FRACTIONAL STOCHASTIC DIFFERENTIAL
EQUATIONS WITH APPLICATIONS TO FINANCE

NGUYEN TIEN DUNG

ABSTRACT. In this paper we use a definition of the fractional sto-
chastic integral given by Carmona et al. (2003) in [3] and de-
velop a simple approximation method to study quasi-linear sto-
chastic differential equations by fractional Brownian motion. We
also propose a stochastic process, namely fractional semimartin-
gale, to model for the noise driving in some financial models.
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1. INTRODUCTION

A fractional Brownian motion (fBm in sort) with Hurst index H €
(0,1) is a centered Gaussian process defined by

t
Bl = /f((t, s)dW,, (1.1)
0

where W is a standard Brownian motion and the kernel K(¢,s),t > s,
is given by

_ tH_% 1 1 UH_% 1
K(t,s):CH[ H_l(t—s)HZ—(H—ﬁ)/ (u—s)" 2dul| ,
S 2 2

o mH(2H—-1)
where Cy = \/F(272H)F(H+%)2sin(ﬂ-(Hfl))’
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In [20] Mandelbrot and Van Ness have given a representation of B
of the form:

B = ﬁ(zt + O/t(t - S)QdWs>a

where a = H — %, Zy is a stochastic process of absolutely continuous
t

trajectories, and W/ := [(t — s)*dW; is called a Liouville fBm. A
0
Liouville fBm shares many properties of a fBm except that it has non-

stationary increments (for example, see [17]). Moreover, Comte and
Renault in [5] have given an excellent application of Liouville fBm
to finance. Because of these reasons and for simplicity we use W}
throughout this paper.

The main difficulty in studying fractional stochastic calculus is that
we cannot apply stochastic calculus developed by It6 since fBm is nei-
ther a Markov process nor a semimartingale, except for H = % Re-
cently, there have been numerous attempts to define a stochastic inte-
gral with respect to fBm. The main approaches are the following ones
(refer [6, 21] for a detailed survey).

e The pathwise approach was introduced by Lin [18]. Since the tra-
jectories of the fBm are S-Holder continuous, § < H and by the work
of Young in [31], the pathwise Riemann-Stieltjes integral exists for any
integrand with sample paths y-Hoélder continuous with v+ H > 1. In
[24] Nualart and Ragcanu have studied stochastic differential equations
with respect to fBm with Hurst index H > 1/2.

e The regularization approach was introduced by Russo and Vallois in
27, 28] and further developed by Cheridito and Nualart in [4]. This
approach has been used by Nourdin in [22] to prove the existence and
uniqueness for stochastic differential equations and an approximation
scheme for all H € (0, 1).

e The Malliavin calculus approach was introduced by Decreusefond and
Ustiinel in [7] for fBm and extended to more general Gaussian processes
by Alos, Mazet, and Nualart in [1], Decreusefond in [8], etc. This
approach leads to some different definitions for the fractional stochastic
integrals such as the divergence integral, the Skorohod integral and the
Stratonovich integral. By using the Skorohod integral some stochastic
differential equations have been studied in [16, 23] for the case of linear
equations and in [15] for the case of quasi-linear equations.
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It is known that the study of the stochastic differential equations
(SDEs) depends on the definitions of the stochastic integrals involved.
One of the definitions of the fractional stochastic integrals is given
by Carmona, Coutin and Montseny in [3]. This kind of fractional
stochastic integral belongs to the third approach mentioned above and
turns out to be equal to the divergence integral plus a complementary
term (see Remark 18 in [6]). Thus it can be considered as a new
definition of fractional stochastic integrals and naturally, the theory of
SDEs needs studying independently.

In this paper we use Carmona, Coutin and Montseny’s definition
to study the SDEs driven by fractional Brownian motion. When the
integrand is deterministic, our fractional stochastic integral coincides
with the Wiener integral and SDEs of the form

dX, = b(t, X,)dt +o(t)dW}F | Xo = xo, (1.2)
have been studied by Mishura (Section 3.5 in [21]). As a new contri-

bution to (1.2), we will point out a way to find explicitly its solution.

More generally, our work deals with the following form of SDEs:
dX; = b(t, X;)dt + o(t) X dWH | Xy = 0. (1.3)

In order to prove the existence and uniqueness of the solution of equa-
tion (1.3) we make the following standard assumptions on coefficients:
The volatility o : [0,7] — R is a deterministic function on [0, T,
bounded by a constant M and the drift coefficient b : [0,7] x R — R
is a measurable function in all their arguments and satisfies the follow-
ing conditions, for a positive constant Ly :

(CY). b(t,x) is a continuously differentiable function in z and
[b(t, ) — b(t, y)| < Lolz —y| (1.4)
for all z,y e R, t € [0,T7;

(Cy). Linear growth
b(t,z)] < Lo(1+ |z|), Vx e R, YVt €|0,T]. (1.5)

Sine the equation (1.3) is an anticipate SDE, similar to the Brow-
nian case, the traditional methods cannot be applied. A method of
approximation equations has been introduced recently by Tran Hung
Thao (see [30] and the references therein) to solve simple linear SDEs
and then used by N.T. Dung to solve more complicated SDEs such
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as the fractional SDEs with polynomial drift [11] and the fractional
geometric mean-reversion equations [13]. We continue to develop this
method in current work with the main idea being that the existence
and uniqueness of the solution for the equation (1.3) can be proved via
an "approximation” equation, which is driven by semimartingales, and
that the limit in L?(Q) of approximation solution will be the solution
of (1.3). Thus, advantages of this method are that we can still use
classical Ito calculus and do not need any other fractional stochastic
calculus. Based on our obtained approximation results, we propose
a stochastic process, namely fractional semimartingale, to model for
noise driving in some financial models.

