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Abstract. In this paper we use a definition of the fractional sto-
chastic integral given by Carmona et al. (2003) in [3] and de-
velop a simple approximation method to study quasi-linear sto-
chastic differential equations by fractional Brownian motion. We
also propose a stochastic process, namely fractional semimartin-
gale, to model for the noise driving in some financial models.
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1. Introduction

A fractional Brownian motion (fBm in sort) with Hurst index H ∈
(0, 1) is a centered Gaussian process defined by

BH
t =

t∫
0

K̄(t, s)dWs , (1.1)

where W is a standard Brownian motion and the kernel K̄(t, s), t ≥ s,
is given by

K̄(t, s) = CH

[
tH−

1
2

sH−
1
2

(t− s)H−
1
2 − (H − 1

2
)

t∫
s

uH−
3
2

sH−
1
2

(u− s)H−
1
2du

]
,

where CH =
√

πH(2H−1)

Γ(2−2H)Γ(H+ 1
2

)2 sin(π(H− 1
2

))
.
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In [20] Mandelbrot and Van Ness have given a representation of BH
t

of the form:

BH
t =

1

Γ(1 + α)

(
Zt +

t∫
0

(t− s)αdWs

)
,

where α = H − 1
2
, Zt is a stochastic process of absolutely continuous

trajectories, and WH
t :=

t∫
0

(t − s)αdWs is called a Liouville fBm. A

Liouville fBm shares many properties of a fBm except that it has non-
stationary increments (for example, see [17]). Moreover, Comte and
Renault in [5] have given an excellent application of Liouville fBm
to finance. Because of these reasons and for simplicity we use WH

t

throughout this paper.

The main difficulty in studying fractional stochastic calculus is that
we cannot apply stochastic calculus developed by Itô since fBm is nei-
ther a Markov process nor a semimartingale, except for H = 1

2
. Re-

cently, there have been numerous attempts to define a stochastic inte-
gral with respect to fBm. The main approaches are the following ones
(refer [6, 21] for a detailed survey).

• The pathwise approach was introduced by Lin [18]. Since the tra-
jectories of the fBm are β-Hölder continuous, β < H and by the work
of Young in [31], the pathwise Riemann-Stieltjes integral exists for any
integrand with sample paths γ-Hölder continuous with γ + H > 1. In
[24] Nualart and Răşcanu have studied stochastic differential equations
with respect to fBm with Hurst index H > 1/2.

• The regularization approach was introduced by Russo and Vallois in
[27, 28] and further developed by Cheridito and Nualart in [4]. This
approach has been used by Nourdin in [22] to prove the existence and
uniqueness for stochastic differential equations and an approximation
scheme for all H ∈ (0, 1).

• The Malliavin calculus approach was introduced by Decreusefond and
Üstünel in [7] for fBm and extended to more general Gaussian processes
by Alos, Mazet, and Nualart in [1], Decreusefond in [8], etc. This
approach leads to some different definitions for the fractional stochastic
integrals such as the divergence integral, the Skorohod integral and the
Stratonovich integral. By using the Skorohod integral some stochastic
differential equations have been studied in [16, 23] for the case of linear
equations and in [15] for the case of quasi-linear equations.
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It is known that the study of the stochastic differential equations
(SDEs) depends on the definitions of the stochastic integrals involved.
One of the definitions of the fractional stochastic integrals is given
by Carmona, Coutin and Montseny in [3]. This kind of fractional
stochastic integral belongs to the third approach mentioned above and
turns out to be equal to the divergence integral plus a complementary
term (see Remark 18 in [6]). Thus it can be considered as a new
definition of fractional stochastic integrals and naturally, the theory of
SDEs needs studying independently.

In this paper we use Carmona, Coutin and Montseny’s definition
to study the SDEs driven by fractional Brownian motion. When the
integrand is deterministic, our fractional stochastic integral coincides
with the Wiener integral and SDEs of the form

dXt = b(t,Xt)dt+ σ(t)dWH
t , X0 = x0, (1.2)

have been studied by Mishura (Section 3.5 in [21]). As a new contri-
bution to (1.2), we will point out a way to find explicitly its solution.

More generally, our work deals with the following form of SDEs:

dXt = b(t,Xt)dt+ σ(t)XtdW
H
t , X0 = x0. (1.3)

In order to prove the existence and uniqueness of the solution of equa-
tion (1.3) we make the following standard assumptions on coefficients:
The volatility σ : [0, T ] −→ R is a deterministic function on [0, T ],
bounded by a constant M and the drift coefficient b : [0, T ]×R −→ R
is a measurable function in all their arguments and satisfies the follow-
ing conditions, for a positive constant L0 :

(C1). b(t, x) is a continuously differentiable function in x and

|b(t, x)− b(t, y)| ≤ L0|x− y| (1.4)

for all x, y ∈ R, t ∈ [0, T ];

(C2). Linear growth

|b(t, x)| ≤ L0(1 + |x|) , ∀ x ∈ R, ∀ t ∈ [0, T ]. (1.5)

Sine the equation (1.3) is an anticipate SDE, similar to the Brow-
nian case, the traditional methods cannot be applied. A method of
approximation equations has been introduced recently by Tran Hung
Thao (see [30] and the references therein) to solve simple linear SDEs
and then used by N.T. Dung to solve more complicated SDEs such
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as the fractional SDEs with polynomial drift [11] and the fractional
geometric mean-reversion equations [13]. We continue to develop this
method in current work with the main idea being that the existence
and uniqueness of the solution for the equation (1.3) can be proved via
an ”approximation” equation, which is driven by semimartingales, and
that the limit in L2(Ω) of approximation solution will be the solution
of (1.3). Thus, advantages of this method are that we can still use
classical Itô calculus and do not need any other fractional stochastic
calculus. Based on our obtained approximation results, we propose
a stochastic process, namely fractional semimartingale, to model for
noise driving in some financial models.

This paper is organized as follows: In Section 2, we recall the defini-
tion of fractional stochastic integral given in [3] and some moment in-
equalities for fractional stochastic integral of deterministic integrands.
Section 3 contains the main result of this paper which proved the exis-
tence and uniqueness of the solution of the equation (1.3). In Section
4, the European option pricing formula in the fractional semimatingale
Black-Scholes model is found and the optimal portfolio in a stochastic
drift model is investigated.

2. Preliminaries

Let us recall some elements of stochastic calculus of variations.

