)

and

E
n−

i=1

|ti−1 − ti|1−H+δ
|WH,ε

ti − WH
ti | ≤

n−
i=1

|ti−1 − ti|1−H+δ


E|WH,ε

ti − WH
ti |

2
 1

2

≤

n−
i=1


T
n

1−H+δ

εH

≤

n−
i=1

ε1−H+δεH

=

[
T
ε

+ 1
]

ε1+δ
→ 0 when ε → 0. (3.12)

Thus, the proof of the theorem is complete. �

Remark 3.1. Another approximation approach is given by Androshchuk [12] who proved that for a stochastic process
u ∈ C2−2H+δ

[0, T ] ⊂ C1−H+δ
[0, T ] a.s. the fractional stochastic integral can be approximated by integrals with respect

to absolutely continuous processes. More applications to finance is introduced by Mishura [13].

4. Applications to fractional Black–Scholes model

Theorem 4.1. Suppose that H ∈ (0, 1). For fixed ε > 0, the approximation models (1.3) and (1.7) has no arbitrage.

Proof. Using (2.1) we can rewrite (1.7) as follows

dSε
t = (µ + σϕε

s )S
ε
t dt + σK(t + ε, t)Sε

t dWt; S0 > 0. (4.1)

From [14, Theorem 12.1.8] we have only to prove that the stochastic process

u(t, ω) :=
µ + σϕε

t − r
σK(t + ε, t)

satisfies the Novikov’s condition

E
[
exp


1
2

∫ T

0
u2(t, ω)dt

]
< ∞.

The latest inequality holds obviously because ϕε
t =

 t
0 ∂1K(t + ε, u)dWu is a Gaussian process with finite variance.

Thus, the proof of the theorem is complete. �

A strategy in this model is a pair of adapted stochastic processes π = (αt , βt), where the processes αt and βt denote the
number of bonds at time t and number of stock shares held at time t , respectively. Thus, the corresponding wealth process
is given by

Vt = αtBt + βtSt ,

where Bt and St are the bond price and stock price at time t , respectively.
We make the following assumptions about the strategy π :

(A1) π is a self-financing strategy, i.e.

Vt = V0 +

∫ t

0
αsdBs +

∫ t

0
βsdSs

where the second integral in the right-hand side is a pathwise integral.
(A2) π is a strategy of the following form (Markov-type strategy)

αt = α(t, St), βt = β(t, St).

Next, we will prove that in the class of the Markov-type strategies the wealth process can be considered as a limit of
semimartingales. Indeed, we have

V ε
t = α(t, Sε

t )Bt + β(t, Sε
t )S

ε
t
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or equivalently,

V ε
t = V0 +

∫ t

0
α(s, Sε

s )dBs +

∫ t

0
β(s, Sε

s )dS
ε
s

= V0 +

∫ t

0


α(s, Sε

s )rBs + µβ(s, Sε
s )S

ε
s


ds +

∫ t

0
σβ(s, Sε

s )S
ε
s dW

H,ε
s .

From the semimartingale decomposition (2.1) we obtain

V ε
t = V0 +

∫ t

0


rα(s, Sε

s )Bs + µβ(s, Sε
s )S

ε
s + σϕε

s β(s, Sε
s )S

ε
s


ds +

∫ t

0
σK(s + ε, s)β(s, Sε

s )S
ε
s dWs (4.2)

which means that V ε
t is a semimartingale.

Theorem 4.2. Let H > 1
2 and assume that the self-financing, Markov-type strategy π satisfies the following conditions with

some constants δ1, δ2, δ3 > 0

(C1) |α(t, x) − α(t, y)| ≤ M|x − y|δ1 ∀x, y ∈ R ∀t ∈ [0, T ].
(C2) |β(t, x) − β(s, x)| ≤ M|t − s|

1
2 +δ2 ∀x ∈ R ∀t, s ∈ [0, T ].

(C3) β(t, x) is a differentiable function in x and

|β ′

x(t, x)| ≤ M(1 + |x|δ3) ∀x ∈ R.

Then V ε
t

P
−→ Vt as ε → 0 for any t ∈ [0, T ].

Proof. We have

Vt = V0 +

∫ t

0
α(s, Ss)dBs +

∫ t

0
β(s, Ss)dSs

= V0 +

∫ t

0


α(s, Ss)rBs + µβ(s, Ss)Ss


ds +

∫ t

0
σβ(s, Ss)SsdWH

s ,

V ε
t = V0 +

∫ t

0
α(s, Sε

s )dBs +

∫ t

0
β(s, Sε

s )dS
ε
s

= V0 +

∫ t

0


α(s, Sε

s )rBs + µβ(s, Sε
s )S

ε
s


ds +

∫ t

0
σβ(s, Sε

s )S
ε
s dW

H,ε
s .