This paper is organized as follows: In Section 2, we recall the defini-
tion of fractional stochastic integral given in [3] and some moment in-
equalities for fractional stochastic integral of deterministic integrands.
Section 3 contains the main result of this paper which proved the exis-
tence and uniqueness of the solution of the equation (1.3). In Section
4, the European option pricing formula in the fractional semimatingale
Black-Scholes model is found and the optimal portfolio in a stochastic
drift model is investigated.

2. PRELIMINARIES

Let us recall some elements of stochastic calculus of variations.

For h € L*([0,T],R), we denote by W (h) the Wiener integral
T

W(h) = / h(t)dW,.

0

Let S denote the dense subset of L%(§2, F, P) consisting of those classes
of random variables of the form

F = f(W(h1), .y W(h»)), (2.1)

where n € N, f € C°(R", L*([0,T],R)), hy, ..., h, € L*([0,T],R). If F
has the form (2.1), we define its derivative as the process DV F :=
{DVF,t €10,T]} given by

DYF=Y" %(W(hl), oy W (h)) R (2).
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For any 1 < p < oo, we shall denote by ]D)‘l,g,p the closure of & with
respect to the norm

3=

\Flly = [EIFP]? +E{ / |D5VF|pdu] ,

and then Dy = ) Dy’

p>1

For every € > 0 we define
Wwie = /K(t +&,8)dWs,

where K (t,s) = (t — s)*.
It is well known from [30, 12] that W/™° is a semimartingale with
the following decomposition
¢
WHe = W, + /goids, (2.2)
0

where @2 = [ a(s+e—u)*1dW,,. Moreover, W% converges in L?(1),
0
p > 1 uniformly in ¢t € [0,7] to W ase —0:
E|W —WHP < ¢ et
It is well known from [3, 6] that for an adapted process f belonging

to the space D‘IA’E we have

t

/ﬂﬂW“ /ﬁ s+5@ﬂV+/ﬂﬁ@
/fS (t+¢,s)dW; +// — fs) W K (u+ e, s)dudWi

—l—//D?/fu(?lK(ujLe,s)dsdu, (2.3)
00
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where 0 K (u, s) = 2K (u, s) and the second integral in the right-hand
side is a Skorokhod integral (we refer the reader to [25] for more details
about the Skorohod integral).

Hypothesis (H): Assume that f is an adapted process belonging to
the space ID)%,[’,2 and that there exists § fulfilling 5 + H > 1/2 and
p > 1/H such that

. ) E[(fu—fs)2+f(DXVfu—DXVfS)2dr] ‘ '
(i) HfHL;f = sup (‘)U,s‘gﬂ is finite,

O<s<u<T

(ii) sup |fs| belongs to LP(£2).
0<s<T
t
For f € (H), [ fsdWZH* converges in L*(Q2) as € — 0. Each term in
0

the right-hand side of (2.3) converges to the same term where ¢ = 0.
Then, it is "natural” to define

Definition 2.1. Let f € (H). The fractional stochastic integral of f
with respect to W is defined by

/fdeH /fs (t,s)dWs —1—// — f5) 01 K (u, s)dud Wi

+/duO/D;/Vfu81K(u, s)ds, (2.4)

0

where K (t,s) = (t — s)*, 01K (t,s) = a(t — s)*L.

If f is a deterministic function in L# [0, 7] then our fractional sto-
chastic integral coincides with the Wiener integral with respect to fBm.
Indeed, we have

L::!ﬁmnﬁza!!Vuu—g%wwmg (2.5)

Proposition 2.1. Suppose that H > % Let f € L%[O,T] then for any
p > 0, there ezists a constant C(p, H) such that

Ellz[” < Clp, )| FI° (2.6)

LH 1)
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where I} = sup |I;]. Consequently,
0<t<T

Bexp(ri) < 2exp (VECull gy + 3OS, ), (2

LT 9

Proof. The inequality (2.6) was proved by Mishura in Theorem 1.10.3

21]. Denote v* = sup E[I?], then for any r > 4v/2D(T, 1) we have
0<t<T

P(I; >r) < 2(1—@(

r— 4v2D(T, %))), (2.8)

v

x —y2
where ®(z) = \/%7 [ e dy and D(T,%) is the Dudley integral (see,
[10]).