For h ∈ L2([0, T ],R), we denote by W (h) the Wiener integral

W (h) =

T∫
0

h(t)dWt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of those classes
of random variables of the form

F = f(W (h1), ...,W (hn)), (2.1)

where n ∈ N, f ∈ C∞b (Rn, L2([0, T ],R)), h1, ..., hn ∈ L2([0, T ],R). If F
has the form (2.1), we define its derivative as the process DWF :=
{DW

t F, t ∈ [0, T ]} given by

DW
t F =

n∑
k=1

∂f

∂xk
(W (h1), ...,W (hn))hk(t).
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For any 1 ≤ p < ∞, we shall denote by D1,p
W the closure of S with

respect to the norm

‖F‖1,p :=
[
E|F |p

] 1
p + E

[ T∫
0

|DW
u F |pdu

] 1
p

,

and then D1,∞
W =

⋂
p≥1

D1,p
W .

For every ε > 0 we define

WH,ε
t =

t∫
0

K(t+ ε, s)dWs,

where K(t, s) = (t− s)α.

It is well known from [30, 12] that WH,ε
t is a semimartingale with

the following decomposition

WH,ε
t = εαWt +

t∫
0

ϕεsds, (2.2)

where ϕεs =
s∫

0

α(s+ε−u)α−1dWu. Moreover, WH,ε
t converges in Lp(Ω),

p > 1 uniformly in t ∈ [0, T ] to WH
t as ε→ 0 :

E|WH,ε
t −WH

t |p ≤ cpε
pH .

It is well known from [3, 6] that for an adapted process f belonging
to the space D1,2

W we have

t∫
0

fs dW
H,ε
s =

t∫
0

fsK(s+ ε, s) dWs +

t∫
0

fsϕ
ε
sds

=

t∫
0

fsK(t+ ε, s) dWs +

t∫
0

t∫
s

(fu − fs) ∂1K(u+ ε, s)duδWs

+

t∫
0

u∫
0

DW
s fu ∂1K(u+ ε, s)dsdu , (2.3)
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where ∂1K(u, s) = ∂
∂u
K(u, s) and the second integral in the right-hand

side is a Skorokhod integral (we refer the reader to [25] for more details
about the Skorohod integral).

Hypothesis (H): Assume that f is an adapted process belonging to
the space D1,2

W and that there exists β fulfilling β + H > 1/2 and
p > 1/H such that

(i) ‖f‖2
L1,2
β

:= sup
0<s<u<T

E
[

(fu−fs)2+
T∫
0

(DWr fu−DWr fs)2dr
]

|u−s|2β is finite,

(ii) sup
0<s<T

|fs| belongs to Lp(Ω) .

For f ∈ (H),
t∫

0

fs dW
H,ε
s converges in L2(Ω) as ε→ 0. Each term in

the right-hand side of (2.3) converges to the same term where ε = 0.
Then, it is ”natural” to define

Definition 2.1. Let f ∈ (H). The fractional stochastic integral of f
with respect to WH is defined by

t∫
0

fs dW
H
s =

t∫
0

fsK(t, s) dWs +

t∫
0

t∫
s

(fu − fs) ∂1K(u, s)duδWs

+

t∫
0

du

u∫
0

DW
s fu ∂1K(u, s)ds , (2.4)

where K(t, s) = (t− s)α, ∂1K(t, s) = α(t− s)α−1.

If f is a deterministic function in L
1
H [0, T ] then our fractional sto-

chastic integral coincides with the Wiener integral with respect to fBm.
Indeed, we have

It :=

t∫
0

fsdW
H
s = α

t∫
0

t∫
s

fu(u− s)α−1dudWs. (2.5)

Proposition 2.1. Suppose that H > 1
2
. Let f ∈ L 1

H [0, T ] then for any
p > 0, there exists a constant C(p,H) such that

E|I∗T |p ≤ C(p,H)‖f‖p
L

1
H [0,T ]

, (2.6)
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where I∗T = sup
0≤t≤T

|It|. Consequently,

E exp(I∗T ) ≤ 2 exp

(
4
√

2CH‖f‖
L

1
H [0,T ]

+
1

2
C(2, H)‖f‖2

L
1
H [0,T ]

)
, (2.7)

where CH = 1
2
(C(2, H))

1
2H

∞∫
ln 2

z
1
2

ezdz
(ez−1)H+1 .

Proof. The inequality (2.6) was proved by Mishura in Theorem 1.10.3
[21]. Denote γ2 = sup

0≤t≤T
E[I2

t ], then for any r > 4
√

2D(T, γ
2
) we have

P (I∗T > r) ≤ 2

(
1− Φ

(r − 4
√

2D(T, γ
2
)

γ

))
, (2.8)

where Φ(x) = 1√
2π

x∫
−∞

e
−y2
2 dy and D(T, γ

2
) is the Dudley integral (see,

[10]).

E exp(I∗T ) = 1 +

∞∫
0

exP (I∗T > x)dx ≤ 1 +

4
√

2D(T, γ
2

)∫
0

exP (I∗T > x)dx

+

∞∫
4
√

2D(T, γ
2

)

2ex
(

1− Φ
(x− 4

√
2D(T, γ

2
)

γ

))
dx

≤ e4
√

2D(T, γ
2

) + 2

∞∫
0

ex+4
√

2D(T, γ
2

)

(
1− 1√

2π

x/γ∫
−∞

e
−y2
2 dy

)
dx

≤ e4
√

2D(T, γ
2

) + 2e4
√

2D(T, γ
2

)

∞∫
0

ex
(

1√
2π

∞∫
x/γ

e
−y2
2 dy

)
dx

≤ e4
√

2D(T, γ
2

) + 2e4
√

2D(T, γ
2

)(e
γ2

2 − 1

2
) = 2e4

√
2D(T, γ

2
)+ γ2

2 .

Evidently,
γ2 ≤ C(2, H)‖f‖2

L
1
H [0,T ]

.

Moreover, from the proof of Theorem 1.10.3 in [21] we know that

D(T,
γ

2
) ≤ CH‖f‖

L
1
H [0,T ]

,

Thus the proposition is proved. �
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Proposition 2.2. Suppose that H ∈ (0, 1). Let f be a bounded deter-
ministic function on [0, T ] : |f(t)| ≤ M ∀ t ∈ [0, T ]. Then the integral
process It ∈ CH−

[0, T ] =
⋂

0<h<H

Ch[0, T ] a.s.