Hence,

|V ε
t − Vt | ≤

∫ t

0

α(s, Sε
s ) − α(s, Ss)

 r ersds + µ

∫ t

0

β(s, Sε
s )S

ε
s − β(s, Ss)Ss

 ds
+

∫ t

0
σβ(s, Sε

s )S
ε
s dW

H,ε
s −

∫ t

0
σβ(s, Ss)SsdWH

s


:= I1 + I2 + I3. (4.3)

First, by using Hölder’s inequality and the condition (C1) we get

E[I21 ] ≤

∫ t

0
r2 e2rsds

∫ t

0
E|α(s, Sε

s ) − α(s, Ss)|2ds

≤
rM2(e2rT − 1)

2

∫ t

0
E|Sε

s − Ss|2δ1ds. (4.4)

Consequently, Corollary 2.1 implies that I1
L2(Ω)
−−−→ 0 when ε → 0.

Next, we prove that I2 also converges to 0 in L2(Ω). Indeed, put f (t, x) = β(t, x)x, uε
t = f (t, Sε

t ) and ut = f (t, St) then by
Hölder’s inequality we have

E|uε
t − ut |

2
≤ E


A(t, x)(Sε

t − St)
2

≤

E|A(t, x)|4

 1
2

E|Sε

t − St |4
 1
2 , (4.5)

where

A(t, x) := sup
min(Sε

t ,St )≤x≤max(Sε
t ,St )

∂ f (t, x)∂x

 .
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From Corollary 2.1 we have
E|Sε

t − St |4
 1
2 ≤ C(S0, T )ε4H−2

→ 0 (4.6)

uniformly in t ∈ [0, T ] as ε → 0. Therefore, we need only to prove that the first term in the right-hand side of (4.5) is finite.
Using the conditions (C2) and (C3) we have∂ f (t, x)∂x

 ≤ |β(t, x)| + |β ′

x(t, x)x|

≤ |β(0, x)| + Mt
1
2 +δ2 + M(|x| + |x|1+δ3).

Hence,

A(t, x) ≤ sup
min(Sε

t ,St )≤x≤max(Sε
t ,St )

(|β(0, x)| + Mt
1
2 +δ2 + M(|x| + |x|1+δ3))

≤ |β(0, S0)| + MT
1
2 +δ2 + M sup

min(Sε
t ,St )≤x≤max(Sε

t ,St )
(|x| + |x|1+δ3)

≤ |β(0, S0)| + MT
1
2 +δ2 + M sup

|x|≤Sε
t +St

(|x| + |x|1+δ3)

≤ |β(0, S0)| + MT
1
2 +δ2 + M(|Sε

t + St | + |Sε
t + St |1+δ3)

and the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) leads us to

E|A(t, x)|4 ≤ 27

(β(0, S0) + MT

1
2 +δ2)4 + M4E|Sε

t + St |4 + M4E|Sε
t + St |4(1+δ3)


.

Now it is enough to prove E|Sε
t + St |p < ∞ for any p > 1. We have

E|Sε
t + St |p ≤ 2p−1(E|Sε

t |
p
+ E|St |p)

≤ 2p−1Sp0


Eep(µt− 1

2 σ 2K(t+ε,t)+σWH,ε
t )

+ Eep(µt+σWH
t )


. (4.7)

Obviously, the right-hand side of (4.7) is bounded by a constant CT because WH,ε
t ,WH

t , t ∈ [0, T ] are centered Gaussian

processes with finite variances. Thus, uε
t

L2(Ω)
−−−→ ut uniformly in t ∈ [0, T ] when ε → 0 and

E|I2|2 = µ2E
∫ t

0
(uε

s − us)ds
2

≤ µ2T 2 sup
0≤s≤T

E|uε
s − us|

2
→ 0, ε → 0.

Finally, we show that I3
P
−→ 0 when ε → 0.

I3 =

∫ t

0
σuε

sdW
H,ε
s −

∫ t

0
σusdWH

s


≤

∫ t

0
σ(uε

s − us)dWH,ε
s

 +

∫ t

0
σusdWH,ε

s −

∫ t

0
σusdWH

s

 . (4.8)

Since St ∈ C
1
2

−

[0, T ] =


δ< 1
2
Cδ

[0, T ] and under the conditions (C2), (C3), the simple estimate

|ut − us| ≤ |β(t, St)St − β(s, St)St | + |β(s, St)St − β(s, Ss)Ss|

implies that ut ∈ C
1
2

−

[0, T ]. Hence, the convergence of the second term in the right-hand side of (4.8) to zero in probability
follows from Theorem 3.1. The first term converges to zero in probability because of Lemma 4.1. Indeed, we have from the
chain rule for Malliavin derivative

Dsut = Ds[β(t, St)St ] = [β ′

x(t, St)St + β(t, St)]Ds[S0eµt+σWH
t ]

= σ St [β ′

x(t, St)St + β(t, St)]K(t, s)

which implies that the condition (4.9) holds.
Thus, the proof of the theorem is complete. �
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Denote by D1,2
⊂ L2(Ω) the space of Malliavin differentiable variables with the norm

‖F‖1,2 :=

E|F |

2 1
2 + E

[∫ T

0
|DuF |

2du
] 1

2

.