) 4V2D(T.3)
Eexp(I7) =1+ /e””P(I} > x)dr <1+ / e"P(I; > z)dz
0 0
T — 42D(T, 2
+ / Qex(l—é(x V2D 2)))dx
v
4v2D(T,%)
0 @/

< AV2D(T3) 4 2/6“4\/5[)(7”;) (1 L e_ziﬁdy> dx

0 —00

< eAVID(T.3) | 94V2D(T3) / e’ (L 6_2y2dy> dx
0 z/y

< VEP(T3) 4 9ptV2D(T3)( - ;> 2eVEIDT )Ty

e
Evidently,
2 2
P <RI,
Moreover, from the proof of Theorem 1.10.3 in [21] we know that
’y —
DT, ) < Callfl gy

Thus the proposition is proved. U
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Proposition 2.2. Suppose that H € (0,1). Let f be a bounded deter-
ministic function on [0,T] : |f(t)] < M ¥ t € [0,T]. Then the integral
process I; € CH7[0,T)= () C"0,T]a.s.

0<h<H

Proof. Since I; is a Gaussian process, I, € CH ™[0, T] follows from the
following inequality

B\l — L §0p</r(/t#du)2ds)
wp(/ ([ )

(/ / st) +Cp(r/t(s/t%du)2ds)g

<CMP(/ (t— )" — (r — 5)° ]2ds>g+CpMp(/t(t—s)2ads>g

0 r
t — T)2H

— C,MP(E|WH —WH?)? + CpMp(< 5 )

[NJiS)

NS

D
2

< Cp,MP(1 + |t —r|PH

Y

1
ey

where C), is a finite constant. In the above inequalities we used the
Burkholder-Davis-Gundy inequality and fundamental inequality (a +
b)P < c,(a?+0P), where ¢, = 1if 0 <p<landc,=2r"1ifp>1). O

3. FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS

In this whole section we consider only H > % Since the Malliavin

derivative DYV f, = 0 for any deterministic function f,, we have the
following definition.
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Definition 3.1. The solution of (1.3) is a stochastic process X; be-
longing to the space (H) and has a form for all ¢ € [0, T

t t

X, = Xo+ / b(s, X.)ds + / o () XK (2, 5) dIV,
+/t/t(a(u)Xu —0(s)Xs) O K (u, s)dudWi

t s
—i—//a(s)DZVXS 01K (s,u)duds. (3.1)
00

We can see that (3.1) contains the Skorokhod integral and the Malli-
avin derivative, so we cannot apply standard methods (for instance,
Picard iteration procedure) to prove the existence and uniqueness of
the solution. However, Definition 2.1 for the fractional stochastic inte-

gral leads us to consider the "approximation” equation corresponding
to (3.1)

t t

X =Xo+ [Ws XD+ [ o)Xt +2,5)dW,
0

+ 0/ S/(U(U)XZ —0(8) X)) K (u+e,s)dudWy

t s
+//U(S)Dyxgalf((s+a,u)duds, (3.2)
0 O

which can be reduced to
dXE = b(t, XE)dt + o() XFdW/* | X = . (3.3)

Note that the hypothesis (H) ensures the convergence of approximation

integrals to the fractional stochastic integrals. Hence, if both X} and

its L2—lin(1) X5 belong to (H) then we can take the limit of (3.2) ase — 0
E—

to get (3.1). Thus Lz—lir% X; will be the solution of (3.1).
E—

Theorem 3.1. Fiz ¢ > 0. The equation (3.3) has a unique solution
X¢ satisfying the hypothesis (H) and converging in L*(2) when e — 0.
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Proof. Existence and Uniqueness: By (2.2) we can rewrite (3.3) as
a classical It6 equation
dX; = [b(t, X]) + pio(t) X[|dt + %o () X;dW; , 0 <t <T. (3.4)
As a consequence, the explicit solution of (3.3) is given by
Z&
Xe =t
t }/;g ?
t t
where Y7 = exp (3% [ 0?(s)ds — [o(s)dWH<) € N C7[0,T] a.s.
0 0 0<vy<i
and Z; is the solution of the ordinary differential equation

ZE
dz; =Y;7b(t, Y—i)dt , 25 = XG5 = . (3.5)
¢
For P- almost all w € €, the function f(t,z,w) = Y7b(t, Y%) satisfies

global Lipschitzian condition in = € R. Hence, the equation (3.5) has
a unique solution Z; € C*[0,T]a.s., so (3.3) does.