Proof. Since It is a Gaussian process, It ∈ CH−
[0, T ] follows from the

following inequality

E|It − Ir|p ≤ Cp

( r∫
0

( t∫
r

αfu
(u− s)1−αdu

)2
ds

) p
2

+ Cp

( t∫
r

( t∫
s

αfu
(u− s)1−αdu

)2
ds

) p
2

≤ Cp

( r∫
0

( t∫
r

αM

(u− s)1−αdu
)2
ds

) p
2

+Cp

( t∫
r

( t∫
s

αM

(u− s)1−αdu
)2
ds

) p
2

≤ CpM
p

( r∫
0

[(t− s)α − (r − s)α]2 ds

) p
2

+ CpM
p

( t∫
r

(t− s)2α ds

) p
2

= CpM
p
(
E|WH

t −WH
r |2
) p

2 + CpM
p
((t− r)2H

2H

) p
2

≤ CpM
p(1 +

1

(2H)p/2
)|t− r|pH ,

where Cp is a finite constant. In the above inequalities we used the
Burkholder-Davis-Gundy inequality and fundamental inequality (a +
b)p ≤ cp(a

p+ bp), where cp = 1 if 0 < p ≤ 1 and cp = 2p−1 if p > 1). �

3. Fractional Stochastic Differential Equations

In this whole section we consider only H > 1
2
. Since the Malliavin

derivative DW
u fs = 0 for any deterministic function fs, we have the

following definition.
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Definition 3.1. The solution of (1.3) is a stochastic process Xt be-
longing to the space (H) and has a form for all t ∈ [0, T ]

Xt = X0 +

t∫
0

b(s,Xs)ds+

t∫
0

σ(s)XsK(t, s) dWs

+

t∫
0

t∫
s

(σ(u)Xu − σ(s)Xs) ∂1K(u, s)duδWs

+

t∫
0

s∫
0

σ(s)DW
u Xs ∂1K(s, u)duds . (3.1)

We can see that (3.1) contains the Skorokhod integral and the Malli-
avin derivative, so we cannot apply standard methods (for instance,
Picard iteration procedure) to prove the existence and uniqueness of
the solution. However, Definition 2.1 for the fractional stochastic inte-
gral leads us to consider the ”approximation” equation corresponding
to (3.1)

Xε
t = X0 +

t∫
0

b(s,Xε
s )ds+

t∫
0

σ(s)Xε
sK(t+ ε, s) dWs

+

t∫
0

t∫
s

(σ(u)Xε
u − σ(s)Xε

s ) ∂1K(u+ ε, s)duδWs

+

t∫
0

s∫
0

σ(s)DW
u X

ε
s ∂1K(s+ ε, u)duds , (3.2)

which can be reduced to

dXε
t = b(t,Xε

t )dt+ σ(t)Xε
t dW

H,ε
t , Xε

0 = x0. (3.3)

Note that the hypothesis (H) ensures the convergence of approximation
integrals to the fractional stochastic integrals. Hence, if both Xε

t and
its L2-lim

ε→0
Xε
t belong to (H) then we can take the limit of (3.2) as ε→ 0

to get (3.1). Thus L2-lim
ε→0

Xε
t will be the solution of (3.1).

Theorem 3.1. Fix ε > 0. The equation (3.3) has a unique solution
Xε
t satisfying the hypothesis (H) and converging in L2(Ω) when ε→ 0.
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Proof. Existence and Uniqueness: By (2.2) we can rewrite (3.3) as
a classical Itô equation

dXε
t = [b(t,Xε

t ) + ϕεtσ(t)Xε
t ]dt+ εασ(t)Xε

t dWt , 0 ≤ t ≤ T. (3.4)

As a consequence, the explicit solution of (3.3) is given by

Xε
t =

Zε
t

Y ε
t

,

where Y ε
t = exp

(
1
2
ε2α

t∫
0

σ2(s)ds −
t∫

0

σ(s)dWH,ε
s

)
∈

⋂
0<γ< 1

2

Cγ[0, T ] a.s.

and Zε
t is the solution of the ordinary differential equation

dZε
t = Y ε

t b(t,
Zε
t

Y ε
t

)dt , Zε
0 = Xε

0 = x0. (3.5)

For P - almost all ω ∈ Ω, the function f ε(t, x, ω) = Y ε
t b(t,

x
Y εt

) satisfies

global Lipschitzian condition in x ∈ R. Hence, the equation (3.5) has
a unique solution Zε

t ∈ C1[0, T ] a.s., so (3.3) does.

Hypothesis (H): First, we show that Xε
t ∈ D1,2

W by using Theorem
2.2.1 in [25]. Since the stochastic process ϕεt is not bounded we need
to introduce the increasing sequence of stopping times

τM = inf{t ∈ [0, T ] :

t∫
0

(ϕεs)
2ds > M} ∧ T ,

and consider the sequence of stopped equations corresponding to (3.4)

dXε
t∧τM = [b(t ∧ τM , Xε

t∧τM ) + ϕεt∧τMσ(t ∧ τM)Xε
t∧τM ]dt

+ εασ(t ∧ τM)Xε
t∧τMdWt , 0 ≤ t ≤ T. (3.6)

It is easy to see that the coefficients of (3.6) are globally Lipschitz
functions with linear growth. Hence, Xε

t∧τM ∈ D1,∞
W ⊂ D1,2

W , and then by
taking limit M →∞ and by closability of the Malliavin derivative we
obtain Xε

t ∈ D1,∞
W . Moreover, b(t, x) is a continuously differentiable in

x, from Theorem 2.2.1 in [25] we know that DW
s X

ε
t solves the following

linear equation

DW
s X

ε
t = εασ(s)Xε

s +

t∫
s

[(b′x(r,X
ε
r ) + σ(r)ϕεr)D

W
s X

ε
r

+ ασ(r)Xε
r (r − s+ ε)α−1]dr + εα

t∫
s

σ(r)DW
s XrdWr (3.7)
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for s ≤ t.

The explicit solution of the above equation is given by

DW
s X

ε
t = Θε

s,t

(
εασ(s)Xε

s +

t∫
s

ασ(r)Xε
r (r− s+ ε)α−1(Θε

s,r)
−1dr

)
1{s≤t},

or equivalently

DW
s X

ε
t =

(
εασ(s)Xε

sΘ
ε
s,t +

t∫
s

ασ(r)Xε
r (r − s+ ε)α−1Θε

r,tdr

)
1{s≤t},

where

Θε
s,t = exp

( t∫
s

[b′x(r,X
ε
r )−

1

2
ε2ασ2(r)]dr +

t∫
s

σ(r)dWH,ε
r

)
.