Lemma 4.1. Suppose that H > 1
2 . Let u, u

ε
∈ D1,2 be adapted stochastic processes satisfying the condition∫ T

0

∫ t

0
|Dsut |∂1K(t, s)dsdt < ∞ a.s. (4.9)

If uε
t → ut ucp (uniform convergence in probability), that is ∀ t : |uε

t − ut | ≤ Cεγ a.s. with some γ > 0 then

lim
ε→0

∫ T

0
(uε

s − us)dWH,ε
s = 0 (4.10)

in probability.

Proof. From the decomposition (2.1) we have∫ T

0
(uε

s − us)dWH,ε
s =

∫ T

0
(uε

s − us)K(s + ε, s)dWs +

∫ T

0
(uε

s − us)

∫ s

0
∂1K(s + ε, t)dWtds.

Since limε→0
 s
0 ∂1K(s + ε, t)dWt does not exist, we cannot take the limit as ε → 0 directly. However, the anticipating

stochastic Fubini’s theorem (see Theorem 3.1 [15]) yields∫ T

0
(uε

s − us)dWH,ε
s =

∫ T

0
(uε

s − us)K(T + ε, s)dWs +

∫ T

0

∫ T

s
(uε

t − ut − uε
s + us)∂1K(s + ε, t)dtδWs

+

∫ T

0
dt

∫ t

0
Ds(uε

t − ut)∂1K(t + ε, s)ds

:= A1 + A2 + A3,

where DsF is the Malliavin derivative of variable F and δWs is the Skorokhod differential.
It is easy to see that A1, A2 → 0 because uε

t → ut ucp and the condition (4.9) is enough to ensure the convergence of A3
to zero.

Thus, the proof of the lemma is complete. �

Theorem 4.3. Suppose that H > 1
2 . Let C(t, Sε

t ) denote the value of a European call option at time t in the approximation (FB–S)
models (1.3), (1.7). Then the Black–Scholes equation is given by

1
2
σ 2K 2(t + ε, t)(Sε)2

∂2C
∂(Sε)2

+ r
∂C
∂Sε

Sε
+

∂C
∂t

− rC = 0 (4.11)

and as a consequence, the Black–Scholes equation in (FB–S) model is

r
∂C
∂S

S +
∂C
∂t

− rC = 0 (4.12)

which gives us the explicit formula for price of a European call option at time t = 0

C0 = (S0 − e−rTK)+. (4.13)

Proof. Using Itô’s differential formula, we get

dC =

[
∂C
∂t

+ (µ + σϕε
t )S

ε ∂C
∂Sε

+
1
2
σ 2K 2(t + ε, t)(Sε)2

∂2C
∂(Sε)2

]
dt + σK(t + ε, t)

∂C
∂Sε

SεdWt . (4.14)

We form a portfolio consisting of

• one unit of the option C ,
• a short position on ∂C

∂Sε units of the stock Sε and
• a debt of A(t, Sε) at the risk-free interest rate r .
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The value process R(t, Sε
t ) of this portfolio satisfies

dR = dC −
∂C
∂Sε

dSε
− Ar dt

=

[
∂C
∂t

+
1
2
σ 2K 2(t + ε, t)(Sε)2

∂2C
∂(Sε)2

− Ar
]
dt.

Now we choose

A =
1
r

[
∂C
∂t

+
1
2
σ 2K 2(t + ε, t)(Sε)2

∂2C
∂(Sε)2

]
then dR = 0. Obviously, the portfolio does not yield any return, hence its value itself must also be zero. This leads to the
Black–Scholes partial differential equation

1
2
σ 2K 2(t + ε, t)(Sε)2

∂2C
∂(Sε)2

+ r
∂C
∂Sε

Sε
+

∂C
∂t

− rC = 0 (4.15)

which has to be solved with respect to the boundary conditions
C(t, 0) = 0 ∀ t ∈ [0, T ],

C(T , Sε
T ) = (Sε

T − K)+.

Eq. (4.12) follows from (4.15) by taking the limit as ε → 0.
Thus, the proof of the theorem is complete. �

Remark 4.1. Eq. (4.15) holds for all H ∈ (0, 1) and in the case,WH
t = WH,(2)

t is LfBm, it becomes

1
2
σ 2ε2α(Sε)2

∂2C
∂(Sε)2

+ r
∂C
∂Sε

Sε
+

∂C
∂t

− rC = 0 (4.16)

and we get the price of a European call option

C0(ε) = S0N(d1) − e−rTKN(d2)

where d1 =

ln S0
K +


r+ σ2ε2α

2


T

σεα
√
T

, d2 =

ln S0
K +


r− σ2ε2α

2


T

σεα
√
T

and N(x) is the standard normal cumulative distribution function.

Obviously, for H =
1
2 , we get the well-known Black–Scholes pricing formula.
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