Hypothesis (H): First, we show that X7 € Dy;? by using Theorem
2.2.1 in [25]. Since the stochastic process ¢f is not bounded we need
to introduce the increasing sequence of stopping times

t

v = inf{t € [0, 7] : /(goi)st >M}NT,
0
and consider the sequence of stopped equations corresponding to (3.4)

dth/\T]w = [b(t /\ TM’ th/\'f']\/[) _'_ Spi/\ﬂuo'(t /\ 7-]\4))(t8/\7']\4]dt

+ &% (t ATar) Xing,, dW: , 0 <t <T. (3.6)

It is easy to see that the coefficients of (3.6) are globally Lipschitz
functions with linear growth. Hence, X5, € D‘l,[’,oo C DII,[’,Q , and then by

AT M
taking limit M — oo and by closability of the Malliavin derivative we

obtain X; € ]D);{/OO. Moreover, b(t,z) is a continuously differentiable in
z, from Theorem 2.2.1 in [25] we know that D! X? solves the following
linear equation

t
DYX; = () X2 + [[(#(r.X7) + o)) DY X;

s
t

+ao(r)X:(r —s+¢e)* Ydr + & / o(r)DY X,.dW, (3.7)

s
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for s <t

The explicit solution of the above equation is given by
t
DYX; =03, (50‘0(3)X§ + / ao(r)X:(r—s +€)"_1(@§7T)_1dr) 1is<iy,
or equivalently
t
DYV X = (5“0(3))(5@;,5 + /aa(r)Xf(r —s+ 6)0‘_1@?15617“) 1is<sy,

where

t t

©f; = exp (/[b;(r, X:) — %520‘02(7“)]6# + /U(r)dWTHﬁ).

Next, we prove that X7 satisfies the condition (ii): Put

t t t

119 = /U(s) dWHe = / (80‘0(8)+/0(u) 0K (u+e,s)du)dWs,

0 0 s

¢ t ot
I = /0(8) dWH = //a(u) 01 K (u, s)dudWs.
0 0 s

Then It(s) — I; uniformly in ¢ € [0,7] as ¢ — 0 since ]t(g),[t are
Gaussian processes and

t

p/2
E|IIP — L < Cp(/ezaaz(s)ds)

0

+Op{ ] ( ] aa(u)[(u—s—i—s)a_l—(u—s)a_l]du)st}p/Q < C,MPeh™

s
t

* CPMP{ / ((t —8) = (t—s+e)*+ e“)st}p/g

< C,MP(1 +2TP%)eP>, (3.8)
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Hence, from (2.7), E exp( sup | pI® |) is bounded for small enough val-
0<t<T

ues of . We have for all p > 1

t t

E| sup Y|P < Eexp{ sup (8520‘/02(5)615—p/a(s)de’e)}
0<t<T o<t<T \ 2 9 0

T
< exp (5620‘/ *(s )dS)EeXP( sup [pI7]) < O 4 < o,

0<t<T
where C’ g is a constant depending only on p, H,T. Similarly,

E| sup —p <) 3.9
|0<£TY| p,HT" (3.9)

From (3.5) and by assumption (1.5) we get

u
(3

Z
Z;i =29 + /Yab( Y;Sa)d87
0

t

t
ZE ZE
sup |Z;| < |Jfo|+/|Y§b(v,—s)|d8§ |$o|+/ sup [Y;b(s, 72)|ds,
0<u<t Yy 0<u<s Y

0 0

t

E(sup |ZZ])P < 207wl + 2p_1L8/E( sup Y+ Z:|)Pds
0<u<t 0<u<s
0

t

<2 Yool + 07118 [ 1B sup VE)? -+ B sup |Z2]lds
0<u<s 0<u<s
0
An application of Gronwall’s Lemma to the latest inequality yields
E( sup |Z2)P < (2P Maol? + 4P LET e, e M7 = O 1. (3.10)
0<u<t

We now combine (3.9) and (3.10) to get

E(sup |X[|)P < {E Sup |Za|)2pE ( sup |YE 2’)}

0<u<t 0<u<t
1) 3
= {CQ(p HTC2(p HT} C;S,I){,T' (3.11)
Finally, we prove that X} satisfies the condition (i):
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t
Since /,(t, x) is bounded and ©%, = exp ([ b, (r, Xe)) = we get

S

E( sup @i’t)p<oo.

0<s<t<T

Then using the inequality (3.12) below we can see that there exists a
constant Cz()le)LT depending only on p, H, T such that

E|©° P < O it — 6P, Vit € 0,7,

sita St1
E|DYX; — DV X;|?
< Ele0(s)XE(08

s,to

@i t1>’
t1
+ F /aa(r)Xf(r — s+ E)Q_l(@i o — O5 tl)d

S
)

+FE /oza(r)Xf(r—s+6)o‘ 'es,,dr

t1

2
= Al +A2 +A3.

It is easy to see that A; < OS,)T’tl — to| , Vi1,t2 € [0,7T]. Applying

Holder’s inequality to py = 2=% € (1, =), q1 =

p1—1

t1
Ay < (/(r—s—l—a)plapld?“) ‘/ ao(r) X ( @itQ—@itl))

S

t1 2

< (/(r—3+6)p1°‘p1dr)p /Eyaa( X602, — ©°, )|dr

< Ofplty — tal.
Similarly, we have also Az < C}g’)T\tl — t3|. Thus,
E|DWX5 — DV X2 < OWplts —tal.