Next, we prove that Xε
t satisfies the condition (ii): Put

I
(ε)
t :=

t∫
0

σ(s) dWH,ε
s =

t∫
0

(
εασ(s) +

t∫
s

σ(u) ∂1K(u+ ε, s)du
)
dWs,

It :=

t∫
0

σ(s) dWH
s =

t∫
0

t∫
s

σ(u) ∂1K(u, s)dudWs.

Then I
(ε)
t → It uniformly in t ∈ [0, T ] as ε → 0 since I

(ε)
t , It are

Gaussian processes and

E|I(ε)
t − It|p ≤ Cp

( t∫
0

ε2ασ2(s)ds

)p/2

+Cp

{ t∫
0

( t∫
s

ασ(u)[(u−s+ε)α−1−(u−s)α−1]du

)2

ds

}p/2
≤ CpM

pεpα

+ CpM
p

{ t∫
0

(
(t− s)α − (t− s+ ε)α + εα

)2

ds

}p/2
≤ CpM

p(1 + 2T p/2)εpα. (3.8)
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Hence, from (2.7), E exp( sup
0≤t≤T

|pI(ε)
t |) is bounded for small enough val-

ues of ε. We have for all p > 1

E| sup
0≤t≤T

Y ε
t |p ≤ E exp

{
sup

0≤t≤T

(
p

2
ε2α

t∫
0

σ2(s)ds− p
t∫

0

σ(s)dWH,ε
s

)}

≤ exp

(
p

2
ε2α

T∫
0

σ2(s)ds

)
E exp( sup

0≤t≤T
|pI(ε)

t |) ≤ C
(1)
p,H,T <∞,

where C
(1)
p,H,T is a constant depending only on p,H, T. Similarly,

E| sup
0≤t≤T

1

Y ε
t

|p ≤ C
(1)
p,H,T . (3.9)

From (3.5) and by assumption (1.5) we get

Zε
u = x0 +

u∫
0

Y ε
s b(s,

Zε
s

Y ε
s

)ds,

sup
0≤u≤t

|Zε
u| ≤ |x0|+

t∫
0

|Y ε
s b(v,

Zε
s

Y ε
s

)|ds ≤ |x0|+
t∫

0

sup
0≤u≤s

|Y ε
u b(s,

Zε
u

Y ε
u

)|ds,

E( sup
0≤u≤t

|Zε
u|)p ≤ 2p−1|x0|p + 2p−1Lp0

t∫
0

E( sup
0≤u≤s

|Y ε
u + Zε

u|)pds

≤ 2p−1|x0|p + 4p−1Lp0

t∫
0

[E( sup
0≤u≤s

|Y ε
u |)p + E( sup

0≤u≤s
|Zε

u|)p]ds.

An application of Gronwall’s Lemma to the latest inequality yields

E( sup
0≤u≤t

|Zε
u|)p ≤ (2p−1|x0|p + 4p−1Lp0Tcp,H,T )e4p−1Lp0T := C

(2)
p,H,T . (3.10)

We now combine (3.9) and (3.10) to get

E( sup
0≤u≤t

|Xε
t |)p ≤

{
E( sup

0≤u≤t
|Zε

t |)2pE( sup
0≤u≤t

| 1

Y ε
t

|)2p
} 1

2

≤
{
C

(1)
2p,H,TC

(2)
2p,H,T

} 1
2 := C

(3)
p,H,T . (3.11)

Finally, we prove that Xε
t satisfies the condition (i):
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Since b′x(t, x) is bounded and Θε
s,t = exp

( t∫
s

b′x(r,X
ε
r )
)
Y εs
Y εt

we get

E
(

sup
0≤s≤t≤T

Θε
s,t

)p
<∞.

Then using the inequality (3.12) below we can see that there exists a

constant C
(4)
p,H,T depending only on p,H, T such that

E|Θε
s,t2
−Θε

s,t1
|p ≤ C

(4)
p,H,T |t1 − t2|

p/2 , ∀ t1, t2 ∈ [0, T ].

E|DW
s X

ε
t2
−DW

s X
ε
t1
|2

≤ E|εασ(s)Xε
s (Θ

ε
s,t2
−Θε

s,t1
)|2

+ E

∣∣∣∣
t1∫
s

ασ(r)Xε
r (r − s+ ε)α−1(Θε

s,t2
−Θε

s,t1
)dr

∣∣∣∣2

+ E

∣∣∣∣
t2∫
t1

ασ(r)Xε
r (r − s+ ε)α−1Θε

r,t2
dr

∣∣∣∣2 := A1 + A2 + A3.

It is easy to see that A1 ≤ C
(5)
H,T |t1 − t2| , ∀ t1, t2 ∈ [0, T ]. Applying

Hölder’s inequality to p1 = 2−α
2−2α

∈ (1, 1
1−α), q1 = p1

p1−1
we have

A2 ≤
( t1∫

s

(r−s+ε)p1α−p1dr

) 2
p1

E

∣∣∣∣
t1∫
s

(
ασ(r)Xε

r (Θ
ε
s,t2
−Θε

s,t1
)
)q1dr∣∣∣∣ 2

q1

≤
( t1∫

s

(r − s+ ε)p1α−p1dr

) 2
p1

t1∫
s

E|ασ(r)Xε
r (Θ

ε
s,t2
−Θε

s,t1
)|2dr

≤ C
(6)
H,T |t1 − t2|.

Similarly, we have also A3 ≤ C
(7)
H,T |t1 − t2|. Thus,

E|DW
s X

ε
t2
−DW

s X
ε
t1
|2 ≤ C

(8)
H,T |t1 − t2|.

Since Xε
t =

Zεt
Y εt
, it is easy to show that

E|Xε
t2
−Xε

t1
|2 ≤ C

(9)
H,T |t1 − t2|.