Since X} = it is easy to show that

YE’
E|X;, - X" < Ciylts — tal.
Consequently, if we choose 8 such that % —H<p< % then

||XE||21 s < Cl(qlgz sup |t2 — t1‘1—2,8 < OQ.
0<t1<teo<T
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Convergence: Let X;, Xy be two random variables. By Lagrange’s
theorem and Holder’s inequality we have

Ele® — 2P < Bl(X) — X)) sup e”|P
min(X1,X2)<z<max(X1,X2)

=

< E’(Xl _ X2>6|X1\+|X2|’p < (E[€2p|X1| + €2p|X2|]E’X1 . X2’2p) )
(3.12)

t
We now put V; = exp ( — [o(s)dWH) and apply (3.12) to X; =
0

¢ ¢ ¢
122 [o%(s)ds — [o(s)dWHe, Xy = — [o(s)dWH to get
0 0 0

2
ElYy -y < (E[e2p|X1| +ePRNEIX — X2|2p) : (3.13)

It is obvious that E[e2X1l + ¢2IX2l] ig finite because I.” and I, are
centered Gaussian processes with finite variances in [0, T]. Moreover,
by the fundamental inequality (a + b)? < c¢,(a? + b?), where ¢, = 1 if
O<p<lande,=2"tifp>1

t
. 1
E|X) = X|* < ¢5,[ B} )—It|2p+@541’&(/0—2(3)%)2’”} < Cee,

' (3.14)

where C'is a finite constant. Consequently, Y7 — Y; in LP(Q2) as ¢ — 0.

We consider p
dZ, = Yb(t, ?t)dt . Zy = 0. (3.15)

¢
For P- almost all w € €, the function f(t,z,w) = Yib(t, i) satisfies
the global Lipschitzian condition in = € R. Hence, the equation (3.15)

has a unique solution Z, € C*(0, T|. Moreover, Z¢ LN Z,; uniformly
in t € [0,7]. Indeed, we have

t

7c Z
E\Z — 7 < / EIYZb(s, $2) — Yibls, 52 )ds

0

t
€

A% Z

< € Sy 5\12 ]

< Q/E[YS b(s, _Y,j) Y,b(s, v )]“ds (3.16)
0
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t

7 o
19 / BIY(s, £2) = Yibls. 1)

t
€

0
t
Zs Zs\p2 2 2
<2 [ E[Y:b(s, F> — Ysb(s, 7)] ds+2L; | E|\Z; — Z|“ds
0 ° ’ 0

t
= Ay +2L2 / E|Z¢ — Z,)?ds.

0

By the assumptions (1.4), (1.5) we have

Zs Ze e
Yb(s, Y—) — Y.b(s, 7:)| < |(YE = Ya)b(s, 7z)|
c Z3 Z; . VA3
Y7 (0(s, 32) = bls, oI < Lol (Y7 = Y)(37 + 1)
el 48
+ LolY; (Y—Sg - 75)\,

2
which means that A4 RSN uniformly in ¢ € [0,77]. As a consequence,

2
the fact that Z; LN Z; uniformly in ¢ € [0, 7] follows from (3.16)

and by the Gronwall’s Lemma.
z L*(Q)
Now we put X; = = then X; —— X; as ¢ — 0. We note also X; €

CH7[0,T] because Y; € CH[0,T] (this fact follows from Proposition
2.2) and Z; € C'[0,T] a.s.

The Theorem thus is proved. O

By taking limit when € — 0, the main result of this section is for-
mulated in the theorem given below.

Theorem 3.2. The fractional stochastic differential equation (1.3) has
a solution which is given by

X, = —
t Yt?

(3.17)
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t

where Y; = exp ( — fa(s)dWsH) and Z; is the unique solution of the
0

ordinary differential equation

Z
dZ, = Yb(t, ?t)dt . Zo = 0. (3.18)

t
Moreover, X, € CH7[0, T] N Dy and

t

DZVXt = (/aa(r)XT(r — s)a_1®r7tdr) li<y,

s

t t
where Oy, = exp (fb;(r, X, )dr + fa(r)dWrH).

Proof. By using similar estimates as above we can see that X; defined
by (3.17) satisfies the hypothesis (H) and then we can take the limit
of both sides of (3.2) when € — 0, each term in the right-hand side
converges to the same term where € = 0. So X; solves (1.3). O

Example: The solution of the fractional Black-Scholes equation of the
form

dX; = b(t) Xydt + o(t) X, dWE | Xo = 0,

X, = zpexp (/tb(s)der/ta(s)de).

Remark 3.1. We now turn our attention to the the equation (1.2) men-
tioned in Introduction:

is given by

dX; = b(t, X;)dt + o(t)dWH | Xy = w0, (3.19)

where o (t) is a deterministic function and b is Lipschitz continuous and
satisfies the linear growth condition. The existence and uniqueness of
the solution of (3.19) were discussed by Mishura (see Section 3.5 in

21]).
Consider the approximation equations corresponding to (3.19).

dX; = b(t, X7)dt + o(t)dWe | X5 = . (3.20)
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By Gronwall’s lemma it is obvious that X{ — X; in L*(Q2) as € — 0
since the definition of our fractional stochastic integral and

t t 9

E|X:— X, ]* < 2L3/E|X§ - Xs\2ds+2E‘ /U(s)d(WfI’E —wh| .
0

0

Thus our approximate method works for all H € (0,1). This gives
us the following scheme to solve (3.19):

Step 1: Solving (3.20) by using the classical 1t6 differential formula.