Consequently, if we choose β such that 1
2
−H < β < 1

2
then

‖Xε‖2
L1,2
β

≤ C
(10)
H,T sup

0<t1<t2<T
|t2 − t1|1−2β <∞.
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Convergence: Let X1, X2 be two random variables. By Lagrange’s
theorem and Hölder’s inequality we have

E|eX1 − eX2|p ≤ E|(X1 −X2) sup
min(X1,X2)≤x≤max(X1,X2)

ex|p

≤ E|(X1 −X2)e|X1|+|X2||p ≤
(
E[e2p|X1| + e2p|X2|]E|X1 −X2|2p

) 1
2

.

(3.12)

We now put Yt = exp
(
−

t∫
0

σ(s)dWH
s

)
and apply (3.12) to X1 =

1
2
ε2α

t∫
0

σ2(s)ds−
t∫

0

σ(s)dWH,ε
s , X2 = −

t∫
0

σ(s)dWH
s to get

E|Y ε
t − Yt|p ≤

(
E[e2p|X1| + e2p|X2|]E|X1 −X2|2p

) 1
2

. (3.13)

It is obvious that E[e2p|X1| + e2p|X2|] is finite because I
(ε)
t and It are

centered Gaussian processes with finite variances in [0, T ]. Moreover,
by the fundamental inequality (a + b)p ≤ cp(a

p + bp), where cp = 1 if
0 < p ≤ 1 and cp = 2p−1 if p > 1

E|X1−X2|2p ≤ c2p

[
E|I(ε)

t −It|2p+
1

22p
ε4pα

( t∫
0

σ2(s)ds
)2p] ≤ Cε2pα,

(3.14)

where C is a finite constant. Consequently, Y ε
t → Yt in Lp(Ω) as ε→ 0.

We consider

dZt = Ytb(t,
Zt
Yt

)dt , Z0 = x0. (3.15)

For P - almost all ω ∈ Ω, the function f(t, x, ω) = Ytb(t,
x
Yt

) satisfies

the global Lipschitzian condition in x ∈ R. Hence, the equation (3.15)

has a unique solution Zt ∈ C1[0, T ]. Moreover, Zε
t

L2(Ω)−−−→ Zt uniformly
in t ∈ [0, T ]. Indeed, we have

E|Zε
t − Zt|2 ≤

t∫
0

E[Y ε
s b(s,

Zε
s

Y ε
s

)− Ysb(s,
Zs
Ys

)]2ds

≤ 2

t∫
0

E[Y ε
s b(s,

Zε
s

Y ε
s

)− Ysb(s,
Zε
s

Ys
)]2ds (3.16)
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+ 2

t∫
0

E[Ysb(s,
Zε
s

Ys
)− Ysb(s,

Zs
Ys

)]2ds

≤ 2

t∫
0

E[Y ε
s b(s,

Zε
s

Y ε
s

)− Ysb(s,
Zε
s

Ys
)]2ds+ 2L2

0

t∫
0

E|Zε
s − Zs|2ds

:= A4 + 2L2
0

t∫
0

E|Zε
s − Zs|2ds.

By the assumptions (1.4), (1.5) we have

|Y ε
s b(s,

Zε
s

Y ε
s

)− Ysb(s,
Zε
s

Ys
)| ≤ |(Y ε

s − Ys)b(s,
Zε
s

Ys
)|

+ |Y ε
s (b(s,

Zε
s

Y ε
s

)− b(s, Z
ε
s

Ys
))| ≤ L0|(Y ε

s − Ys)(
Zε
s

Ys
+ 1)|

+ L0|Y ε
t (
Zε
s

Y ε
s

− Zε
s

Ys
)|,

which means that A4
L2(Ω)−−−→ 0 uniformly in t ∈ [0, T ]. As a consequence,

the fact that Zε
t

L2(Ω)−−−→ Zt uniformly in t ∈ [0, T ] follows from (3.16)
and by the Gronwall’s Lemma.

Now we put Xt = Zt
Yt

then Xε
t

L2(Ω)−−−→ Xt as ε→ 0. We note also Xt ∈
CH−

[0, T ] because Yt ∈ CH−
[0, T ] (this fact follows from Proposition

2.2) and Zt ∈ C1[0, T ] a.s.

The Theorem thus is proved. �

By taking limit when ε → 0, the main result of this section is for-
mulated in the theorem given below.

Theorem 3.2. The fractional stochastic differential equation (1.3) has
a solution which is given by

Xt =
Zt
Yt
, (3.17)
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where Yt = exp
(
−

t∫
0

σ(s)dWH
s

)
and Zt is the unique solution of the

ordinary differential equation

dZt = Ytb(t,
Zt
Yt

)dt , Z0 = x0. (3.18)

Moreover, Xt ∈ CH−
[0, T ] ∩ D1,∞

W and

DW
s Xt =

( t∫
s

ασ(r)Xr(r − s)α−1Θr,tdr

)
1{s≤t},

where Θs,t = exp

(
t∫
s

b′x(r,Xr)dr +
t∫
s

σ(r)dWH
r

)
.

Proof. By using similar estimates as above we can see that Xt defined
by (3.17) satisfies the hypothesis (H) and then we can take the limit
of both sides of (3.2) when ε → 0, each term in the right-hand side
converges to the same term where ε = 0. So Xt solves (1.3). �

Example: The solution of the fractional Black-Scholes equation of the
form

dXt = b(t)Xtdt+ σ(t)XtdW
H
t , X0 = x0,

is given by

Xt = x0 exp

( t∫
0

b(s)ds+

t∫
0

σ(s)dWH
s

)
.

Remark 3.1. We now turn our attention to the the equation (1.2) men-
tioned in Introduction:

dXt = b(t,Xt)dt+ σ(t)dWH
t , X0 = x0, (3.19)

where σ(t) is a deterministic function and b is Lipschitz continuous and
satisfies the linear growth condition. The existence and uniqueness of
the solution of (3.19) were discussed by Mishura (see Section 3.5 in
[21]).

Consider the approximation equations corresponding to (3.19).

dXε
t = b(t,Xε

t )dt+ σ(t)dWH,ε
t , Xε

0 = x0. (3.20)
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By Gronwall’s lemma it is obvious that Xε
t → Xt in L2(Ω) as ε → 0

since the definition of our fractional stochastic integral and

E|Xε
t −Xt|2 ≤ 2L2

0

t∫
0

E|Xε
s −Xs|2ds+ 2E

∣∣∣∣
t∫

0

σ(s)d(WH,ε
s −WH

s )

∣∣∣∣2.
Thus our approximate method works for all H ∈ (0, 1). This gives

us the following scheme to solve (3.19):

Step 1: Solving (3.20) by using the classical Itô differential formula.

Step 2: Taking limit of the solution found in Step 1 in L2(Ω) as ε→ 0
to get the solution of (3.19).

We illustrate this scheme by finding the solution for the equation
with nonlinear drift of the form

dXt = (ecXt + b)dt+ σdWH
t , X0 = x0, (3.21)

where b, c, σ, x0 are real constants and c 6= 0. The approximation equa-
tion corresponding to (3.21) is

dXε
t = (ecX

ε
t + b)dt+ σdWH,ε

t , Xε
0 = x0,

or equivalently,

dXε
t = (ecX

ε
t + b+ σϕεt)dt+ σεαdWt.

An application of the classical Itô differential formula to Y ε
t := e−cX

ε
t

yields

Y ε
t = ((

1

2
c2σ2ε2α − bc− cϕεt)Y ε

t − c)dt− cσεαY ε
t dWt. (3.22)

The equation (3.22) is a linear SDE and its solution is given by

Y ε
t = exp(−bct− σcWH,ε

t − cx0)

(
1−

t∫
0

c exp(cx0 + bcs+ σcWH,ε
s )ds

)
.

As a consequence,

Xε
t = bt+ σWH,ε

t + x0 −
1

c
ln

(
1− c

t∫
0

exp(cx0 + bcs+ σcWH,ε
s )ds

)
,
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and then the solution of (3.21) is

Xt = bt+ σWH
t + x0 −

1

c
ln

(
1− c

t∫
0

exp(cx0 + bcs+ σcWH
s )ds

)
.

4. Applications to finance

It is known that fBm with Hurst index H 6= 1
2

is a Gaussian process
that has a memory. More precisely, let ρH(n) := E(WH

1 (WH
n+1−WH

n )),
then (see, [20])

ρH(n) ≈ H(2H − 1)n2H−2 as n→∞.

Thus, if H > 1
2
, then

∑
n

ρH(n) =∞ and according to Beran’s definition

[2], fBm is called a long-memory process. If H < 1
2
, then

∑
n

ρH(n) <∞

and fBm is called a short-memory process.

The long-memory property makes fBm as a potential candidate to
model for noise in a variety of models (for a survey on theory and ap-
plications of long memory processes, see [9]). However, one has found
that models driven by fBm are difficult to study because of the non-
semimartingale property of fBm, as well as the complexity of the frac-
tional stochastic calculus. In order to avoid this difficult, it would be
desirable to find a long-memory process that has semimartingale prop-
erty. The Proposition 4.1 below implies that WH,ε

t is such a process.

Proposition 4.1. WH,ε has long-memory if H > 1
2

and has short-

memory if H < 1
2
.

Proof. Consider the auto-variance functions ρH,ε(n) := E(WH,ε
1 (WH,ε

n+1−
WH,ε
n )), n ≥ 1. By Itô isometry formula we have

ρH,ε(n) =

1∫
0

(1− s+ ε)α[(n+ 1− s+ ε)α − (n− s+ ε)α]ds

=

ε∫
ε−1

(1 + s)α[(n+ 1 + s)α − (n+ s)α]ds.
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We now apply the Mean Value Theorem and then Lagrange’s theorem
to obtain

ρH,ε(n) = (1 + s0)α[(n+ 1 + s0)α − (n+ s0)α]
= α(1 + s0)α(s0 + θ)α−1,

where s0 ∈ (ε− 1, ε) and θ ∈ (n, n+ 1).

Consequently,

ρH,ε(n) ≈ α(1 + s0)αnα−1 as n→∞,
which implies that

∑
n

ρH,ε(n) =∞ if α = H − 1
2
> 0 and

∑
n

ρH,ε(n) <

∞ if α < 0.

The Proposition thus is proved. �

Since WH,ε
t is a semimartingale and, similar to fBm, has long mem-

ory, we suggest the name ”fractional semimartingale” for WH,ε
t .

Definition 4.1. The stochastic process WH,ε
t defined by

WH,ε
t =

t∫
0

(t− s+ ε)αdWs , α = H − 1

2

is called a fractional semimartingale with two parameters (H, ε) ∈
(0, 1)× (0,∞).

A fractional semimartingale WH,ε
t , contrarily to fBm, is not a self-

similar process and has non-stationary increments. However, a sim-
ulation example in Plienpanich et al. [26] has showed a significant

reduction of error in a stock price model driven by WH,ε
t as compared

to the classical stock price model. This result means that WH,ε
t , from

empirical point of view, seems to be the potential candidate to model
for noise in mathematical finance. In the remaining of this paper, let
us study two models driven by fractional semimartingale.

4.1. The Black-Scholes model. We consider the Black-Scholes model
with fractional noise that contains a stock St and a bond Bt.

Bond price:
dBt = rBtdt; B0 = 1 (4.1)

Stock price:
dSt = µStdt+ σStdW

H
t , (4.2)
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where S0 is a positive real number, the coefficients r, µ, σ are assumed
to be constants symbolizing the riskless interest rate, the drift of the
stock and its volatility, respectively. Then, from Theorem 3.2 we have

St = S0 exp
(
µt+ σWH

t

)
, Bt = ert.

It is obvious that St ∈ CH−
[0, T ] and this implies that the fractional

stochastic integral can be understood as Riemann-Stieltjes integral. As
a consequence, our fractional Black-Scholes model admits an arbitrage
opportunity (see, for instance, [29]) and we cannot use the traditional
method to find the price of a European call option. However, for the
Black-Scholes model with fractional semimartingale noise we have a
surprising result in the following.

Theorem 4.1. Consider the fractional semimartingale Black-Scholes
model containing a bond (4.1) and a stock Sεt

dSεt = µSεt dt+ σSεt dW
H,ε
t , Sε0 = S0. (4.3)

Then this model has no arbitrage and is complete. The European call
option price at time t = 0 is given by

C0(ε) = S0N(d1)− e−rTKN(d2), (4.4)

where where K is trike price at maturity time T, d1 =
ln
S0
K

+(r+σ2ε2α

2
)T

σεα
√
T

,

d2 =
ln
S0
K

+(r−σ
2ε2α

2
)T

σεα
√
T

and N(x) = 1√
2π

x∫
−∞

e−
t2

2 dt.