Step 2: Taking limit of the solution found in Step 1 in L*() as € — 0
to get the solution of (3.19).

We illustrate this scheme by finding the solution for the equation
with nonlinear drift of the form

dX; = (e“** + b)dt + odW/} | X, = xy, (3.21)

where b, ¢, 0, o are real constants and ¢ # 0. The approximation equa-
tion corresponding to (3.21) is

dX: = (eXF +b)dt + odW/[* | X = x,
or equivalently,

dXE = (e + b+ op)dt + oe®dW,.
An application of the classical Ito differential formula to Y := e=<%¢
yields

1
YP = ((50202820‘ —be — ;)Y — o)dt — coe®Y dW,. (3.22)
The equation (3.22) is a linear SDE and its solution is given by

t

Y = exp(—bet — oW/ — cxy) <1 — / cexp(cxo+ bes + UCWSH’E)CZS) :

As a consequence,
t
1
X:=bt+ oW/ + 25— =In (1 — c/exp(cxo + bes + ocVVE,,H’E)ds>7
c
0
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and then the solution of (3.21) is
t
1
X, =bt+oWH + 20— -In (1 — c/exp(cxo + bes + acWSH)ds>.
c
0

4. APPLICATIONS TO FINANCE

It is known that fBm with Hurst index H # % is a Gaussian process
that has a memory. More precisely, let py(n) := E(WH(WHE, —WH)),
then (see, [20])

pu(n) ~ H2H — 1)n*~? as n — co.
Thus, if H > £, then > py(n) = oo and according to Beran’s definition

2], fBm is called a long-memory process. If H < 1, then > py(n) < oo

and fBm is called a short-memory process.

The long-memory property makes fBm as a potential candidate to
model for noise in a variety of models (for a survey on theory and ap-
plications of long memory processes, see [9]). However, one has found
that models driven by fBm are difficult to study because of the non-
semimartingale property of fBm, as well as the complexity of the frac-
tional stochastic calculus. In order to avoid this difficult, it would be
desirable to find a long-memory process that has semimartingale prop-
erty. The Proposition 4.1 below implies that VVtH’E is such a process.

Proposition 4.1. W< has long-memory if H > L and has short-

2
memory if H < %

Proof. Consider the auto-variance functions py . (n) := E(W}" ’s(Wfﬁ—

WHe)) n > 1. By 1t6 isometry formula we have

pre(n) = /(1 —s+e)¥n+1—s+¢)*—(n—s+e)ds

0
€

_ /(1 +5)[(n+ 1+ 5)° — (n+ 5)ds.

e—1
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We now apply the Mean Value Theorem and then Lagrange’s theorem
to obtain

pre(n) = (1450)*[(n+ 1+ 50)* = (n + 50)°]
= a1+ 89)%(so + 0)>7L,
where sp € (¢ — 1,¢) and 0 € (n,n + 1).
Consequently,
pr-(n) ~ a(l+ s9)*n*!
which implies that Y- py.(n) =ccif o = H — 3 >0 and > py.(n) <

as n — 0o,

oo if @ < 0.

The Proposition thus is proved. 0

Since W, "¢ is a semimartingale and, similar to fBm, has long mem-
ory, we suggest the name ”fractional semimartingale” for W, .

Definition 4.1. The stochastic process WtH’E defined by

t

1
WtHv‘f:/(t_3+g)adWS ,a:H—E
0

is called a fractional semimartingale with two parameters (H,e) €
(0,1) x (0, 00).

A fractional semimartingale W, contrarily to fBm, is not a self-
similar process and has non-stationary increments. However, a sim-
ulation example in Plienpanich et al. [26] has showed a significant
reduction of error in a stock price model driven by V[/'tH’E as compared
to the classical stock price model. This result means that W, from
empirical point of view, seems to be the potential candidate to model
for noise in mathematical finance. In the remaining of this paper, let
us study two models driven by fractional semimartingale.

4.1. The Black-Scholes model. We consider the Black-Scholes modelll
with fractional noise that contains a stock .S; and a bond B;.

Bond price:
dBt = ’I"Btdt, BO =1 (41)

Stock price:
dS, = pSdt + o S;dWh (4.2)
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where Sy is a positive real number, the coefficients r, u, o are assumed
to be constants symbolizing the riskless interest rate, the drift of the
stock and its volatility, respectively. Then, from Theorem 3.2 we have

S; = Spexp (,wf + UWQH) , B, =¢€".

It is obvious that S; € C#7[0,T] and this implies that the fractional
stochastic integral can be understood as Riemann-Stieltjes integral. As
a consequence, our fractional Black-Scholes model admits an arbitrage
opportunity (see, for instance, [29]) and we cannot use the traditional
method to find the price of a European call option. However, for the
Black-Scholes model with fractional semimartingale noise we have a
surprising result in the following.