Proof. Refer to [12, Theorem 4.1 and Remark 4.1]. �

4.2. Optimal portfolio. Let (Ω,F , P,F = {Ft, 0 ≤ t ≤ T}) be a
complete filtered probability space. Suppose that we observe contin-
uously a single security with the price process {St; 0 ≤ t ≤ T} which
follows the equation

dSt = St(µtdt+ σdWH1,ε1
t ), (4.5)

where σ and initial price S0 are known positive constants, but the drift
coefficient is an unobserved mean-reverting process with the dynamics

dµt = βµtdt+ νdWH2,ε2
t , (4.6)

where β, ν are unknown real constants, the initial condition µ0 is a
Gaussian random variable and independent of (WH1,ε1 ,WH2,ε2).

We assume the Brownian motions W (i), i = 1, 2 are independent, so
do WHi,εi , i = 1, 2. We shall denote by FS = {FSt , 0 ≤ t ≤ T} the
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P -augmentation of the filtration generated by the price process S. A
portfolio is an R-valued FS-adapted process π = {πt, 0 ≤ t ≤ T} such
that

T∫
0

π2
t dt <∞ a.s.

We regard πt as the number of shares invested in the stock at time t.
Given an initial wealth x ≥ 0, the wealth process corresponding to a
self-financing portfolio π is defined by Xx,π

0 = x and

dXx,π
t = πtdSt.

We denote by A(x) the set of admissible portfolios π such that

Xx,π
t ≥ 0 a.s., 0 ≤ t ≤ T.

and consider the following expected logarithmic utility maximization
problem from terminal wealth over the class A(x) :

max
π∈A(x)

E[log(Xx,π
T )] . (4.7)

Theorem 4.2. There exists an optimal portfolio π∗ = {π∗t , 0 ≤ t ≤ T}
for the utility maximization problem (4.7):

π∗t =
x(µ̂t + σϕ̂

(1)
t )

StL̂t
, 0 ≤ t ≤ T, (4.8)

where

L̂t = exp

(
− 1

σ2

t∫
0

(µ̂s + σϕ̂(1)
s )dIs −

1

2σ2

t∫
0

(µ̂s + σϕ̂(1)
s )2ds

)
,

where µ̂s = E[µs|FSs ], ϕ̂
(1)
s = E[ϕ

(1)
s |FSs ].

The optimal wealth process corresponding to π∗ is given by

Xx,π∗

T =
x

L̂T
, Xx,π∗

t =
π∗tSt

µ̂t + σϕ̂
(1)
t

, 0 ≤ t ≤ T. (4.9)

Proof. From the decomposition (2.2), Eq.(4.5) can be rewritten as fol-
lows

dSt = St(µt + σϕ
(1)
t )dt+ σStε

H1− 1
2

1 dW
(1)
t ,
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where ϕ
(1)
t =

t∫
0

(H1 − 1
2
)(t+ ε1 − u)H1− 3

2dWu and we can use usual Itô

calculus to find its solution

St = S0 exp

( t∫
0

(µs −
1

2
σ2ε2H1−1

1 )ds+ σWH1,ε1
t

)
. (4.10)

Denote by U = {Ut, 0 ≤ t ≤ T} the stochastic process defined by

Ut =

t∫
0

µsds+ σWH1,ε1
t = σW

(1)
t +

t∫
0

(µs + σϕ(1)
s )ds (4.11)

then FS = FU and we can consider U as the observation process
standing for S.

As in [19, Theorem 7.16] we define the innovation process I =
{It, 0 ≤ t ≤ T}

It =
1

σ

[
Ut −

t∫
0

(µ̂s + σϕ̂(1)
s )ds

]
.

I is a FU -standard Brownian motion satisfying F I = FU .

We can see that the following stochastic process is a F -martingale

Lt := exp

(
− 1

σ

t∫
0

(µs + σϕ(1)
s )dW (1)

s −
1

2σ2

t∫
0

(µs + σϕ(1)
s )2ds

)

= exp

(
− 1

σ2

t∫
0

(µs + σϕ(1)
s )dUs +

1

2σ2

t∫
0

(µs + σϕ(1)
s )2ds

)
. (4.12)

We take the conditional expectation on both two sides of (4.12) with
respect to FU and obtain

L̂t = exp

(
− 1

σ2

t∫
0

(µ̂s + σϕ̂(1)
s )dUs +

1

2σ2

t∫
0

(µ̂s + σϕ̂(1)
s )2ds

)

= exp

(
− 1

σ2

t∫
0

(µ̂s + σϕ̂(1)
s )dIs −

1

2σ2

t∫
0

(µ̂s + σϕ̂(1)
s )2ds

)
. (4.13)
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Applying the Itô formula we can see that L̂tX
x,π
t is a local martingale.

Moreover, for x > 0 and π ∈ A(x) we have Xx,π
t ≥ 0, whence L̂tX

x,π
t

is an FU -supermartingale.

Now using a simple inequality that log(u)−uv ≤ log 1
v
−1, ∀ u, v > 0

we obtain the inequality below for all y > 0

E
[

log(Xx,π
T )
]
≤ E

[
log(Xx,π

T )− yL̂TXx,π
T

]
+ yx

≤ E

[
log
( 1

yL̂T

)
− 1

]
+ yx. (4.14)

The equalities in (4.14) hold if and only if

Xx,π
T =

x

L̂T
a.s. (4.15)

Thus the strategy π satisfying (4.15) is optimal.

From (4.13) we have

d
x

L̂t
=
x(µ̂s + σϕ̂

(1)
s )

L̂t
dYt =

x(µ̂s + σϕ̂
(1)
s )

StL̂t
dSt,

hence, if we put

π∗t =
x(µ̂t + σϕ̂

(1)
t )

StL̂t
, 0 ≤ t ≤ T,

then dXx,π∗

t = π∗t dSt = d x

L̂t
. This yields

Xx,π∗

t =
x

L̂t
, 0 ≤ t ≤ T

because Xx,π∗

0 = x = x

L̂0
.

In particular, π∗ satisfies (4.15) and it is the desired optimal strategy.

The proof is thus complete. �

At the end of this paper, we put Zt = (µt, ϕ
(1)
s ) and our aim is to

compute the optimal filter Ẑt = (µ̂t, ϕ̂
(1)
s ) appeared in Theorem 4.2.