Theorem 4.1. Consider the fractional semimartingale Black-Scholes
model containing a bond (4.1) and a stock Sg

dS; = pSedt + oSEdW | S5 = S, (4.3)

Then this model has no arbitrage and is complete. The Furopean call
option price at time t = 0 is given by

CQ(S) = S()N(dl) — eirTKN(dg), (44)
. . . . . In ®+(r+7‘7252a )T
where where K is trike price at maturity time T, d = —£& s ﬁ2 ,
s o220 x 2
dy = ln%tg;ﬁQ T and N(z)= \/LQ? J e~z dt.
Proof. Refer to [12, Theorem 4.1 and Remark 4.1]. O

4.2. Optimal portfolio. Let (Q,F,P,F = {F;,0 <t < T}) be a
complete filtered probability space. Suppose that we observe contin-
uously a single security with the price process {S;;0 < ¢t < T} which
follows the equation

dS; = Sy(pdt + ocdW ™), (4.5)

where ¢ and initial price Sy are known positive constants, but the drift
coefficient is an unobserved mean-reverting process with the dynamics

dpy = Bugdt + vdwj>=2, (4.6)

where 3, are unknown real constants, the initial condition pug is a
Gaussian random variable and independent of (WHuet J1/Hze2),

We assume the Brownian motions W i = 1,2 are independent, so
do WHisi i = 1,2. We shall denote by F° = {F°,0 <t < T} the
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P-augmentation of the filtration generated by the price process S. A
portfolio is an R-valued F*°-adapted process m = {m;,0 <t < T} such

that
T

/Wfdt < 00 a.s.
0

We regard 7; as the number of shares invested in the stock at time t.
Given an initial wealth « > 0, the wealth process corresponding to a
self-financing portfolio 7 is defined by X;" = z and

dthJr = Wtdst.
We denote by A(x) the set of admissible portfolios 7 such that
X/ ">0as., 0<t<T.

and consider the following expected logarithmic utility maximization
problem from terminal wealth over the class A(x) :

Ellog(X%™)]. 47
max, [log(X7™)] (4.7)

Theorem 4.2. There exists an optimal portfolio 7* = {n},0 <t < T}
for the utility maximization problem (4.7):

. (1)
W:ZM,OStST, (4.8)
Sty

where

t t
) I I
L; = exp ( = / (fis + opM)dl — o5 [ (s + owil))2d5>,
0 0

where fis = Eu,| FE), o = Elpl"|FS).
The optimal wealth process corresponding to 7 s given by

* * *S
X7 :Ai,Xt“ :”t—t(l),ogth. (4.9)
Lr i+ opy

Proof. From the decomposition (2.2), Eq.(4.5) can be rewritten as fol-
lows

dS; = Sy(pe + crcpgl))dt + aStei{l_ith(l),
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t .
where gp,gl) = [(Hi—3)(t+e— w)M=2dW, and we can use usual Itd

0
calculus to find its solution

t
1
Sy = Spexp (/(,us - éazelefl)ds + aWtHl’“). (4.10)
0

Denote by U = {U;,0 < t < T} the stochastic process defined by
t t

U= /usds +owie = oWV + /(us + apM)ds (4.11)
0 0

then F° = FU and we can consider U as the observation process
standing for .S.

As in [19, Theorem 7.16] we define the innovation process [ =
t
1 i+ oo
Iy = ;[Ut — | (fis + 0@ ds].
0

I is a FY-standard Brownian motion satisfying F! = FU.

We can see that the following stochastic process is a F-martingale

t t

1 1

Ly := exp ( - /(us + o)W — o /(us - wé”)zds)
0 0

t
1 1
= exp ( = /(us +opl)dU, + /(us + wg”)ZdS). (4.12)
0 0

We take the conditional expectation on both two sides of (4.12) with
respect to FU and obtain

t t

. 1 ) ) 1 . .

L; = exp < - /(us + oAU, + — [ (15 + agogl))%ls)
0

202

t t

1 R . 1 . R
—op (= 2 [ oot~ o [+ oeias). @)
0 0
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Applying the Ito formula we can see that ﬁtXf ™ is a local martingale.
Moreover, for z > 0 and 7 € A(z) we have X;”" > 0, whence L;X;""

is an FU-supermartingale.

Now using a simple inequality that log(u) —uv < log % —1,Vuv>0
we obtain the inequality below for all y > 0

E[log(Xy™)] < B[log(X§") — yLrX§™] + ya

1

< E[log( —) — 11 +yz. (4.14)
yLr

The equalities in (4.14) hold if and only if

X7T = ° as. (4.15)

Ly

Thus the strategy 7 satisfying (4.15) is optimal.

From (4.13) we have

N A(1) N A (1)
gL = it ops) e 2l + 0P ho
Lt Lt StLt

hence, if we put

then dX;™" = m;dS; = d+. This yields

X0 = 0<t<T
Ly

because X;" =x = £.
Lo

In particular, 7* satisfies (4.15) and it is the desired optimal strategy.

The proof is thus complete. 0
At the end of this paper, we put Z, = (p, gpgl)) and our aim is to

compute the optimal filter 7, = (/lt,gbgl)) appeared in Theorem 4.2.
First, in our filtering problem the dynamics of observation U and state
process p are given by, respectively

dUt = ,Utdt + O—thHhEl,
dpy = Bugdt + vdw =2,
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The error matrix P(t, s) is defined by
P(t,s)=E[Z(Z,— Z,)7], 0<s <t <T.

Theorem 4.3. The optimal filter Z, = (fu, @ﬁ”) satisfies the stochastic
integral equation
t

- 1
Zt:;
0

[P(t,s) + D(t,s)] aldU, — a™ Zyds], 0 <t <T, (4.16)

where a = (1,0)7, T denotes the transposition and

D(t,s) = ( o(Hy — b)(t 2 s+ e)3 8 ) '

The error matriz P(t,s) is the solution of the following Riccati-type
equation

S

P(t,s) = ) /[P(t,u) + D(t,u)laa™[P(s,u) + D(s,u)]"du

—f-rzz(t,S), 0 S S S t S T, (417)
where U z4(t,s) = E[Z, Z7].

Proof. We have

¢
Uy = /(Us + 09021))033 + UWt(l)
0

and the associated innovation process {I;,0 < t < T} is given by
t

1 . .
I, = - U, — /(us + opM)ds], (4.18)
0

and is a FY-standard Brownian motion satisfying 7!/ = FV. For con-
venience, we rewrite [; in the matrix form:
t

=1 / (Zy — Zy)"ads + WV,
73
Since the Brownian motions WM W® are independent, the system
(Z,U) = (u,oM,U) is Gaussian. Hence, the optimal filter Z is a
linear function of the observation process {Us, 0 < s < ¢} and it is also

a Gaussian system. By [19, Theorem 5.6], there exists a deterministic
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Volterra function F(t,s) = (Fi(t,s), F5(t,s)) on 0 < s <t < T such
that

t
/|F(t,s)|2ds<oo, 0<t<T,
0

t
Z = /F(t,s)dls, 0<t<T. (4.19)
0
Now from (4.19) we can find the function F'(t, s) as follows
F(t,s) = iE(ZJ) = iE(ZI)
yS) = ds tts) — ds tls

S

_d (l /E[Zt(Zu — Zu))adu + E[Zth(l)]>

ds\ o
0
1 1 Hi—3\r
= ;P(t,s)a+(0,(H1 —§)<t—3+51) ! 2)
1
= —[P(t,s) + D(t, s)] a.
o
Thus we have
. t
7, =~ /[P(t, s)+ D(t,s)]adl;, 0<t<T, (4.20)
o
0

and the filtering equation (4.16) follows from (4.18).
From the definition of the error matrix we have
P(t,s) = E[2,2T] — E[2,Z7],
hence the equation (4.17) follows from (4.20) and It6 isometry formula.

We give an explicit computation of I'z4(¢,s),0 < s <t < T. We

have
Elpups) E[#twgl)]
FZZ (ta 8) = .
Ele"u) Blpt el
We recall from [14, Proposition 4.2] that

t t
_1
e = poe’t + 1/852 ? /eﬁ(t_s)de) + V/e'g(t_s)gof)ds.
0 0
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Applying stochastic Fubini’s theorem we have

t

t s
1 .
/eﬂ(ts)gpf)ds = //(H2 — §)eﬁ(t’s)(s — U+ £9) 2 dW D ds
0 00

t ot
1
= //(H2 — 5)65“_5)(3 —u+ 82)H2_%d8dW1£2).
0 wu

Thus,
t
f1y = o€’ + / bt —u)dW?,
0
where

t
1 1
bt —u) = Vegb 2ePlimu) 4 1//(H2 — 5)660—5)(5 —u+ gz)m—gds

u

t—u

_1 1
= Pl (Vééb *+v /(HQ — 5)6_68(8 + 62)H2_%d5)~
0

As a consequence, we have

Eluupss] = ) B[2] + / b(t — w)b(s — w)du,
0

ElueD] = ElpMu, =0,
1), (1) 1 2 Hi—32 Hi -3
BV o) = (= 22 [ (6= ut e Hs —ut e b
0

d

When H, = Hy, = % and g = 0 we obtain the following corollary for
the classical Kalman-Bucy linear filtering problem.

Corollary 4.1. Consider the filtering problem with observation and
state process given by, respectively

AU, = pdt + cdW" | Uy =0,

dpy = Budt + vdW® | g = 0.
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Then the optimal filter fi; satisfies

— (¢ t
fiy = ﬁa—z()ﬂtdt + %dUt,
where the error ¥(t) = Elu(ue — fir)] is the solution of the Riccati
equation

dy(t) v* 28 1,

SR T 2P ) — AR,

Proof. 1t is obvious since D(t,s) =0 = gogl),

Poalt,s) = ( 5_2(65(”8)0‘ s 0 ) |
Pl - < Bl )] 0 ) |

where

Elui(ps — f15)) = E[Elpe| Fo) (s — )] = 2 (s).
O
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