First, in our filtering problem the dynamics of observation U and state
process µ are given by, respectively

dUt = µtdt+ σdWH1,ε1
t ,

dµt = βµtdt+ νdWH2,ε2
t .
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The error matrix P (t, s) is defined by

P (t, s) = E[Zt(Zs − Ẑs)τ ], 0 ≤ s ≤ t ≤ T.

Theorem 4.3. The optimal filter Ẑt = (µ̂t, ϕ̂
(1)
t ) satisfies the stochastic

integral equation

Ẑt =
1

σ2

t∫
0

[P (t, s) +D(t, s)] a[dUs − aτ Ẑsds] , 0 ≤ t ≤ T, (4.16)

where a = (1, σ)τ , τ denotes the transposition and

D(t, s) =

(
0 0

σ(H1 − 1
2
)(t− s+ ε1)H1− 3

2 0

)
.

The error matrix P (t, s) is the solution of the following Riccati-type
equation

P (t, s) =
−1

σ2

s∫
0

[P (t, u) +D(t, u)] a aτ [P (s, u) +D(s, u)]τdu

+ ΓZZ(t, s) , 0 ≤ s ≤ t ≤ T, (4.17)

where ΓZZ(t, s) = E[ZtZ
τ
s ].

Proof. We have

Ut =

t∫
0

(µs + σϕ(1)
s )ds+ σW

(1)
t

and the associated innovation process {It, 0 ≤ t ≤ T} is given by

It =
1

σ

[
Ut −

t∫
0

(µ̂s + σϕ̂(1)
s )ds

]
, (4.18)

and is a FU -standard Brownian motion satisfying F I = FU . For con-
venience, we rewrite It in the matrix form:

It =
1

σ

t∫
0

(Zs − Ẑs)τads+W
(1)
t .

Since the Brownian motions W (1),W (2) are independent, the system
(Z,U) = (µ, ϕ(1), U) is Gaussian. Hence, the optimal filter Ẑ is a
linear function of the observation process {Us, 0 ≤ s ≤ t} and it is also
a Gaussian system. By [19, Theorem 5.6], there exists a deterministic
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Volterra function F (t, s) = (F1(t, s), F2(t, s)) on 0 ≤ s ≤ t ≤ T such
that

t∫
0

|F (t, s)|2ds <∞ , 0 ≤ t ≤ T,

Ẑt =

t∫
0

F (t, s)dIs , 0 ≤ t ≤ T. (4.19)

Now from (4.19) we can find the function F (t, s) as follows

F (t, s) =
d

ds
E(ẐtIs) =

d

ds
E(ZtIs)

=
d

ds

(
1

σ

s∫
0

E[Zt(Zu − Ẑu)τ ]a du+ E[ZtW
(1)
s ]

)

=
1

σ
P (t, s) a+ (0, (H1 −

1

2
)(t− s+ ε1)H1− 3

2 )τ

=
1

σ
[P (t, s) +D(t, s)] a.

Thus we have

Ẑt =
1

σ

t∫
0

[P (t, s) +D(t, s)] a dIs , 0 ≤ t ≤ T, (4.20)

and the filtering equation (4.16) follows from (4.18).

From the definition of the error matrix we have

P (t, s) = E[ZtZ
τ
s ]− E[ẐtẐ

τ
s ],

hence the equation (4.17) follows from (4.20) and Itô isometry formula.

We give an explicit computation of ΓZZ(t, s) , 0 ≤ s ≤ t ≤ T. We
have

ΓZZ(t, s) =

(
E[µtµs] E[µtϕ

(1)
s ]

E[ϕ
(1)
t µs] E[ϕ

(1)
t ϕ

(1)
s ]

)
.

We recall from [14, Proposition 4.2] that

µt = µ0e
βt + νε

H2− 1
2

2

t∫
0

eβ(t−s)dW (2)
s + ν

t∫
0

eβ(t−s)ϕ(2)
s ds.
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Applying stochastic Fubini’s theorem we have

t∫
0

eβ(t−s)ϕ(2)
s ds =

t∫
0

s∫
0

(H2 −
1

2
)eβ(t−s)(s− u+ ε2)H2− 3

2dW (2)
u ds

=

t∫
0

t∫
u

(H2 −
1

2
)eβ(t−s)(s− u+ ε2)H2− 3

2dsdW (2)
u .

Thus,

µt = µ0e
βt +

t∫
0

b(t− u)dW (2)
u ,

where

b(t− u) = νε
H2− 1

2
2 eβ(t−u) + ν

t∫
u

(H2 −
1

2
)eβ(t−s)(s− u+ ε2)H2− 3

2ds

= eβ(t−u)
(
νε

H2− 1
2

2 + ν

t−u∫
0

(H2 −
1

2
)e−βs(s+ ε2)H2− 3

2ds
)
.

As a consequence, we have

E[µtµs] = eβ(t+s)E[µ2
0] +

s∫
0

b(t− u)b(s− u)du,

E[µtϕ
(1)
s ] = E[ϕ

(1)
t µs] = 0,

E[ϕ
(1)
t ϕ(1)

s ] = (H1 −
1

2
)2

s∫
0

(t− u+ ε1)H1− 3
2 (s− u+ ε1)H1− 3

2du.

�

When H1 = H2 = 1
2

and µ0 = 0 we obtain the following corollary for
the classical Kalman-Bucy linear filtering problem.

Corollary 4.1. Consider the filtering problem with observation and
state process given by, respectively

dUt = µtdt+ σdW
(1)
t , U0 = 0,

dµt = βµtdt+ νdW
(2)
t , µ0 = 0.
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Then the optimal filter µ̂t satisfies

µ̂t =
β − γ(t)

σ2
µ̂tdt+

γ(t)

σ2
dUt,

where the error γ(t) = E[µt(µt − µ̂t)] is the solution of the Riccati
equation

dγ(t)

dt
=
ν2

σ2
+

2β

σ2
γ(t)− 1

σ2
γ2(t).

Proof. It is obvious since D(t, s) ≡ 0 ≡ ϕ
(1)
t ,

ΓZZ(t, s) =

(
ν2

2β
(eβ(t+s) − eβ(t−s)) 0

0 0

)
.

P (t, s) =

(
E[µt(µs − µ̂s)] 0

0 0

)
,

where

E[µt(µs − µ̂s)] = E
[
E[µt|Fs](µs − µ̂s)

]
= eβ(t−s)γ(s).

�

Acknowledgment. The author would like to thank the anonymous
referees for their valuable comments for improving the paper.

References
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